Add dct type IV to tf.signal.dct.
PiperOrigin-RevId: 286485474
Change-Id: I38e87fcc0fcf8ebc38b0dfdc36971a0820242009
diff --git a/tensorflow/python/kernel_tests/signal/dct_ops_test.py b/tensorflow/python/kernel_tests/signal/dct_ops_test.py
index 2899f4d..d4f9e39 100644
--- a/tensorflow/python/kernel_tests/signal/dct_ops_test.py
+++ b/tensorflow/python/kernel_tests/signal/dct_ops_test.py
@@ -87,7 +87,7 @@
phi = np.cos(np.pi * (np.arange(dct_size) + 0.5) * k / dct_size)
dct[..., k] = np.sum(signals_mod * phi, axis=-1)
# SciPy's `dct` has a scaling factor of 2.0 which we follow.
- # https://github.com/scipy/scipy/blob/v0.15.1/scipy/fftpack/src/dct.c.src
+ # https://github.com/scipy/scipy/blob/v1.2.1/scipy/fftpack/src/dct.c.src
if norm == "ortho":
# The orthonormal scaling includes a factor of 0.5 which we combine with
# the overall scaling of 2.0 to cancel.
@@ -101,7 +101,7 @@
def _np_dct3(signals, n=None, norm=None):
"""Computes the DCT-III manually with NumPy."""
# SciPy's `dct` has a scaling factor of 2.0 which we follow.
- # https://github.com/scipy/scipy/blob/v0.15.1/scipy/fftpack/src/dct.c.src
+ # https://github.com/scipy/scipy/blob/v1.2.1/scipy/fftpack/src/dct.c.src
signals_mod = _modify_input_for_dct(signals, n=n)
dct_size = signals_mod.shape[-1]
signals_mod = np.array(signals_mod) # make a copy so we can modify
@@ -120,8 +120,30 @@
return dct
-NP_DCT = {1: _np_dct1, 2: _np_dct2, 3: _np_dct3}
-NP_IDCT = {1: _np_dct1, 2: _np_dct3, 3: _np_dct2}
+def _np_dct4(signals, n=None, norm=None):
+ """Computes the DCT-IV manually with NumPy."""
+ # SciPy's `dct` has a scaling factor of 2.0 which we follow.
+ # https://github.com/scipy/scipy/blob/v1.2.1/scipy/fftpack/src/dct.c.src
+ signals_mod = _modify_input_for_dct(signals, n=n)
+ dct_size = signals_mod.shape[-1]
+ signals_mod = np.array(signals_mod) # make a copy so we can modify
+ if norm == "ortho":
+ signals_mod *= np.sqrt(2.0 / dct_size)
+ else:
+ signals_mod *= 2.0
+ dct = np.zeros_like(signals_mod)
+ # X_k = sum_{n=0}^{N-1}
+ # x_n * cos(\frac{pi}{4N} * (2n + 1) * (2k + 1)) k=0,...,N-1
+ for k in range(dct_size):
+ phi = np.cos(np.pi *
+ (2 * np.arange(0, dct_size) + 1) * (2 * k + 1) /
+ (4.0 * dct_size))
+ dct[..., k] = np.sum(signals_mod * phi, axis=-1)
+ return dct
+
+
+NP_DCT = {1: _np_dct1, 2: _np_dct2, 3: _np_dct3, 4: _np_dct4}
+NP_IDCT = {1: _np_dct1, 2: _np_dct3, 3: _np_dct2, 4: _np_dct4}
@test_util.run_all_in_graph_and_eager_modes
@@ -137,7 +159,7 @@
tf_idct = dct_ops.idct(signals, type=dct_type, norm=norm)
self.assertEqual(tf_idct.dtype.as_numpy_dtype, signals.dtype)
self.assertAllClose(np_idct, tf_idct, atol=atol, rtol=rtol)
- if fftpack:
+ if fftpack and dct_type != 4:
scipy_dct = fftpack.dct(signals, n=n, type=dct_type, norm=norm)
self.assertAllClose(scipy_dct, tf_dct, atol=atol, rtol=rtol)
scipy_idct = fftpack.idct(signals, type=dct_type, norm=norm)
@@ -159,7 +181,7 @@
self.assertAllClose(signals, tf_dct_idct, atol=atol, rtol=rtol)
@parameterized.parameters(itertools.product(
- [1, 2, 3],
+ [1, 2, 3, 4],
[None, "ortho"],
[[2], [3], [10], [2, 20], [2, 3, 25]],
[np.float32, np.float64]))
diff --git a/tensorflow/python/ops/signal/dct_ops.py b/tensorflow/python/ops/signal/dct_ops.py
index 2d87af7..d628e54 100644
--- a/tensorflow/python/ops/signal/dct_ops.py
+++ b/tensorflow/python/ops/signal/dct_ops.py
@@ -34,8 +34,8 @@
raise NotImplementedError("axis must be -1. Got: %s" % axis)
if n is not None and n < 1:
raise ValueError("n should be a positive integer or None")
- if dct_type not in (1, 2, 3):
- raise ValueError("Only Types I, II and III (I)DCT are supported.")
+ if dct_type not in (1, 2, 3, 4):
+ raise ValueError("Types I, II, III and IV (I)DCT are supported.")
if dct_type == 1:
if norm == "ortho":
raise ValueError("Normalization is not supported for the Type-I DCT.")
@@ -53,22 +53,26 @@
def dct(input, type=2, n=None, axis=-1, norm=None, name=None): # pylint: disable=redefined-builtin
"""Computes the 1D [Discrete Cosine Transform (DCT)][dct] of `input`.
- Currently only Types I, II and III are supported.
+ Types I, II, III and IV are supported.
Type I is implemented using a length `2N` padded `tf.signal.rfft`.
Type II is implemented using a length `2N` padded `tf.signal.rfft`, as
- described here: [Type 2 DCT using 2N FFT padded (Makhoul)](https://dsp.stackexchange.com/a/10606).
+ described here: [Type 2 DCT using 2N FFT padded (Makhoul)]
+ (https://dsp.stackexchange.com/a/10606).
Type III is a fairly straightforward inverse of Type II
- (i.e. using a length `2N` padded `tf.signal.irfft`).
+ (i.e. using a length `2N` padded `tf.signal.irfft`).
+ Type IV is calculated through 2N length DCT2 of padded signal and
+ picking the odd indices.
@compatibility(scipy)
- Equivalent to [scipy.fftpack.dct](https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html)
- for Type-I, Type-II and Type-III DCT.
+ Equivalent to [scipy.fftpack.dct]
+ (https://docs.scipy.org/doc/scipy-1.4.0/reference/generated/scipy.fftpack.dct.html)
+ for Type-I, Type-II, Type-III and Type-IV DCT.
@end_compatibility
Args:
input: A `[..., samples]` `float32`/`float64` `Tensor` containing the
signals to take the DCT of.
- type: The DCT type to perform. Must be 1, 2 or 3.
+ type: The DCT type to perform. Must be 1, 2, 3 or 4.
n: The length of the transform. If length is less than sequence length,
only the first n elements of the sequence are considered for the DCT.
If n is greater than the sequence length, zeros are padded and then
@@ -83,7 +87,7 @@
`input`.
Raises:
- ValueError: If `type` is not `1`, `2` or `3`, `axis` is
+ ValueError: If `type` is not `1`, `2`, `3` or `4`, `axis` is
not `-1`, `n` is not `None` or greater than 0,
or `norm` is not `None` or `'ortho'`.
ValueError: If `type` is `1` and `norm` is `ortho`.
@@ -163,13 +167,24 @@
return dct3
+ elif type == 4:
+ # DCT-2 of 2N length zero-padded signal, unnormalized.
+ dct2 = dct(input, type=2, n=2*axis_dim, axis=axis, norm=None)
+ # Get odd indices of DCT-2 of zero padded 2N signal to obtain
+ # DCT-4 of the original N length signal.
+ dct4 = dct2[..., 1::2]
+ if norm == "ortho":
+ dct4 *= _math.sqrt(0.5) * _math_ops.rsqrt(axis_dim_float)
+
+ return dct4
+
# TODO(rjryan): Implement `n` and `axis` parameters.
@tf_export("signal.idct", v1=["signal.idct", "spectral.idct"])
def idct(input, type=2, n=None, axis=-1, norm=None, name=None): # pylint: disable=redefined-builtin
"""Computes the 1D [Inverse Discrete Cosine Transform (DCT)][idct] of `input`.
- Currently only Types I, II and III are supported. Type III is the inverse of
+ Currently Types I, II, III, IV are supported. Type III is the inverse of
Type II, and vice versa.
Note that you must re-normalize by 1/(2n) to obtain an inverse if `norm` is
@@ -179,14 +194,15 @@
`signal == idct(dct(signal, norm='ortho'), norm='ortho')`.
@compatibility(scipy)
- Equivalent to [scipy.fftpack.idct](https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.idct.html)
- for Type-I, Type-II and Type-III DCT.
+ Equivalent to [scipy.fftpack.idct]
+ (https://docs.scipy.org/doc/scipy-1.4.0/reference/generated/scipy.fftpack.idct.html)
+ for Type-I, Type-II, Type-III and Type-IV DCT.
@end_compatibility
Args:
input: A `[..., samples]` `float32`/`float64` `Tensor` containing the
signals to take the DCT of.
- type: The IDCT type to perform. Must be 1, 2 or 3.
+ type: The IDCT type to perform. Must be 1, 2, 3 or 4.
n: For future expansion. The length of the transform. Must be `None`.
axis: For future expansion. The axis to compute the DCT along. Must be `-1`.
norm: The normalization to apply. `None` for no normalization or `'ortho'`
@@ -205,5 +221,5 @@
https://en.wikipedia.org/wiki/Discrete_cosine_transform#Inverse_transforms
"""
_validate_dct_arguments(input, type, n, axis, norm)
- inverse_type = {1: 1, 2: 3, 3: 2}[type]
+ inverse_type = {1: 1, 2: 3, 3: 2, 4: 4}[type]
return dct(input, type=inverse_type, n=n, axis=axis, norm=norm, name=name)