Change TPU Embedding API to allow passing functions in the initializer rather than keys. This more closely maps to the feature column API.
PiperOrigin-RevId: 281926084
Change-Id: I6f653d048aa0c00940b70a4616dbc63376ab25c2
diff --git a/tensorflow/python/tpu/tpu_embedding.py b/tensorflow/python/tpu/tpu_embedding.py
index 5b61abc..7648369 100644
--- a/tensorflow/python/tpu/tpu_embedding.py
+++ b/tensorflow/python/tpu/tpu_embedding.py
@@ -32,6 +32,7 @@
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import init_ops
+from tensorflow.python.ops import math_ops
from tensorflow.python.ops import partitioned_variables
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
@@ -49,7 +50,7 @@
class TableConfig(
collections.namedtuple('TableConfig', [
'vocabulary_size', 'dimension', 'initializer', 'combiner',
- 'hot_id_replication', 'learning_rate', 'learning_rate_key'
+ 'hot_id_replication', 'learning_rate', 'learning_rate_fn'
])):
"""Embedding table configuration."""
@@ -60,7 +61,7 @@
combiner='mean',
hot_id_replication=False,
learning_rate=None,
- learning_rate_key=None):
+ learning_rate_fn=None):
"""Embedding table configuration.
Args:
@@ -79,17 +80,16 @@
hot_id_replication: If true, enables hot id replication, which can make
embedding lookups faster if there are some hot rows in the table.
learning_rate: float, static learning rate for this table. If
- learning_rate and learning_rate_key are both `None`, global
+ learning_rate and learning_rate_fn are both `None`, global
static learning rate as specified in `optimization_parameters` in
- `TPUEmbedding` constructor will be used. `learning_rate_key` must be
+ `TPUEmbedding` constructor will be used. `learning_rate_fn` must be
`None` if `learning_rate` is not `None.
- learning_rate_key: string, use dynamic learning rate of
- `learning_rates[learning_rate_key]` for this table, where
- `learning_rates` is the second argument of
- `generate_send_gradients_op()`. If learning_rate and learning_rate_key
- are both `None`, global static learning rate as specified in
- `optimization_parameters` in `TPUEmbedding` constructor will be used.
- `learning_rate` must be `None` if `learning_rate_key` is not `None.
+ learning_rate_fn: string, use dynamic learning rate given by the function.
+ This function function will be passed the current global step. If
+ learning_rate and learning_rate_fn are both `None`, global static
+ learning rate as specified in `optimization_parameters` in
+ `TPUEmbedding` constructor will be used. `learning_rate` must be `None`
+ if `learning_rate_fn` is not `None.
Returns:
`TableConfig`.
@@ -99,7 +99,7 @@
ValueError: if `dimension` is not positive integer.
ValueError: if `initializer` is specified and is not callable.
ValueError: if `combiner` is not supported.
- ValueError: if `learning_rate` and `learning_rate_key` are both not
+ ValueError: if `learning_rate` and `learning_rate_fn` are both not
`None`.
"""
if not isinstance(vocabulary_size, int) or vocabulary_size < 1:
@@ -117,14 +117,14 @@
if combiner not in ('mean', 'sum', 'sqrtn', None):
raise ValueError('Invalid combiner {}'.format(combiner))
- if learning_rate is not None and learning_rate_key is not None:
- raise ValueError('At most one of learning_rate and learning_rate_key '
+ if learning_rate is not None and learning_rate_fn is not None:
+ raise ValueError('At most one of learning_rate and learning_rate_fn '
'can be None; got {} and {}'
- .format(learning_rate, learning_rate_key))
+ .format(learning_rate, learning_rate_fn))
return super(TableConfig, cls).__new__(
cls, vocabulary_size, dimension, initializer, combiner,
- hot_id_replication, learning_rate, learning_rate_key)
+ hot_id_replication, learning_rate, learning_rate_fn)
class FeatureConfig(
@@ -694,6 +694,11 @@
self._optimization_parameters)
self._pipeline_execution_with_tensor_core = (
pipeline_execution_with_tensor_core)
+ self._learning_rate_fn = list(set(
+ c.learning_rate_fn for c in self._table_to_config_dict.values()
+ if c.learning_rate_fn is not None))
+ self._learning_rate_fn_to_tag = {
+ fn: id for id, fn in enumerate(self._learning_rate_fn)}
self._config_proto = self._create_config_proto()
@@ -767,10 +772,6 @@
def _create_config_proto(self):
"""Create `TPUEmbeddingConfiguration`."""
- self._learning_rate_keys = list(
- set(c.learning_rate_key
- for c in self._table_to_config_dict.values()
- if c.learning_rate_key is not None))
config_proto = elc.TPUEmbeddingConfiguration()
for table in self._table_to_config_dict:
table_descriptor = config_proto.table_descriptor.add()
@@ -788,9 +789,9 @@
parameters = table_descriptor.optimization_parameters
if table_config.learning_rate:
parameters.learning_rate.constant = (table_config.learning_rate)
- elif table_config.learning_rate_key:
+ elif table_config.learning_rate_fn:
parameters.learning_rate.dynamic.tag = (
- self._learning_rate_keys.index(table_config.learning_rate_key))
+ self._learning_rate_fn_to_tag[table_config.learning_rate_fn])
else:
parameters.learning_rate.constant = (
self._optimization_parameters.learning_rate)
@@ -1097,14 +1098,13 @@
def generate_send_gradients_op(self,
feature_to_gradient_dict,
- learning_rates=None):
+ step=None):
"""Send gradient to TPU embedding.
Args:
feature_to_gradient_dict: dict mapping feature names to gradient wrt
activations.
- learning_rates: dict mapping from learning rate key to dynamic learning
- rate. Defaults to `None`.
+ step: the current global step, used for dynamic learning rate.
Returns:
SendTPUEmbeddingGradients Op.
@@ -1116,9 +1116,8 @@
raise RuntimeError('Only in training mode gradients need to '
'be sent to TPU embedding; got mode {}.'
.format(self._mode))
-
- if learning_rates is None:
- learning_rates = dict()
+ if step is None and self._learning_rate_fn:
+ raise ValueError('There are dynamic learning rates but step is None.')
gradients = []
for table in self._table_to_features_dict:
@@ -1137,9 +1136,8 @@
return tpu_ops.send_tpu_embedding_gradients(
inputs=gradients,
- learning_rates=[
- learning_rates[tag] for tag in self._learning_rate_keys
- ],
+ learning_rates=[math_ops.cast(fn(step), dtype=dtypes.float32)
+ for fn in self._learning_rate_fn],
config=self.config_proto.SerializeToString())