[ROCm] Update script install_pip_packages.sh for Python 2.7

Currently ROCm TF cotnainers use the `install_pip_packages.sh` script to install the Python pip package-manager.
* https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/ci_build/Dockerfile.rocm#L102
* https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/ci_build/install/install_pip_packages.sh#L20-L23

Starting 01/23/2021, we started getting the following error while building TF containers for ROCM CI (when calling `get-pip.py` for Python2)

```
Traceback (most recent call last):
  File "get-pip.py", line 24226, in <module>
    main()
  File "get-pip.py", line 199, in main
    bootstrap(tmpdir=tmpdir)
  File "get-pip.py", line 82, in bootstrap
    from pip._internal.cli.main import main as pip_entry_point
  File "/tmp/tmpWkL0gn/pip.zip/pip/_internal/cli/main.py", line 60
    sys.stderr.write(f"ERROR: {exc}")
```

The cause seems to be an update to the `get-pip.py` script, which now picks the version `pip-21.0` (previously it was `pip-20.3.4`).
`pip-21.0` drops support for Python2.7 (as indicated by the following warning message)
```
DEPRECATION: Python 2.7 reached the end of its life on January 1st, 2020.
Please upgrade your Python as Python 2.7 is no longer maintained.
pip 21.0 will drop support for Python 2.7 in January 2021.
More details about Python 2 support in pip can be found at
https://pip.pypa.io/en/latest/development/release-process/#python-2-support
pip 21.0 will remove support for this functionality.
```

It seems that there is now a Python 2.7 specific version of the `get-pip.py` script that we need to use, and that is what this commit does
1 file changed
tree: 2137c83c6c5d40b50f3bb47d602826a13f87d5c8
  1. .github/
  2. tensorflow/
  3. third_party/
  4. tools/
  5. .bazelrc
  6. .bazelversion
  7. .gitignore
  8. ACKNOWLEDGMENTS
  9. arm_compiler.BUILD
  10. AUTHORS
  11. BUILD
  12. CODE_OF_CONDUCT.md
  13. CODEOWNERS
  14. configure
  15. configure.cmd
  16. configure.py
  17. CONTRIBUTING.md
  18. ISSUE_TEMPLATE.md
  19. LICENSE
  20. models.BUILD
  21. README.md
  22. RELEASE.md
  23. SECURITY.md
  24. WORKSPACE
README.md

Python PyPI

Documentation
Documentation

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML-powered applications.

TensorFlow was originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization to conduct machine learning and deep neural networks research. The system is general enough to be applicable in a wide variety of other domains, as well.

TensorFlow provides stable Python and C++ APIs, as well as non-guaranteed backward compatible API for other languages.

Keep up-to-date with release announcements and security updates by subscribing to announce@tensorflow.org. See all the mailing lists.

Install

See the TensorFlow install guide for the pip package, to enable GPU support, use a Docker container, and build from source.

To install the current release, which includes support for CUDA-enabled GPU cards (Ubuntu and Windows):

$ pip install tensorflow

A smaller CPU-only package is also available:

$ pip install tensorflow-cpu

To update TensorFlow to the latest version, add --upgrade flag to the above commands.

Nightly binaries are available for testing using the tf-nightly and tf-nightly-cpu packages on PyPi.

Try your first TensorFlow program

$ python
>>> import tensorflow as tf
>>> tf.add(1, 2).numpy()
3
>>> hello = tf.constant('Hello, TensorFlow!')
>>> hello.numpy()
b'Hello, TensorFlow!'

For more examples, see the TensorFlow tutorials.

Contribution guidelines

If you want to contribute to TensorFlow, be sure to review the contribution guidelines. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.

We use GitHub issues for tracking requests and bugs, please see TensorFlow Discuss for general questions and discussion, and please direct specific questions to Stack Overflow.

The TensorFlow project strives to abide by generally accepted best practices in open-source software development:

Fuzzing Status CII Best Practices Contributor Covenant

Continuous build status

Official Builds

Build TypeStatusArtifacts
Linux CPUStatusPyPI
Linux GPUStatusPyPI
Linux XLAStatusTBA
macOSStatusPyPI
Windows CPUStatusPyPI
Windows GPUStatusPyPI
AndroidStatusDownload
Raspberry Pi 0 and 1StatusPy3
Raspberry Pi 2 and 3StatusPy3
Libtensorflow MacOS CPUStatusNightly GCS Official GCS
Libtensorflow Linux CPUStatusNightly GCS Official GCS
Libtensorflow Linux GPUStatusNightly GCS Official GCS
Libtensorflow Windows CPUStatusNightly GCS Official GCS
Libtensorflow Windows GPUStatusNightly GCS Official GCS

Community Supported Builds

Build TypeStatusArtifacts
Linux AMD ROCm GPU NightlyBuild StatusNightly
Linux AMD ROCm GPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux s390x NightlyBuild StatusNightly
Linux s390x CPU Stable ReleaseBuild StatusRelease
Linux ppc64le CPU NightlyBuild StatusNightly
Linux ppc64le CPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux ppc64le GPU NightlyBuild StatusNightly
Linux ppc64le GPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux aarch64 CPU Nightly (Linaro)Build StatusNightly
Linux aarch64 CPU Stable Release (Linaro)Build StatusRelease 1.x & 2.x
Linux aarch64 CPU Nightly (OpenLab)
Python 3.6
Build StatusNightly
Linux aarch64 CPU Stable Release (OpenLab)Build StatusRelease 1.15 / 2.x
Linux CPU with Intel oneAPI Deep Neural Network Library (oneDNN) NightlyBuild StatusNightly
Linux CPU with Intel oneAPI Deep Neural Network Library (oneDNN) Stable ReleaseBuild StatusRelease 1.15 / 2.x
Red Hat® Enterprise Linux® 7.6 CPU & GPU
Python 2.7, 3.6
Build Status1.13.1 PyPI

Community Supported Containers

Container TypeStatusArtifacts
TensorFlow aarch64 Neoverse-N1 CPU Stable (Linaro)
Debian
StaticRelease 2.3

Resources

Learn more about the TensorFlow community and how to contribute.

License

Apache License 2.0