blob: 42b70e92bab01c481be9013ba339330785a86cfa [file] [log] [blame]
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/gtl/map_util.h"
#include "tensorflow/core/lib/random/distribution_sampler.h"
#include "tensorflow/core/lib/random/philox_random.h"
#include "tensorflow/core/lib/random/simple_philox.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/core/util/guarded_philox_random.h"
namespace tensorflow {
// Number of examples to precalculate.
const int kPrecalc = 3000;
// Number of words to read into a sentence before processing.
const int kSentenceSize = 1000;
namespace {
bool ScanWord(StringPiece* input, string* word) {
str_util::RemoveLeadingWhitespace(input);
StringPiece tmp;
if (str_util::ConsumeNonWhitespace(input, &tmp)) {
word->assign(tmp.data(), tmp.size());
return true;
} else {
return false;
}
}
} // end namespace
class SkipgramOp : public OpKernel {
public:
explicit SkipgramOp(OpKernelConstruction* ctx)
: OpKernel(ctx), rng_(&philox_) {
string filename;
OP_REQUIRES_OK(ctx, ctx->GetAttr("filename", &filename));
OP_REQUIRES_OK(ctx, ctx->GetAttr("batch_size", &batch_size_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("window_size", &window_size_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("min_count", &min_count_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("subsample", &subsample_));
OP_REQUIRES_OK(ctx, Init(ctx->env(), filename));
mutex_lock l(mu_);
example_pos_ = corpus_size_;
label_pos_ = corpus_size_;
label_limit_ = corpus_size_;
sentence_index_ = kSentenceSize;
for (int i = 0; i < kPrecalc; ++i) {
NextExample(&precalc_examples_[i].input, &precalc_examples_[i].label);
}
}
void Compute(OpKernelContext* ctx) override {
Tensor words_per_epoch(DT_INT64, TensorShape({}));
Tensor current_epoch(DT_INT32, TensorShape({}));
Tensor total_words_processed(DT_INT64, TensorShape({}));
Tensor examples(DT_INT32, TensorShape({batch_size_}));
auto Texamples = examples.flat<int32>();
Tensor labels(DT_INT32, TensorShape({batch_size_}));
auto Tlabels = labels.flat<int32>();
{
mutex_lock l(mu_);
for (int i = 0; i < batch_size_; ++i) {
Texamples(i) = precalc_examples_[precalc_index_].input;
Tlabels(i) = precalc_examples_[precalc_index_].label;
precalc_index_++;
if (precalc_index_ >= kPrecalc) {
precalc_index_ = 0;
for (int j = 0; j < kPrecalc; ++j) {
NextExample(&precalc_examples_[j].input,
&precalc_examples_[j].label);
}
}
}
words_per_epoch.scalar<int64>()() = corpus_size_;
current_epoch.scalar<int32>()() = current_epoch_;
total_words_processed.scalar<int64>()() = total_words_processed_;
}
ctx->set_output(0, word_);
ctx->set_output(1, freq_);
ctx->set_output(2, words_per_epoch);
ctx->set_output(3, current_epoch);
ctx->set_output(4, total_words_processed);
ctx->set_output(5, examples);
ctx->set_output(6, labels);
}
private:
struct Example {
int32 input;
int32 label;
};
int32 batch_size_ = 0;
int32 window_size_ = 5;
float subsample_ = 1e-3;
int min_count_ = 5;
int32 vocab_size_ = 0;
Tensor word_;
Tensor freq_;
int64 corpus_size_ = 0;
std::vector<int32> corpus_;
std::vector<Example> precalc_examples_;
int precalc_index_ = 0;
std::vector<int32> sentence_;
int sentence_index_ = 0;
mutex mu_;
random::PhiloxRandom philox_ GUARDED_BY(mu_);
random::SimplePhilox rng_ GUARDED_BY(mu_);
int32 current_epoch_ GUARDED_BY(mu_) = -1;
int64 total_words_processed_ GUARDED_BY(mu_) = 0;
int32 example_pos_ GUARDED_BY(mu_);
int32 label_pos_ GUARDED_BY(mu_);
int32 label_limit_ GUARDED_BY(mu_);
// {example_pos_, label_pos_} is the cursor for the next example.
// example_pos_ wraps around at the end of corpus_. For each
// example, we randomly generate [label_pos_, label_limit) for
// labels.
void NextExample(int32* example, int32* label) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
while (true) {
if (label_pos_ >= label_limit_) {
++total_words_processed_;
++sentence_index_;
if (sentence_index_ >= kSentenceSize) {
sentence_index_ = 0;
for (int i = 0; i < kSentenceSize; ++i, ++example_pos_) {
if (example_pos_ >= corpus_size_) {
++current_epoch_;
example_pos_ = 0;
}
if (subsample_ > 0) {
int32 word_freq = freq_.flat<int32>()(corpus_[example_pos_]);
// See Eq. 5 in http://arxiv.org/abs/1310.4546
float keep_prob =
(std::sqrt(word_freq / (subsample_ * corpus_size_)) + 1) *
(subsample_ * corpus_size_) / word_freq;
if (rng_.RandFloat() > keep_prob) {
i--;
continue;
}
}
sentence_[i] = corpus_[example_pos_];
}
}
const int32 skip = 1 + rng_.Uniform(window_size_);
label_pos_ = std::max<int32>(0, sentence_index_ - skip);
label_limit_ =
std::min<int32>(kSentenceSize, sentence_index_ + skip + 1);
}
if (sentence_index_ != label_pos_) {
break;
}
++label_pos_;
}
*example = sentence_[sentence_index_];
*label = sentence_[label_pos_++];
}
Status Init(Env* env, const string& filename) {
string data;
TF_RETURN_IF_ERROR(ReadFileToString(env, filename, &data));
StringPiece input = data;
string w;
corpus_size_ = 0;
std::unordered_map<string, int32> word_freq;
while (ScanWord(&input, &w)) {
++(word_freq[w]);
++corpus_size_;
}
if (corpus_size_ < window_size_ * 10) {
return errors::InvalidArgument(
"The text file ", filename,
" contains too little data: ", corpus_size_, " words");
}
typedef std::pair<string, int32> WordFreq;
std::vector<WordFreq> ordered;
for (const auto& p : word_freq) {
if (p.second >= min_count_) ordered.push_back(p);
}
LOG(INFO) << "Data file: " << filename << " contains " << data.size()
<< " bytes, " << corpus_size_ << " words, " << word_freq.size()
<< " unique words, " << ordered.size()
<< " unique frequent words.";
word_freq.clear();
std::sort(ordered.begin(), ordered.end(),
[](const WordFreq& x, const WordFreq& y) {
return x.second > y.second;
});
vocab_size_ = static_cast<int32>(1 + ordered.size());
Tensor word(DT_STRING, TensorShape({vocab_size_}));
Tensor freq(DT_INT32, TensorShape({vocab_size_}));
word.flat<tstring>()(0) = "UNK";
static const int32 kUnkId = 0;
std::unordered_map<string, int32> word_id;
int64 total_counted = 0;
for (std::size_t i = 0; i < ordered.size(); ++i) {
const auto& w = ordered[i].first;
auto id = i + 1;
word.flat<tstring>()(id) = w;
auto word_count = ordered[i].second;
freq.flat<int32>()(id) = word_count;
total_counted += word_count;
word_id[w] = id;
}
freq.flat<int32>()(kUnkId) = corpus_size_ - total_counted;
word_ = word;
freq_ = freq;
corpus_.reserve(corpus_size_);
input = data;
while (ScanWord(&input, &w)) {
corpus_.push_back(gtl::FindWithDefault(word_id, w, kUnkId));
}
precalc_examples_.resize(kPrecalc);
sentence_.resize(kSentenceSize);
return Status::OK();
}
};
REGISTER_KERNEL_BUILDER(Name("Skipgram").Device(DEVICE_CPU), SkipgramOp);
class NegTrainOp : public OpKernel {
public:
explicit NegTrainOp(OpKernelConstruction* ctx) : OpKernel(ctx) {
base_.Init(0, 0);
OP_REQUIRES_OK(ctx, ctx->GetAttr("num_negative_samples", &num_samples_));
std::vector<int32> vocab_count;
OP_REQUIRES_OK(ctx, ctx->GetAttr("vocab_count", &vocab_count));
std::vector<float> vocab_weights;
vocab_weights.reserve(vocab_count.size());
for (const auto& f : vocab_count) {
float r = std::pow(static_cast<float>(f), 0.75f);
vocab_weights.push_back(r);
}
sampler_ = new random::DistributionSampler(vocab_weights);
}
~NegTrainOp() override { delete sampler_; }
void Compute(OpKernelContext* ctx) override {
Tensor w_in = ctx->mutable_input(0, false);
OP_REQUIRES(ctx, TensorShapeUtils::IsMatrix(w_in.shape()),
errors::InvalidArgument("Must be a matrix"));
Tensor w_out = ctx->mutable_input(1, false);
OP_REQUIRES(ctx, w_in.shape() == w_out.shape(),
errors::InvalidArgument("w_in.shape == w_out.shape"));
const Tensor& examples = ctx->input(2);
OP_REQUIRES(ctx, TensorShapeUtils::IsVector(examples.shape()),
errors::InvalidArgument("Must be a vector"));
const Tensor& labels = ctx->input(3);
OP_REQUIRES(ctx, examples.shape() == labels.shape(),
errors::InvalidArgument("examples.shape == labels.shape"));
const Tensor& learning_rate = ctx->input(4);
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(learning_rate.shape()),
errors::InvalidArgument("Must be a scalar"));
auto Tw_in = w_in.matrix<float>();
auto Tw_out = w_out.matrix<float>();
auto Texamples = examples.flat<int32>();
auto Tlabels = labels.flat<int32>();
auto lr = learning_rate.scalar<float>()();
const int64 vocab_size = w_in.dim_size(0);
const int64 dims = w_in.dim_size(1);
const int64 batch_size = examples.dim_size(0);
OP_REQUIRES(ctx, vocab_size == sampler_->num(),
errors::InvalidArgument("vocab_size mismatches: ", vocab_size,
" vs. ", sampler_->num()));
// Gradient accumulator for v_in.
Tensor buf(DT_FLOAT, TensorShape({dims}));
auto Tbuf = buf.flat<float>();
// Scalar buffer to hold sigmoid(+/- dot).
Tensor g_buf(DT_FLOAT, TensorShape({}));
auto g = g_buf.scalar<float>();
// The following loop needs 2 random 32-bit values per negative
// sample. We reserve 8 values per sample just in case the
// underlying implementation changes.
auto rnd = base_.ReserveSamples32(batch_size * num_samples_ * 8);
random::SimplePhilox srnd(&rnd);
for (int64 i = 0; i < batch_size; ++i) {
const int32 example = Texamples(i);
DCHECK(0 <= example && example < vocab_size) << example;
const int32 label = Tlabels(i);
DCHECK(0 <= label && label < vocab_size) << label;
auto v_in = Tw_in.chip<0>(example);
// Positive: example predicts label.
// forward: x = v_in' * v_out
// l = log(sigmoid(x))
// backward: dl/dx = g = sigmoid(-x)
// dl/d(v_in) = g * v_out'
// dl/d(v_out) = v_in' * g
{
auto v_out = Tw_out.chip<0>(label);
auto dot = (v_in * v_out).sum();
g = (dot.exp() + 1.f).inverse();
Tbuf = v_out * (g() * lr);
v_out += v_in * (g() * lr);
}
// Negative samples:
// forward: x = v_in' * v_sample
// l = log(sigmoid(-x))
// backward: dl/dx = g = -sigmoid(x)
// dl/d(v_in) = g * v_out'
// dl/d(v_out) = v_in' * g
for (int j = 0; j < num_samples_; ++j) {
const int sample = sampler_->Sample(&srnd);
if (sample == label) continue; // Skip.
auto v_sample = Tw_out.chip<0>(sample);
auto dot = (v_in * v_sample).sum();
g = -((-dot).exp() + 1.f).inverse();
Tbuf += v_sample * (g() * lr);
v_sample += v_in * (g() * lr);
}
// Applies the gradient on v_in.
v_in += Tbuf;
}
}
private:
int32 num_samples_ = 0;
random::DistributionSampler* sampler_ = nullptr;
GuardedPhiloxRandom base_;
};
REGISTER_KERNEL_BUILDER(Name("NegTrain").Device(DEVICE_CPU), NegTrainOp);
} // end namespace tensorflow