Add `ShardedVariable` class.
PiperOrigin-RevId: 272745815
diff --git a/tensorflow/python/distribute/BUILD b/tensorflow/python/distribute/BUILD
index 185495b..60c6ae8 100644
--- a/tensorflow/python/distribute/BUILD
+++ b/tensorflow/python/distribute/BUILD
@@ -1,6 +1,5 @@
load("//tensorflow:tensorflow.bzl", "py_test", "tf_py_test")
load("//tensorflow:tensorflow.bzl", "cuda_py_test")
-load("//tensorflow/compiler/tests:build_defs.bzl", "tf_xla_py_test")
load("//tensorflow/core/platform:default/distribute.bzl", "distribute_py_test")
package(
@@ -132,6 +131,7 @@
":distribute_lib",
":mirrored_strategy",
":one_device_strategy",
+ ":sharded_variable",
"//tensorflow/python/distribute/experimental",
],
)
@@ -779,6 +779,32 @@
)
py_library(
+ name = "sharded_variable",
+ srcs = ["sharded_variable.py"],
+ srcs_version = "PY2AND3",
+ deps = [
+ "//tensorflow/python:tensor_shape",
+ "//tensorflow/python:variables",
+ "//tensorflow/python/training/saving:saveable_object_util",
+ "//tensorflow/python/training/tracking:base",
+ ],
+)
+
+tf_py_test(
+ name = "sharded_variable_test",
+ size = "small",
+ srcs = ["sharded_variable_test.py"],
+ additional_deps = [
+ ":sharded_variable",
+ "//tensorflow/python:array_ops",
+ "//tensorflow/python:client_testlib",
+ "//tensorflow/python:variables",
+ "//tensorflow/python/compat:v2_compat",
+ "//tensorflow/python/training/tracking:util",
+ ],
+)
+
+py_library(
name = "strategy_test_lib",
srcs = ["strategy_test_lib.py"],
srcs_version = "PY2AND3",
diff --git a/tensorflow/python/distribute/sharded_variable.py b/tensorflow/python/distribute/sharded_variable.py
new file mode 100644
index 0000000..9886e42
--- /dev/null
+++ b/tensorflow/python/distribute/sharded_variable.py
@@ -0,0 +1,139 @@
+# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+"""ShardedVariable class."""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import copy
+
+from tensorflow.python.framework import tensor_shape
+from tensorflow.python.ops import variables as variables_lib
+from tensorflow.python.training.saving import saveable_object_util
+from tensorflow.python.training.tracking import base as trackable
+
+
+class ShardedVariable(trackable.Trackable):
+ """A container for `Variables` that should be treated as shards.
+
+ Variables that are too large to fit on a single device (e.g., large
+ embeddings)
+ may need to be sharded over multiple devices. This class maintains a list of
+ smaller variables that can be independently stored on separate devices (eg,
+ multiple parameter servers), and saves and restores those variables as if they
+ were a single larger variable.
+
+ Objects of this class can be saved with a given number of shards and then
+ restored from a checkpoint into a different number of shards.
+
+ Sharding is only supported along the first dimension.
+ """
+
+ def __init__(self, variables, name='ShardedVariable'):
+ """Treats `variables` as shards of a larger Variable.
+
+
+ Example:
+
+ ```
+ variables = [
+ tf.Variable(..., shape=(10, 100), dtype=tf.float32),
+ tf.Variable(..., shape=(15, 100), dtype=tf.float32),
+ tf.Variable(..., shape=(5, 100), dtype=tf.float32)
+ ]
+ sharded_variable = ShardedVariable(variables)
+ assert sharded_variable.shape.as_list() == [30, 100]
+ ```
+
+ Args:
+ variables: A list of `ResourceVariable`s that comprise this sharded
+ variable. Variables should not be shared between different
+ `ShardedVariable` objects.
+ name: String. Name of this container. Defaults to "ShardedVariable".
+ """
+ super(ShardedVariable, self).__init__()
+ self._variables = variables
+ self._name = name
+
+ first_var = variables[0]
+
+ if any(not isinstance(v, variables_lib.Variable) for v in variables):
+ raise ValueError(
+ 'Expected a list of `Variable`s, found: {}'.format(variables))
+
+ dtypes = {v.dtype for v in variables}
+ if len(dtypes) > 1:
+ raise ValueError(
+ 'All `Variable`s must have the same dtype, found: {}'.format(
+ [v.dtype for v in variables]))
+ self._dtype = first_var.dtype
+
+ # All variables must have the same shape for axes > 0.
+ higher_dim_shapes = {tuple(v.shape.as_list()[1:]) for v in variables}
+ if len(higher_dim_shapes) > 1:
+ raise ValueError(
+ 'All `Variables`s must have the same shapes except for the first '
+ 'axis, found {}'.format([v.shape for v in variables]))
+ first_dim = sum(int(v.shape[0]) for v in variables)
+ self._shape = tensor_shape.TensorShape([first_dim] + first_var.shape[1:])
+
+ save_slice_info = [v._get_save_slice_info() for v in variables] # pylint: disable=protected-access
+ if any(slice_info is not None for slice_info in save_slice_info):
+ raise ValueError('`SaveSliceInfo` should not be set for `Variable`s. '
+ '`ShardedVariable` will infer `SaveSliceInfo` according '
+ 'to the order of the `Variable`s in the list passed to '
+ 'the constructor. Found {}'.format(save_slice_info))
+
+ @property
+ def variables(self):
+ """The list of `Variable`s that make up the shards of this object."""
+ return self._variables
+
+ @property
+ def name(self):
+ """The name of this object. Used for checkpointing."""
+ return self._name
+
+ @property
+ def dtype(self):
+ """The dtype of all `Variable`s in this object."""
+ return self._dtype
+
+ @property
+ def shape(self):
+ """The overall shape, combining all shards along axis `0`."""
+ return self._shape
+
+ def _gather_saveables_for_checkpoint(self):
+ """Return a `Saveable` for each shard. See `Trackable`."""
+
+ def _saveable_factory(name=self.name):
+ """Creates `SaveableObject`s for this `ShardedVariable`."""
+ saveables = []
+ dims = len(self._variables[0].shape)
+ var_offset = [0 for _ in range(dims)]
+ for v in self._variables:
+ save_slice_info = variables_lib.Variable.SaveSliceInfo(
+ full_name=self.name,
+ full_shape=self.shape.as_list(),
+ var_offset=copy.copy(var_offset),
+ var_shape=v.shape.as_list())
+ saveables.append(
+ saveable_object_util.ResourceVariableSaveable(
+ v, save_slice_info.spec, name)) # pylint: disable=protected-access
+ var_offset[0] += int(v.shape[0])
+ return saveables
+
+ return {trackable.VARIABLE_VALUE_KEY: _saveable_factory}
diff --git a/tensorflow/python/distribute/sharded_variable_test.py b/tensorflow/python/distribute/sharded_variable_test.py
new file mode 100644
index 0000000..7110a9f
--- /dev/null
+++ b/tensorflow/python/distribute/sharded_variable_test.py
@@ -0,0 +1,146 @@
+# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+"""Tests for ShardedVariable."""
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import os
+
+from tensorflow.python.compat import v2_compat
+from tensorflow.python.distribute import sharded_variable
+from tensorflow.python.ops import array_ops
+from tensorflow.python.ops import variables as variables_lib
+from tensorflow.python.platform import test
+from tensorflow.python.training.tracking import util
+
+
+class ShardedVariableTest(test.TestCase):
+
+ def test_sharded_variable_simple(self):
+ v0 = variables_lib.Variable([0])
+ v1 = variables_lib.Variable([1])
+ s = sharded_variable.ShardedVariable([v0, v1], name='s')
+ self.assertEqual(s.variables[0], v0)
+ self.assertEqual(s.variables[1], v1)
+ self.assertEqual(s.shape.as_list(), [2])
+ self.assertEqual(s.dtype, v0.dtype)
+ self.assertEqual(s.name, 's')
+
+ def test_save_restore(self):
+ fname = os.path.join(self.get_temp_dir(), 'checkpoint')
+ variables = [
+ variables_lib.Variable([0]),
+ variables_lib.Variable([1]),
+ variables_lib.Variable([2]),
+ variables_lib.Variable([3])
+ ]
+ s = sharded_variable.ShardedVariable(variables, name='s')
+
+ cp = util.Checkpoint(s=s)
+ self.assertEqual(self.evaluate(cp.s.variables[0]), [0])
+ cp.write(fname)
+
+ self.evaluate(cp.s.variables[0].assign([4]))
+ self.assertEqual(self.evaluate(cp.s.variables[0]), [4])
+
+ cp.restore(fname)
+ # Tests that the original weights are restored.
+ self.assertEqual(self.evaluate(cp.s.variables[0]), [0])
+
+ def test_save_restore_different_partitions(self):
+ fname = os.path.join(self.get_temp_dir(), 'checkpoint')
+ variables = [
+ variables_lib.Variable([0]),
+ variables_lib.Variable([1]),
+ variables_lib.Variable([2]),
+ variables_lib.Variable([3])
+ ]
+ s = sharded_variable.ShardedVariable(variables, name='s')
+
+ cp = util.Checkpoint(s=s)
+ cp.write(fname)
+
+ variables2 = [variables_lib.Variable([0, 0, 0, 0])]
+ s2 = sharded_variable.ShardedVariable(variables2, name='s')
+
+ # Restore from 4 partitions into 1.
+ cp2 = util.Checkpoint(s=s2)
+ cp2.restore(fname)
+ self.assertAllEqual(self.evaluate(cp2.s.variables[0]), [0, 1, 2, 3])
+
+ self.evaluate(cp2.s.variables[0].assign([5, 10, 15, 20]))
+ cp2.write(fname)
+
+ # Restore 1 partition into 4.
+ cp.restore(fname)
+ self.assertEqual(self.evaluate(cp.s.variables[0]), [5])
+ self.assertEqual(self.evaluate(cp.s.variables[1]), [10])
+ self.assertEqual(self.evaluate(cp.s.variables[2]), [15])
+ self.assertEqual(self.evaluate(cp.s.variables[3]), [20])
+
+ def test_save_restore_4_to_2_partitions(self):
+ fname = os.path.join(self.get_temp_dir(), 'checkpoint')
+ variables = [
+ variables_lib.Variable([0]),
+ variables_lib.Variable([1]),
+ variables_lib.Variable([2]),
+ variables_lib.Variable([3])
+ ]
+ s = sharded_variable.ShardedVariable(variables, name='s')
+ cp = util.Checkpoint(s=s)
+ cp.write(fname)
+
+ variables2 = [
+ variables_lib.Variable([0, 0]),
+ variables_lib.Variable([0, 0])
+ ]
+ s2 = sharded_variable.ShardedVariable(variables2, name='s')
+ cp2 = util.Checkpoint(s=s2)
+ cp2.restore(fname)
+ # Assert that weights from the 4 partitions were loaded here.
+ self.assertLen(cp2.s.variables, 2)
+ self.assertAllEqual(self.evaluate(cp2.s.variables[0]), [0, 1])
+ self.assertAllEqual(self.evaluate(cp2.s.variables[1]), [2, 3])
+
+ def test_validation_errors(self):
+ with self.assertRaisesRegexp(ValueError, 'Expected a list of '):
+ sharded_variable.ShardedVariable(
+ [variables_lib.Variable([0]), 'not-a-variable'])
+
+ with self.assertRaisesRegexp(ValueError, 'must have the same dtype'):
+ sharded_variable.ShardedVariable([
+ variables_lib.Variable([0], dtype='int64'),
+ variables_lib.Variable([1], dtype='int32')
+ ])
+
+ with self.assertRaisesRegexp(ValueError, 'the same shapes except'):
+ sharded_variable.ShardedVariable([
+ variables_lib.Variable(array_ops.ones((5, 10))),
+ variables_lib.Variable(array_ops.ones((5, 20)))
+ ])
+
+ with self.assertRaisesRegexp(ValueError, '`SaveSliceInfo` should not'):
+ v = variables_lib.Variable([0])
+ v._set_save_slice_info(
+ variables_lib.Variable.SaveSliceInfo(
+ full_name='s', full_shape=[2], var_offset=[0], var_shape=[1]))
+ sharded_variable.ShardedVariable([v])
+
+
+if __name__ == '__main__':
+ v2_compat.enable_v2_behavior()
+ test.main()
diff --git a/tensorflow/python/training/saving/saveable_object_util.py b/tensorflow/python/training/saving/saveable_object_util.py
index 099fcf0..f4c5ee7 100644
--- a/tensorflow/python/training/saving/saveable_object_util.py
+++ b/tensorflow/python/training/saving/saveable_object_util.py
@@ -28,6 +28,7 @@
from tensorflow.python.ops import variables
from tensorflow.python.training.saving import saveable_object
from tensorflow.python.training.tracking import base as trackable
+from tensorflow.python.util import nest
from tensorflow.python.util import object_identity
@@ -147,6 +148,9 @@
slice_name = None
# pylint: disable=protected-access
for variable in op:
+ if isinstance(variable, saveable_object.SaveableObject):
+ yield variable
+ continue
if not isinstance(variable, variables.Variable):
raise ValueError("Slices must all be Variables: %s" % variable)
if not variable._save_slice_info:
@@ -210,7 +214,7 @@
"""Create a dictionary of names to operation lists.
Args:
- op_list: A list, tuple, or set of Variables or SaveableObjects.
+ op_list: A (nested) list, tuple, or set of Variables or SaveableObjects.
convert_variable_to_tensor: Whether or not to convert single Variables
with no slice info into Tensors.
@@ -226,6 +230,8 @@
if not isinstance(op_list, (list, tuple, set)):
raise TypeError("Variables to save should be passed in a dict or a "
"list: %s" % op_list)
+ # List casting is necessary to support sets.
+ op_list = nest.flatten(list(op_list))
# When ResourceVariables are converted to Tensors, read ops are added to the
# graph. Sorting the op_list ensures that the resulting graph is always
# constructed in a deterministic way: