Formatting according to Google C++ Style Guide
diff --git a/tensorflow/compiler/tf2tensorrt/convert/convert_nodes.cc b/tensorflow/compiler/tf2tensorrt/convert/convert_nodes.cc
index 2331851..75a9b59 100644
--- a/tensorflow/compiler/tf2tensorrt/convert/convert_nodes.cc
+++ b/tensorflow/compiler/tf2tensorrt/convert/convert_nodes.cc
@@ -2930,7 +2930,6 @@
}
if (params->validation_only) return Status::OK();
-
nvinfer1::ITensor* tensor = inputs.at(0).tensor();
const auto data_format = attrs.get<string>("data_format");
const bool is_ndhwc = (data_format == "NDHWC");
@@ -2940,14 +2939,17 @@
if (data_format == "NDHWC") {
// NDHWC => NCDHW
- TF_RETURN_IF_ERROR(params->converter->TransposeTensor(tensor, {0, 4, 1, 2, 3}, &tensor));
+ TF_RETURN_IF_ERROR(
+ params->converter->TransposeTensor(tensor, {0, 4, 1, 2, 3}, &tensor));
}
const auto tf_stride = attrs.get<std::vector<int64>>("strides");
- const nvinfer1::Dims3 stride(tf_stride[d_index], tf_stride[h_index], tf_stride[w_index]);
+ const nvinfer1::Dims3 stride(tf_stride[d_index], tf_stride[h_index],
+ tf_stride[w_index]);
const auto tf_kernel = attrs.get<std::vector<int64>>("ksize");
- const nvinfer1::Dims3 ksize(tf_kernel[d_index], tf_kernel[h_index], tf_kernel[w_index]);
+ const nvinfer1::Dims3 ksize(tf_kernel[d_index], tf_kernel[h_index],
+ tf_kernel[w_index]);
nvinfer1::INetworkDefinition* network = params->converter->network();
nvinfer1::IPoolingLayer* layer = network->addPoolingNd(*tensor, type, ksize);
@@ -2967,7 +2969,8 @@
if (data_format == "NDHWC") {
// NCDHW => NDHWC
- TF_RETURN_IF_ERROR(params->converter->TransposeTensor(output_tensor, {0, 2, 3, 4, 1}, &output_tensor));
+ TF_RETURN_IF_ERROR(params->converter->TransposeTensor(
+ output_tensor, {0, 2, 3, 4, 1}, &output_tensor));
}
params->outputs->push_back(TRT_TensorOrWeights(output_tensor));