Comments changed
diff --git a/tensorflow/python/data/ops/dataset_ops.py b/tensorflow/python/data/ops/dataset_ops.py
index b166247..581341a 100644
--- a/tensorflow/python/data/ops/dataset_ops.py
+++ b/tensorflow/python/data/ops/dataset_ops.py
@@ -534,8 +534,8 @@
     >>> list(dataset.as_numpy_iterator())
     [(array([1, 2, 3], dtype=int32), b'A')]
 
-    >>> # `from_tensors` creates 3D tensor in below example
-    >>> # unlike `from_tensor_slices` which merges the input tensor.
+    >>> # `from_tensors` adds one more dimension to the shape
+    >>> # use `from_tensor_slices` to merge the input tensor.
     >>> dataset = tf.data.Dataset.from_tensors([tf.random_uniform([2, 3]),
                                                tf.random_uniform([2, 3])])
     >>> list(dataset.as_numpy_iterator())[0].shape
@@ -618,8 +618,8 @@
            [3, 2]], dtype=int32), array([[b'A'],
            [b'B']], dtype=object))
 
-    >>> # `from_tensor_slices` merges the input tensor 
-    >>> # unlike `from_tensors` which will create 3D tensor in below example.
+    >>> # `from_tensor_slices` merges the input tensor, unlike `from_tensors`
+    >>> # which increases dimensionality.
     >>> dataset = tf.data.Dataset.from_tensor_slices([tf.random.uniform([2, 3]),
                                                      tf.random.uniform([2, 3])])
     >>> list(dataset.as_numpy_iterator())[0].shape