[mlir][hlo] Refactor rank specialization to allow an arbitrary number of inputs
This actually simplifies the code a bit.
PiperOrigin-RevId: 358201038
Change-Id: I6c9cc8ea391c988c8d5315d8e768debcfa869bf7
diff --git a/tensorflow/compiler/mlir/hlo/lib/Dialect/mhlo/transforms/transform_unranked_hlo.cc b/tensorflow/compiler/mlir/hlo/lib/Dialect/mhlo/transforms/transform_unranked_hlo.cc
index 7c47b6f..3f12d51 100644
--- a/tensorflow/compiler/mlir/hlo/lib/Dialect/mhlo/transforms/transform_unranked_hlo.cc
+++ b/tensorflow/compiler/mlir/hlo/lib/Dialect/mhlo/transforms/transform_unranked_hlo.cc
@@ -202,6 +202,149 @@
}
};
+template <typename ChloOpTy, typename HloOpTy>
+struct ConvertUnrankedDynamicBroadcastOpHelper {
+ // Returns the dynamic result of checking the given value is effectively a
+ // scalar shape (i.e. the number of elements is 1).
+ static Value GreaterRankIsN(OpBuilder &builder, Location loc,
+ Value actual_rank, int targeted_rank) {
+ return builder.create<CmpIOp>(
+ loc, CmpIPredicate::eq, actual_rank,
+ builder.create<ConstantIndexOp>(loc, targeted_rank));
+ }
+
+ static scf::IfOp createIfOpForRankSpecializedBroadcastAndOp(
+ OpBuilder &builder, ChloOpTy op, Value actual_rank, int targeted_rank) {
+ // Create the if block to place the current specialized logic in.
+ Value greater_rank_is_n =
+ GreaterRankIsN(builder, op.getLoc(), actual_rank, targeted_rank);
+ return builder.create<scf::IfOp>(op.getLoc(), op.getResult().getType(),
+ greater_rank_is_n, true);
+ }
+
+ static Value createBroadcastToKnownRank(OpBuilder &builder, ChloOpTy op,
+ Value value, int targeted_rank) {
+ auto loc = op.getLoc();
+ Value shape = builder.create<shape::ShapeOfOp>(loc, value);
+ SmallVector<int64_t, 6> ranked_shape(targeted_rank, 1);
+ auto unknown_rank_extent_tensor_type = RankedTensorType::get(
+ {RankedTensorType::kDynamicSize}, builder.getIndexType());
+ auto known_rank_extent_tensor_type =
+ RankedTensorType::get({targeted_rank}, builder.getIndexType());
+ Value ranked_shape_val = builder.create<shape::ConstShapeOp>(
+ loc, known_rank_extent_tensor_type,
+ mlir::DenseIntElementsAttr::get(known_rank_extent_tensor_type,
+ ranked_shape));
+ Value extended_value = builder.create<shape::BroadcastOp>(
+ loc, unknown_rank_extent_tensor_type, shape, ranked_shape_val, nullptr);
+ return builder.create<tensor::CastOp>(loc, known_rank_extent_tensor_type,
+ extended_value);
+ }
+
+ // Create the if statement and code for a broadcasting op with a result of a
+ // given rank.
+ static void createRankSpecializedBroadcastAndOp(OpBuilder &if_builder,
+ ChloOpTy op,
+ ValueRange operands,
+ int targeted_rank) {
+ auto loc = op.getLoc();
+ SmallVector<Value, 2> reshaped_operands;
+
+ auto dynamic_dimensions = llvm::SmallVector<int64_t, 6>(
+ targeted_rank, RankedTensorType::kDynamicSize);
+
+ for (Value operand : operands) {
+ // Handle shape broadcasting and inference.
+ Value extended_operand_casted =
+ createBroadcastToKnownRank(if_builder, op, operand, targeted_rank);
+
+ // 1. Reshape operands to the given rank (with the same number of
+ // elements)
+ // 2. Compute the ranked-broadcasted ChloOp (which will assert that the
+ // ops
+ // can be broadcasted and do the actual broadcasting)
+ // 3. Type erase the output back to unranked
+ auto reshaped_type = RankedTensorType::get(
+ dynamic_dimensions,
+ operand.getType().template dyn_cast<TensorType>().getElementType());
+ Value reshaped_operand = if_builder.create<mhlo::DynamicReshapeOp>(
+ loc, reshaped_type, operand, extended_operand_casted);
+ reshaped_operands.push_back(reshaped_operand);
+ }
+ auto result_element_type = op.getResult()
+ .getType()
+ .template dyn_cast<TensorType>()
+ .getElementType();
+ auto result_type =
+ RankedTensorType::get(dynamic_dimensions, result_element_type);
+ Value result = if_builder.create<ChloOpTy>(
+ loc, ArrayRef<Type>{result_type}, reshaped_operands, op.getAttrs());
+ Value reshaped_result = if_builder.create<tensor::CastOp>(
+ loc, UnrankedTensorType::get(result_element_type), result);
+ if_builder.create<scf::YieldOp>(loc, reshaped_result);
+ }
+
+ // Iterates over the desired ranks to be specialized and generates the code
+ // snippet for each case.
+ static Value HandleBroadcastAndOp(OpBuilder &rewriter, ChloOpTy op,
+ ValueRange operands) {
+ auto loc = op.getLoc();
+
+ // Find the larger rank of the operands.
+ auto extent_tensor_type = RankedTensorType::get({ShapedType::kDynamicSize},
+ rewriter.getIndexType());
+ Value greater_rank;
+ for (Value operand : operands) {
+ Value shape =
+ rewriter.create<shape::ShapeOfOp>(loc, extent_tensor_type, operand);
+ Value rank =
+ rewriter.create<shape::RankOp>(loc, rewriter.getIndexType(), shape);
+ if (!greater_rank) {
+ greater_rank = rank;
+ } else {
+ Value greater_rank_compare = rewriter.create<CmpIOp>(
+ loc, CmpIPredicate::sgt, greater_rank, rank);
+ greater_rank = rewriter.create<SelectOp>(loc, greater_rank_compare,
+ greater_rank, rank);
+ }
+ }
+
+ // Generate a list of nested if/else statements to handle rank
+ // specializations from 1 to `kMaxRankSpecialization`.
+ scf::IfOp if_op = createIfOpForRankSpecializedBroadcastAndOp(
+ rewriter, op, greater_rank, 1);
+ OpBuilder if_builder = if_op.getThenBodyBuilder(rewriter.getListener());
+ createRankSpecializedBroadcastAndOp(if_builder, op, operands, 1);
+
+ // Put each subsequent rank specialization inside the else statement of the
+ // previous one.
+ OpBuilder else_builder = if_op.getElseBodyBuilder(rewriter.getListener());
+ constexpr int kMaxRankSpecialization = 6;
+ for (int i = 2; i < kMaxRankSpecialization; i++) {
+ auto inner_if = createIfOpForRankSpecializedBroadcastAndOp(
+ else_builder, op, greater_rank, i);
+ if_builder = inner_if.getThenBodyBuilder(rewriter.getListener());
+ createRankSpecializedBroadcastAndOp(if_builder, op, operands, i);
+ else_builder.create<scf::YieldOp>(loc, inner_if.getResult(0));
+ else_builder = inner_if.getElseBodyBuilder(rewriter.getListener());
+ }
+ // Fire an assertion if none of the rank specializations applied (one of
+ // the ranks was greater than `kMaxRankSpecialization`).
+ else_builder.create<AssertOp>(
+ loc,
+ GreaterRankIsN(else_builder, op.getLoc(), greater_rank,
+ kMaxRankSpecialization),
+ "Input for dynamic binary op lowering was of a rank greater than " +
+ std::to_string(kMaxRankSpecialization));
+ // Add the rank 6 specialization to the innermost else block.
+ createRankSpecializedBroadcastAndOp(else_builder, op, operands,
+ kMaxRankSpecialization);
+
+ // Return the result of the outermost if statement.
+ return if_op.getResult(0);
+ }
+};
+
// Handles lowering of the following pattern to patterns that will be further
// matched by other patterns until they result in LHLO:
// %result = "chlo.op"(%lhs, %rhs) : (<*xTy>, <*xTy>) -> <*xTy>
@@ -298,7 +441,9 @@
OpBuilder if_neq_shapes_builder =
if_eq_shapes_op.getElseBodyBuilder(rewriter.getListener());
if_neq_shapes_builder.create<scf::YieldOp>(
- loc, HandleBroadcastAndOp(if_neq_shapes_builder, op, lhs, rhs));
+ loc, ConvertUnrankedDynamicBroadcastOpHelper<
+ ChloOpTy, HloOpTy>::HandleBroadcastAndOp(if_neq_shapes_builder,
+ op, {lhs, rhs}));
rewriter.replaceOp(op, {if_op.getResult(0)});
return success();
@@ -318,23 +463,6 @@
rewriter.create<ConstantIndexOp>(loc, 1));
}
- Value GreaterRankIsN(OpBuilder &builder, Location loc, Value actual_rank,
- int targeted_rank) const {
- return builder.create<CmpIOp>(
- loc, CmpIPredicate::eq, actual_rank,
- builder.create<ConstantIndexOp>(loc, targeted_rank));
- }
-
- scf::IfOp createIfOpForRankSpecializedBroadcastAndOp(
- OpBuilder &builder, ChloOpTy op, Value actual_rank,
- int targeted_rank) const {
- // Create the if block to place the current specialized logic in.
- Value greater_rank_is_n =
- GreaterRankIsN(builder, op.getLoc(), actual_rank, targeted_rank);
- return builder.create<scf::IfOp>(op.getLoc(), op.getResult().getType(),
- greater_rank_is_n, true);
- }
-
Value extendToBroadcastShape(OpBuilder &builder, Location loc, Value value,
Value shape_of_lhs, Value shape_of_rhs) const {
auto unknown_rank_extent_tensor_type = RankedTensorType::get(
@@ -345,122 +473,6 @@
return builder.create<mhlo::DynamicReshapeOp>(loc, value.getType(), value,
broadcast_shape);
}
-
- Value createBroadcastToKnownRank(OpBuilder &builder, ChloOpTy op, Value value,
- int targeted_rank) const {
- auto loc = op.getLoc();
- Value shape = builder.create<shape::ShapeOfOp>(loc, value);
- SmallVector<int64_t, 6> ranked_shape(targeted_rank, 1);
- auto unknown_rank_extent_tensor_type = RankedTensorType::get(
- {RankedTensorType::kDynamicSize}, builder.getIndexType());
- auto known_rank_extent_tensor_type =
- RankedTensorType::get({targeted_rank}, builder.getIndexType());
- Value ranked_shape_val = builder.create<shape::ConstShapeOp>(
- loc, known_rank_extent_tensor_type,
- mlir::DenseIntElementsAttr::get(known_rank_extent_tensor_type,
- ranked_shape));
- Value extended_value = builder.create<shape::BroadcastOp>(
- loc, unknown_rank_extent_tensor_type, shape, ranked_shape_val, nullptr);
- return builder.create<tensor::CastOp>(loc, known_rank_extent_tensor_type,
- extended_value);
- }
-
- // Create the if statement and code for a broadcasting op with a result of a
- // given rank.
- void createRankSpecializedBroadcastAndOp(OpBuilder &if_builder, ChloOpTy op,
- Value lhs, Value rhs,
- int targeted_rank) const {
- auto loc = op.getLoc();
-
- // Handle shape broadcasting and inference.
- Value extended_lhs_casted =
- createBroadcastToKnownRank(if_builder, op, lhs, targeted_rank);
- Value extended_rhs_casted =
- createBroadcastToKnownRank(if_builder, op, rhs, targeted_rank);
- auto dynamic_dimensions = llvm::SmallVector<int64_t, 6>(
- targeted_rank, RankedTensorType::kDynamicSize);
- auto reshaped_type = RankedTensorType::get(
- dynamic_dimensions,
- lhs.getType().template dyn_cast<TensorType>().getElementType());
-
- // 1. Reshape operands to the given rank (with the same number of elements)
- // 2. Compute the ranked-broadcasted ChloOp (which will assert that the ops
- // can be broadcasted and do the actual broadcasting)
- // 3. Type erase the output back to unranked
- Value reshaped_lhs = if_builder.create<mhlo::DynamicReshapeOp>(
- loc, reshaped_type, lhs, extended_lhs_casted);
- Value reshaped_rhs = if_builder.create<mhlo::DynamicReshapeOp>(
- loc, reshaped_type, rhs, extended_rhs_casted);
- auto result_element_type = op.getResult()
- .getType()
- .template dyn_cast<TensorType>()
- .getElementType();
- auto result_type =
- RankedTensorType::get(dynamic_dimensions, result_element_type);
- Value result = if_builder.create<ChloOpTy>(
- loc, ArrayRef<Type>{result_type},
- ArrayRef<Value>{reshaped_lhs, reshaped_rhs}, op.getAttrs());
- Value reshaped_result = if_builder.create<tensor::CastOp>(
- loc, UnrankedTensorType::get(result_element_type), result);
- if_builder.create<scf::YieldOp>(loc, reshaped_result);
- }
-
- // Iterates over the desired ranks to be specialized and generates the code
- // snippet for each case.
- Value HandleBroadcastAndOp(OpBuilder &rewriter, ChloOpTy op, Value lhs,
- Value rhs) const {
- auto loc = op.getLoc();
-
- // Find the larger rank of the 2 operands.
- auto extent_tensor_type = RankedTensorType::get({ShapedType::kDynamicSize},
- rewriter.getIndexType());
- Value lhs_shape =
- rewriter.create<shape::ShapeOfOp>(loc, extent_tensor_type, lhs);
- Value rhs_shape =
- rewriter.create<shape::ShapeOfOp>(loc, extent_tensor_type, rhs);
- Value lhs_rank =
- rewriter.create<shape::RankOp>(loc, rewriter.getIndexType(), lhs_shape);
- Value rhs_rank =
- rewriter.create<shape::RankOp>(loc, rewriter.getIndexType(), rhs_shape);
- Value greater_rank_lhs =
- rewriter.create<CmpIOp>(loc, CmpIPredicate::sgt, lhs_rank, rhs_rank);
- Value greater_rank =
- rewriter.create<SelectOp>(loc, greater_rank_lhs, lhs_rank, rhs_rank);
-
- // Generate a list of nested if/else statements to handle rank
- // specializations from 1 to `kMaxRankSpecialization`.
- scf::IfOp if_op = createIfOpForRankSpecializedBroadcastAndOp(
- rewriter, op, greater_rank, 1);
- OpBuilder if_builder = if_op.getThenBodyBuilder(rewriter.getListener());
- createRankSpecializedBroadcastAndOp(if_builder, op, lhs, rhs, 1);
-
- // Put each subsequent rank specialization inside the else statement of the
- // previous one.
- OpBuilder else_builder = if_op.getElseBodyBuilder(rewriter.getListener());
- constexpr int kMaxRankSpecialization = 6;
- for (int i = 2; i < kMaxRankSpecialization; i++) {
- auto inner_if = createIfOpForRankSpecializedBroadcastAndOp(
- else_builder, op, greater_rank, i);
- if_builder = inner_if.getThenBodyBuilder(rewriter.getListener());
- createRankSpecializedBroadcastAndOp(if_builder, op, lhs, rhs, i);
- else_builder.create<scf::YieldOp>(loc, inner_if.getResult(0));
- else_builder = inner_if.getElseBodyBuilder(rewriter.getListener());
- }
- // Fire an assertion if none of the rank specializations applied (one of
- // the ranks was greater than `kMaxRankSpecialization`).
- else_builder.create<AssertOp>(
- loc,
- GreaterRankIsN(else_builder, op.getLoc(), greater_rank,
- kMaxRankSpecialization),
- "Input for dynamic binary op lowering was of a rank greater than " +
- std::to_string(kMaxRankSpecialization));
- // Add the rank 6 specialization to the innermost else block.
- createRankSpecializedBroadcastAndOp(else_builder, op, lhs, rhs,
- kMaxRankSpecialization);
-
- // Return the result of the outermost if statement.
- return if_op.getResult(0);
- }
};
struct TransformUnrankedHloPass
diff --git a/tensorflow/compiler/mlir/hlo/tests/hlo-transform-unranked.mlir b/tensorflow/compiler/mlir/hlo/tests/hlo-transform-unranked.mlir
index a074763..43270f3 100644
--- a/tensorflow/compiler/mlir/hlo/tests/hlo-transform-unranked.mlir
+++ b/tensorflow/compiler/mlir/hlo/tests/hlo-transform-unranked.mlir
@@ -209,9 +209,9 @@
// CHECK-NEXT: %[[CONST_SHAPE_1:.*]] = shape.const_shape [1]
// CHECK-NEXT: %[[BROADCASTED_LHS_1:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_1]] : tensor<?xindex>, tensor<1xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_LHS_1:.*]] = tensor.cast %[[BROADCASTED_LHS_1]] : tensor<?xindex> to tensor<1xindex>
+// CHECK-NEXT: %[[RESHAPED_LHS_1:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_1]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32>
// CHECK-NEXT: %[[BROADCASTED_RHS_1:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_1]] : tensor<?xindex>, tensor<1xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_RHS_1:.*]] = tensor.cast %[[BROADCASTED_RHS_1]] : tensor<?xindex> to tensor<1xindex>
-// CHECK-NEXT: %[[RESHAPED_LHS_1:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_1]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32>
// CHECK-NEXT: %[[RESHAPED_RHS_1:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_1]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32>
// CHECK-NEXT: %[[RESULT_RANK_1:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_1]], %[[RESHAPED_RHS_1]] : (tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32>
// CHECK-NEXT: %[[RESULT_1:.*]] = tensor.cast %[[RESULT_RANK_1]] : tensor<?xf32> to tensor<*xf32>
@@ -224,9 +224,9 @@
// CHECK-NEXT: %[[CONST_SHAPE_2:.*]] = shape.const_shape [1, 1]
// CHECK-NEXT: %[[BROADCASTED_LHS_2:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_2]] : tensor<?xindex>, tensor<2xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_LHS_2:.*]] = tensor.cast %[[BROADCASTED_LHS_2]] : tensor<?xindex> to tensor<2xindex>
+// CHECK-NEXT: %[[RESHAPED_LHS_2:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
// CHECK-NEXT: %[[BROADCASTED_RHS_2:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_2]] : tensor<?xindex>, tensor<2xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_RHS_2:.*]] = tensor.cast %[[BROADCASTED_RHS_2]] : tensor<?xindex> to tensor<2xindex>
-// CHECK-NEXT: %[[RESHAPED_LHS_2:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
// CHECK-NEXT: %[[RESHAPED_RHS_2:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
// CHECK-NEXT: %[[RESULT_RANK_2:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_2]], %[[RESHAPED_RHS_2]] : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK-NEXT: %[[RESULT_2:.*]] = tensor.cast %[[RESULT_RANK_2]] : tensor<?x?xf32> to tensor<*xf32>
@@ -239,9 +239,9 @@
// CHECK-NEXT: %[[CONST_SHAPE_3:.*]] = shape.const_shape [1, 1, 1]
// CHECK-NEXT: %[[BROADCASTED_LHS_3:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_3]] : tensor<?xindex>, tensor<3xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_LHS_3:.*]] = tensor.cast %[[BROADCASTED_LHS_3]] : tensor<?xindex> to tensor<3xindex>
+// CHECK-NEXT: %[[RESHAPED_LHS_3:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
// CHECK-NEXT: %[[BROADCASTED_RHS_3:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_3]] : tensor<?xindex>, tensor<3xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_RHS_3:.*]] = tensor.cast %[[BROADCASTED_RHS_3]] : tensor<?xindex> to tensor<3xindex>
-// CHECK-NEXT: %[[RESHAPED_LHS_3:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
// CHECK-NEXT: %[[RESHAPED_RHS_3:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
// CHECK-NEXT: %[[RESULT_RANK_3:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_3]], %[[RESHAPED_RHS_3]] : (tensor<?x?x?xf32>, tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
// CHECK-NEXT: %[[RESULT_3:.*]] = tensor.cast %[[RESULT_RANK_3]] : tensor<?x?x?xf32> to tensor<*xf32>
@@ -254,9 +254,9 @@
// CHECK-NEXT: %[[CONST_SHAPE_4:.*]] = shape.const_shape [1, 1, 1, 1]
// CHECK-NEXT: %[[BROADCASTED_LHS_4:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_4]] : tensor<?xindex>, tensor<4xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_LHS_4:.*]] = tensor.cast %[[BROADCASTED_LHS_4]] : tensor<?xindex> to tensor<4xindex>
+// CHECK-NEXT: %[[RESHAPED_LHS_4:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
// CHECK-NEXT: %[[BROADCASTED_RHS_4:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_4]] : tensor<?xindex>, tensor<4xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_RHS_4:.*]] = tensor.cast %[[BROADCASTED_RHS_4]] : tensor<?xindex> to tensor<4xindex>
-// CHECK-NEXT: %[[RESHAPED_LHS_4:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
// CHECK-NEXT: %[[RESHAPED_RHS_4:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
// CHECK-NEXT: %[[RESULT_RANK_4:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_4]], %[[RESHAPED_RHS_4]] : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
// CHECK-NEXT: %[[RESULT_4:.*]] = tensor.cast %[[RESULT_RANK_4]] : tensor<?x?x?x?xf32> to tensor<*xf32>
@@ -269,9 +269,9 @@
// CHECK-NEXT: %[[CONST_SHAPE_5:.*]] = shape.const_shape [1, 1, 1, 1, 1]
// CHECK-NEXT: %[[BROADCASTED_LHS_5:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_5]] : tensor<?xindex>, tensor<5xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_LHS_5:.*]] = tensor.cast %[[BROADCASTED_LHS_5]] : tensor<?xindex> to tensor<5xindex>
+// CHECK-NEXT: %[[RESHAPED_LHS_5:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
// CHECK-NEXT: %[[BROADCASTED_RHS_5:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_5]] : tensor<?xindex>, tensor<5xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_RHS_5:.*]] = tensor.cast %[[BROADCASTED_RHS_5]] : tensor<?xindex> to tensor<5xindex>
-// CHECK-NEXT: %[[RESHAPED_LHS_5:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
// CHECK-NEXT: %[[RESHAPED_RHS_5:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
// CHECK-NEXT: %[[RESULT_RANK_5:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_5]], %[[RESHAPED_RHS_5]] : (tensor<?x?x?x?x?xf32>, tensor<?x?x?x?x?xf32>) -> tensor<?x?x?x?x?xf32>
// CHECK-NEXT: %[[RESULT_5:.*]] = tensor.cast %[[RESULT_RANK_5]] : tensor<?x?x?x?x?xf32> to tensor<*xf32>
@@ -284,9 +284,9 @@
// CHECK-NEXT: %[[CONST_SHAPE_6:.*]] = shape.const_shape [1, 1, 1, 1, 1, 1]
// CHECK-NEXT: %[[BROADCASTED_LHS_6:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_6]] : tensor<?xindex>, tensor<6xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_LHS_6:.*]] = tensor.cast %[[BROADCASTED_LHS_6]] : tensor<?xindex> to tensor<6xindex>
+// CHECK-NEXT: %[[RESHAPED_LHS_6:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
// CHECK-NEXT: %[[BROADCASTED_RHS_6:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_6]] : tensor<?xindex>, tensor<6xindex> -> tensor<?xindex>
// CHECK-NEXT: %[[CASTED_RHS_6:.*]] = tensor.cast %[[BROADCASTED_RHS_6]] : tensor<?xindex> to tensor<6xindex>
-// CHECK-NEXT: %[[RESHAPED_LHS_6:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
// CHECK-NEXT: %[[RESHAPED_RHS_6:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
// CHECK-NEXT: %[[RESULT_RANK_6:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_6]], %[[RESHAPED_RHS_6]] : (tensor<?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?xf32>) -> tensor<?x?x?x?x?x?xf32>
// CHECK-NEXT: %[[RESULT_6:.*]] = tensor.cast %[[RESULT_RANK_6]] : tensor<?x?x?x?x?x?xf32> to tensor<*xf32>