PR #34903: TransposeConv with Bias

Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/34903

### Description of issue:
For generating .tflite file with TFLiteConverter, when model contains
Conv2DTranspose layers, bias cannot fold into Operator TRANSPOSECONV.
It will result with extra Op ADD following Op TRANSPOSECONV.
But with other CONV-like layers (Conv2D, DepthwiseConv2D),
bias will be fold into CONV layer.
(check detailed TF issue: https://github.com/tensorflow/tensorflow/issues/34622)

### PR try to resolve it:
So we try to resolve this issue by enable TransposeConv with bias for TFLite:

- Update TFLite graph_transform features with:
      fill TransposeConv bias with zero if there is no bias
      fuse bias add into preceding TransposeConv(TEST added)

- Update TransposeConv with bias:
      add bias input to TransposeConv
      add optional bias to TransposeConv kernels

### example of the results:
  TRANSPOSE_CONV inputs:

1. output_shape
2. weights
3. activation
4. bias

![fused_transposeconv](https://user-images.githubusercontent.com/55463253/70334128-bc088200-183c-11ea-9f94-a803cc80df99.png)

### Need to discuss:
~~currently this PR only update reference kernel for transpose_conv, optimised kernal is commented out.~~
~~several TEST need to be added as well, but~~ further suggestions are needed for adding additional test.
Copybara import of the project:

--
1c6eb9c98229a9e8248dc1fe913a20cc6dd89332 by Peng Sun <peng.sun@arm.com>:

Fuse TransposeConv with Bias

For generating .tflite file with TFLiteConverter, when model contains
Conv2DTranspose layers, bias cannot fold into Operator TRANSPOSECONV.
It will result with extra Op ADD following Op TRANSPOSECONV.
But with other CONV-like layers (Conv2D, DepthwiseConv2D),
bias will be fold into CONV layer.
(check TF issue: https://github.com/tensorflow/tensorflow/issues/34622)

So we try to resolve this issue by enable TransposeConv with bias for TFLite:
  Update TFLite graph_transform features with:
    fill TransposeConv bias with zero if there is no bias
    fuse bias add into preceding TransposeConv(TEST added)
  Update TransposeConv with bias:
    add bias input to TransposeConv
    add optional bias to TransposeConv kernels(TEST added)

--
22611b880c94eb753c88a0a3e2977200e55ebd2c by Peng Sun <peng.sun@arm.com>:

clang-format with google style.

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/tensorflow/pull/34903 from psunn:TransposeConvWithBias 22611b880c94eb753c88a0a3e2977200e55ebd2c
PiperOrigin-RevId: 307872447
Change-Id: I367fcd65f2662f4c7846d37bc69dc43670c83961
23 files changed
tree: b88ed714bc51ee6997e2705e7fcc5085a7201905
  1. .github/
  2. tensorflow/
  3. third_party/
  4. tools/
  5. .bazelrc
  6. .bazelversion
  7. .gitignore
  8. ACKNOWLEDGMENTS
  9. ADOPTERS.md
  10. arm_compiler.BUILD
  11. AUTHORS
  12. BUILD
  13. CODE_OF_CONDUCT.md
  14. CODEOWNERS
  15. configure
  16. configure.cmd
  17. configure.py
  18. CONTRIBUTING.md
  19. ISSUE_TEMPLATE.md
  20. ISSUES.md
  21. LICENSE
  22. models.BUILD
  23. README.md
  24. RELEASE.md
  25. SECURITY.md
  26. WORKSPACE
README.md

Python PyPI

Documentation
Documentation

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML-powered applications.

TensorFlow was originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization to conduct machine learning and deep neural networks research. The system is general enough to be applicable in a wide variety of other domains, as well.

TensorFlow provides stable Python and C++ APIs, as well as non-guaranteed backward compatible API for other languages.

Keep up-to-date with release announcements and security updates by subscribing to announce@tensorflow.org. See all the mailing lists.

Install

See the TensorFlow install guide for the pip package, to enable GPU support, use a Docker container, and build from source.

To install the current release, which includes support for CUDA-enabled GPU cards (Ubuntu and Windows):

$ pip install tensorflow

A smaller CPU-only package is also available:

$ pip install tensorflow-cpu

To update TensorFlow to the latest version, add --upgrade flag to the above commands.

Nightly binaries are available for testing using the tf-nightly and tf-nightly-cpu packages on PyPi.

Try your first TensorFlow program

$ python
>>> import tensorflow as tf
>>> tf.add(1, 2).numpy()
3
>>> hello = tf.constant('Hello, TensorFlow!')
>>> hello.numpy()
b'Hello, TensorFlow!'

For more examples, see the TensorFlow tutorials.

Contribution guidelines

If you want to contribute to TensorFlow, be sure to review the contribution guidelines. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.

We use GitHub issues for tracking requests and bugs, please see TensorFlow Discuss for general questions and discussion, and please direct specific questions to Stack Overflow.

The TensorFlow project strives to abide by generally accepted best practices in open-source software development:

CII Best Practices Contributor Covenant

Continuous build status

Official Builds

Build TypeStatusArtifacts
Linux CPUStatusPyPI
Linux GPUStatusPyPI
Linux XLAStatusTBA
macOSStatusPyPI
Windows CPUStatusPyPI
Windows GPUStatusPyPI
AndroidStatusDownload
Raspberry Pi 0 and 1Status StatusPy2 Py3
Raspberry Pi 2 and 3Status StatusPy2 Py3

Community Supported Builds

Build TypeStatusArtifacts
Linux AMD ROCm GPU NightlyBuild StatusNightly
Linux AMD ROCm GPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux s390x NightlyBuild StatusNightly
Linux s390x CPU Stable ReleaseBuild StatusRelease
Linux ppc64le CPU NightlyBuild StatusNightly
Linux ppc64le CPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux ppc64le GPU NightlyBuild StatusNightly
Linux ppc64le GPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux CPU with Intel® MKL-DNN NightlyBuild StatusNightly
Linux CPU with Intel® MKL-DNN Stable ReleaseBuild StatusRelease 1.15 / 2.x
Red Hat® Enterprise Linux® 7.6 CPU & GPU
Python 2.7, 3.6
Build Status1.13.1 PyPI

Resources

Learn more about the TensorFlow community and how to contribute.

License

Apache License 2.0