[XLA] Fix a scheduling bug with evictions to default mem.

When simplifying the graph for dead code, we were previously removing the
deleted instruction from the schedule. However, the scheduler, which is run
after SimplifyGraph, relies on the original logical time (index into the
instruction schedule). So, when some instructions have been deleted, we end up
scheduling certain operation later than intended. Most seriously, the evictions
could have been scheduled later than they were supposed to, corrupting the
memory since we might have reused the evicted memory. The solution is to mark
the deleted instructions with a nullptr in the schedule instead of actually
deleting them.

PiperOrigin-RevId: 283410438
Change-Id: Ia671ede14469dd00ac218cfb8d714e171152bb37
3 files changed
tree: a4eef20dad7cdb3a251b9d59fee0b8e73418ce36
  1. .github/
  2. tensorflow/
  3. third_party/
  4. tools/
  5. .bazelrc
  6. .bazelversion
  7. .gitignore
  8. ACKNOWLEDGMENTS
  9. ADOPTERS.md
  10. arm_compiler.BUILD
  11. AUTHORS
  12. BUILD
  13. CODE_OF_CONDUCT.md
  14. CODEOWNERS
  15. configure
  16. configure.cmd
  17. configure.py
  18. CONTRIBUTING.md
  19. ISSUE_TEMPLATE.md
  20. ISSUES.md
  21. LICENSE
  22. models.BUILD
  23. README.md
  24. RELEASE.md
  25. SECURITY.md
  26. WORKSPACE
README.md
Documentation
Documentation

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML-powered applications.

TensorFlow was originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization to conduct machine learning and deep neural networks research. The system is general enough to be applicable in a wide variety of other domains, as well.

TensorFlow provides stable Python and C++ APIs, as well as non-guaranteed backward compatible API for other languages.

Keep up-to-date with release announcements and security updates by subscribing to announce@tensorflow.org. See all the mailing lists.

Install

See the TensorFlow install guide for the pip package, to enable GPU support, use a Docker container, and build from source.

To install the current release for CPU-only:

$ pip install tensorflow

Use the GPU package for CUDA-enabled GPU cards (Ubuntu and Windows):

$ pip install tensorflow-gpu

Nightly binaries are available for testing using the tf-nightly and tf-nightly-gpu packages on PyPi.

Try your first TensorFlow program

$ python
>>> import tensorflow as tf
>>> tf.add(1, 2).numpy()
3
>>> hello = tf.constant('Hello, TensorFlow!')
>>> hello.numpy()
'Hello, TensorFlow!'

For more examples, see the TensorFlow tutorials.

Contribution guidelines

If you want to contribute to TensorFlow, be sure to review the contribution guidelines. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.

We use GitHub issues for tracking requests and bugs, please see TensorFlow Discuss for general questions and discussion, and please direct specific questions to Stack Overflow.

The TensorFlow project strives to abide by generally accepted best practices in open-source software development:

CII Best Practices Contributor Covenant

Continuous build status

Official Builds

Build TypeStatusArtifacts
Linux CPUStatusPyPI
Linux GPUStatusPyPI
Linux XLAStatusTBA
macOSStatusPyPI
Windows CPUStatusPyPI
Windows GPUStatusPyPI
AndroidStatusDownload
Raspberry Pi 0 and 1Status StatusPy2 Py3
Raspberry Pi 2 and 3Status StatusPy2 Py3

Community Supported Builds

Build TypeStatusArtifacts
Linux AMD ROCm GPU NightlyBuild StatusNightly
Linux AMD ROCm GPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux s390x NightlyBuild StatusNightly
Linux s390x CPU Stable ReleaseBuild StatusRelease
Linux ppc64le CPU NightlyBuild StatusNightly
Linux ppc64le CPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux ppc64le GPU NightlyBuild StatusNightly
Linux ppc64le GPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux CPU with Intel® MKL-DNN NightlyBuild StatusNightly
Linux CPU with Intel® MKL-DNN
Supports Python 2.7, 3.4, 3.5, 3.6 and 3.7
Build Status1.14.0 PyPI
Red Hat® Enterprise Linux® 7.6 CPU & GPU
Python 2.7, 3.6
Build Status1.13.1 PyPI

Resources

Learn more about the TensorFlow community and how to contribute.

License

Apache License 2.0