Updated from tensor_scatter_add to tensor_scatter_nd_add

PiperOrigin-RevId: 427064144
Change-Id: I09b0075e379695462200c84f151f3dd182153e38
diff --git a/tensorflow/core/api_def/base_api/api_def_TensorScatterAdd.pbtxt b/tensorflow/core/api_def/base_api/api_def_TensorScatterAdd.pbtxt
index ddec1ce..0bddf12 100644
--- a/tensorflow/core/api_def/base_api/api_def_TensorScatterAdd.pbtxt
+++ b/tensorflow/core/api_def/base_api/api_def_TensorScatterAdd.pbtxt
@@ -45,23 +45,18 @@
 
     indices.shape[:-1] + tensor.shape[indices.shape[-1]:]
 
-The simplest form of tensor_scatter_add is to add individual elements to a
+The simplest form of `tensor_scatter_nd_add` is to add individual elements to a
 tensor by index. For example, say we want to add 4 elements in a rank-1
 tensor with 8 elements.
 
 In Python, this scatter add operation would look like this:
 
-```python
-    indices = tf.constant([[4], [3], [1], [7]])
-    updates = tf.constant([9, 10, 11, 12])
-    tensor = tf.ones([8], dtype=tf.int32)
-    updated = tf.tensor_scatter_nd_add(tensor, indices, updates)
-    print(updated)
-```
-
-The resulting tensor would look like this:
-
-    [1, 12, 1, 11, 10, 1, 1, 13]
+>>> indices = tf.constant([[4], [3], [1], [7]])
+>>> updates = tf.constant([9, 10, 11, 12])
+>>> tensor = tf.ones([8], dtype=tf.int32)
+>>> updated = tf.tensor_scatter_nd_add(tensor, indices, updates)
+<tf.Tensor: shape=(8,), dtype=int32, 
+numpy=array([ 1, 12,  1, 11, 10,  1,  1, 13], dtype=int32)>
 
 We can also, insert entire slices of a higher rank tensor all at once. For
 example, if we wanted to insert two slices in the first dimension of a
@@ -69,25 +64,20 @@
 
 In Python, this scatter add operation would look like this:
 
-```python
-    indices = tf.constant([[0], [2]])
-    updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
+>>> indices = tf.constant([[0], [2]])
+>>> updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
                             [7, 7, 7, 7], [8, 8, 8, 8]],
                            [[5, 5, 5, 5], [6, 6, 6, 6],
                             [7, 7, 7, 7], [8, 8, 8, 8]]])
-    tensor = tf.ones([4, 4, 4],dtype=tf.int32)
-    updated = tf.tensor_scatter_nd_add(tensor, indices, updates)
-    print(updated)
-```
+>>> tensor = tf.ones([4, 4, 4],dtype=tf.int32)
+>>> updated = tf.tensor_scatter_nd_add(tensor, indices, updates)
+<tf.Tensor: shape=(4, 4, 4), dtype=int32, 
+numpy=array([[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
+             [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
+             [[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
+             [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]], dtype=int32)>
 
-The resulting tensor would look like this:
-
-    [[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
-     [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
-     [[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
-     [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]
-
-Note that on CPU, if an out of bound index is found, an error is returned.
+Note: on CPU, if an out of bound index is found, an error is returned.
 On GPU, if an out of bound index is found, the index is ignored.
 END
 }