Copy lite/kernels/gather.cc to lite/micro/kernels/gather.cc w/o any change
diff --git a/tensorflow/lite/micro/kernels/gather.cc b/tensorflow/lite/micro/kernels/gather.cc
new file mode 100644
index 0000000..57ac9c2
--- /dev/null
+++ b/tensorflow/lite/micro/kernels/gather.cc
@@ -0,0 +1,212 @@
+/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+#include <stdint.h>
+
+#include "tensorflow/lite/c/builtin_op_data.h"
+#include "tensorflow/lite/c/common.h"
+#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
+#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
+#include "tensorflow/lite/kernels/internal/tensor.h"
+#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
+#include "tensorflow/lite/kernels/internal/types.h"
+#include "tensorflow/lite/kernels/kernel_util.h"
+#include "tensorflow/lite/string_util.h"
+
+namespace tflite {
+namespace ops {
+namespace builtin {
+namespace gather {
+constexpr int kInputTensor = 0;
+constexpr int kInputPositions = 1;
+constexpr int kOutputTensor = 0;
+
+TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+ TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
+ TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
+
+ const auto* params =
+ reinterpret_cast<const TfLiteGatherParams*>(node->builtin_data);
+ const TfLiteTensor* input;
+ TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
+ const TfLiteTensor* positions;
+ TF_LITE_ENSURE_OK(context,
+ GetInputSafe(context, node, kInputPositions, &positions));
+ TfLiteTensor* output;
+ TF_LITE_ENSURE_OK(context,
+ GetOutputSafe(context, node, kOutputTensor, &output));
+
+ switch (positions->type) {
+ case kTfLiteInt64:
+ case kTfLiteInt32:
+ break;
+ default:
+ context->ReportError(
+ context, "Positions of type '%s' are not supported by gather.",
+ TfLiteTypeGetName(positions->type));
+ return kTfLiteError;
+ }
+
+ // Assign to output the input type.
+ output->type = input->type;
+
+ // Check conditions for different types.
+ switch (input->type) {
+ case kTfLiteFloat32:
+ case kTfLiteUInt8:
+ case kTfLiteInt8:
+ case kTfLiteInt16:
+ case kTfLiteInt64:
+ case kTfLiteInt32:
+ case kTfLiteBool:
+ break;
+ case kTfLiteString: {
+ // Only 1D input is supported.
+ TF_LITE_ENSURE_EQ(context, NumDimensions(input), 1);
+ } break;
+ default:
+ context->ReportError(context, "Type '%s' is not supported by gather.",
+ TfLiteTypeGetName(input->type));
+ return kTfLiteError;
+ }
+
+ int axis = params->axis;
+ if (axis < 0) {
+ axis += NumDimensions(input);
+ }
+ TF_LITE_ENSURE(context, 0 <= axis && axis < NumDimensions(input));
+
+ const int num_dimensions =
+ NumDimensions(input) + NumDimensions(positions) - 1;
+ TfLiteIntArray* output_shape = TfLiteIntArrayCreate(num_dimensions);
+ int output_index = 0;
+ for (int i = 0; i < axis; ++i) {
+ output_shape->data[output_index++] = input->dims->data[i];
+ }
+ for (int i = 0; i < positions->dims->size; ++i) {
+ output_shape->data[output_index++] = positions->dims->data[i];
+ }
+ for (int i = axis + 1; i < input->dims->size; ++i) {
+ output_shape->data[output_index++] = input->dims->data[i];
+ }
+ return context->ResizeTensor(context, output, output_shape);
+}
+
+template <typename InputT, typename PositionsT>
+TfLiteStatus Gather(const TfLiteGatherParams& params, const TfLiteTensor* input,
+ const TfLiteTensor* positions, TfLiteTensor* output) {
+ tflite::GatherParams op_params;
+ op_params.axis = params.axis;
+ optimized_ops::Gather(op_params, GetTensorShape(input),
+ GetTensorData<InputT>(input), GetTensorShape(positions),
+ GetTensorData<PositionsT>(positions),
+ GetTensorShape(output), GetTensorData<InputT>(output));
+ return kTfLiteOk;
+}
+
+template <typename PositionT>
+TfLiteStatus GatherStrings(TfLiteContext* context, const TfLiteTensor* input,
+ const TfLiteTensor* positions,
+ TfLiteTensor* output) {
+ DynamicBuffer buffer;
+ const PositionT* indexes = GetTensorData<PositionT>(positions);
+ const PositionT num_strings = GetStringCount(input);
+ const int num_indexes = NumElements(positions);
+
+ for (int i = 0; i < num_indexes; ++i) {
+ const PositionT pos = indexes[i];
+ TF_LITE_ENSURE(context, pos < num_strings);
+ const auto string_ref = GetString(input, pos);
+ buffer.AddString(string_ref.str, string_ref.len);
+ }
+ buffer.WriteToTensor(output, /*new_shape=*/nullptr);
+ return kTfLiteOk;
+}
+
+TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+ const auto* params =
+ reinterpret_cast<const TfLiteGatherParams*>(node->builtin_data);
+ const TfLiteTensor* input;
+ TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
+ const TfLiteTensor* positions;
+ TF_LITE_ENSURE_OK(context,
+ GetInputSafe(context, node, kInputPositions, &positions));
+ TfLiteTensor* output;
+ TF_LITE_ENSURE_OK(context,
+ GetOutputSafe(context, node, kOutputTensor, &output));
+
+ if (positions->type == kTfLiteInt32) {
+ switch (input->type) {
+ case kTfLiteFloat32:
+ return Gather<float, int32_t>(*params, input, positions, output);
+ case kTfLiteUInt8:
+ return Gather<uint8_t, int32_t>(*params, input, positions, output);
+ case kTfLiteInt8:
+ return Gather<int8_t, int32_t>(*params, input, positions, output);
+ case kTfLiteInt16:
+ return Gather<int16_t, int32_t>(*params, input, positions, output);
+ case kTfLiteInt32:
+ return Gather<int32_t, int32_t>(*params, input, positions, output);
+ case kTfLiteInt64:
+ return Gather<int64_t, int32_t>(*params, input, positions, output);
+ case kTfLiteBool:
+ return Gather<bool, int32_t>(*params, input, positions, output);
+ case kTfLiteString:
+ return GatherStrings<int32_t>(context, input, positions, output);
+ default:
+ context->ReportError(context, "Type '%s' is not supported by gather.",
+ TfLiteTypeGetName(input->type));
+ return kTfLiteError;
+ }
+ }
+ if (positions->type == kTfLiteInt64) {
+ switch (input->type) {
+ case kTfLiteFloat32:
+ return Gather<float, int64_t>(*params, input, positions, output);
+ case kTfLiteUInt8:
+ return Gather<uint8_t, int64_t>(*params, input, positions, output);
+ case kTfLiteInt8:
+ return Gather<int8_t, int64_t>(*params, input, positions, output);
+ case kTfLiteInt16:
+ return Gather<int16_t, int64_t>(*params, input, positions, output);
+ case kTfLiteInt32:
+ return Gather<int32_t, int64_t>(*params, input, positions, output);
+ case kTfLiteInt64:
+ return Gather<int64_t, int64_t>(*params, input, positions, output);
+ case kTfLiteBool:
+ return Gather<bool, int64_t>(*params, input, positions, output);
+ case kTfLiteString:
+ return GatherStrings<int64_t>(context, input, positions, output);
+ default:
+ context->ReportError(context, "Type '%s' is not supported by gather.",
+ TfLiteTypeGetName(input->type));
+ return kTfLiteError;
+ }
+ }
+ context->ReportError(context,
+ "Positions of type '%s' are not supported by gather.",
+ TfLiteTypeGetName(positions->type));
+ return kTfLiteError;
+}
+} // namespace gather
+
+TfLiteRegistration* Register_GATHER() {
+ static TfLiteRegistration r = {nullptr, nullptr, gather::Prepare,
+ gather::Eval};
+ return &r;
+}
+
+} // namespace builtin
+} // namespace ops
+} // namespace tflite