[MLIR] Value types for AffineXXXExpr
This CL makes AffineExprRef into a value type.
Notably:
1. drops llvm isa, cast, dyn_cast on pointer type and uses member functions on
the value type. It may be possible to still use classof (in a followup CL)
2. AffineBaseExprRef aggressively casts constness away: if we mean the type is
immutable then let's jump in with both feet;
3. Drop implicit casts to the underlying pointer type because that always
results in surprising behavior and is not needed in practice once enough
cleanup has been applied.
The remaining negative I see is that we still need to mix operator. and
operator->. There is an ugly solution that forwards the methods but that ends
up duplicating the class hierarchy which I tried to avoid as much as
possible. But maybe it's not that bad anymore since AffineExpr.h would still
contain a single class hierarchy (the duplication would be impl detail in.cpp)
PiperOrigin-RevId: 216188003
diff --git a/include/mlir/IR/AffineExpr.h b/include/mlir/IR/AffineExpr.h
index e494abd..34a6fae 100644
--- a/include/mlir/IR/AffineExpr.h
+++ b/include/mlir/IR/AffineExpr.h
@@ -26,6 +26,121 @@
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/Support/Casting.h"
+#include <type_traits>
+
+namespace mlir {
+
+class AffineExpr;
+class AffineBinaryOpExpr;
+class AffineDimExpr;
+class AffineSymbolExpr;
+class AffineConstantExpr;
+
+/// Helper structure to build AffineExpr with intuitive operators in order to
+/// operate on chainable, lightweight value types instead of pointer types.
+/// This structure operates on immutable types so it freely casts constness
+/// away.
+/// TODO(ntv): Remove all redundant MLIRContext* arguments through the API
+/// TODO(ntv): Remove all uses of AffineExpr* in Parser.cpp
+/// TODO(ntv): Add extra out-of-class operators for int op AffineExprBaseRef
+/// TODO(ntv): Rename
+/// TODO(ntv): Drop const everywhere it makes sense in AffineExpr
+/// TODO(ntv): remove const comment
+/// TODO(ntv): pointer pair
+template <typename AffineExprType> class AffineExprBaseRef {
+public:
+ typedef AffineExprBaseRef TemplateType;
+ typedef AffineExprType ImplType;
+
+ AffineExprBaseRef() : expr(nullptr) {}
+ /* implicit */ AffineExprBaseRef(const AffineExprType *expr)
+ : expr(const_cast<AffineExprType *>(expr)) {}
+
+ AffineExprBaseRef(const AffineExprBaseRef &other) : expr(other.expr) {}
+ AffineExprBaseRef &operator=(AffineExprBaseRef other) {
+ expr = other.expr;
+ return *this;
+ }
+
+ bool operator==(AffineExprBaseRef other) const { return expr == other.expr; }
+
+ AffineExprType *operator->() const { return expr; }
+
+ /* implicit */ operator AffineExprBaseRef<AffineExpr>() const {
+ return const_cast<AffineExpr *>(static_cast<const AffineExpr *>(expr));
+ }
+ explicit operator bool() const { return expr; }
+
+ bool empty() const { return expr == nullptr; }
+ bool operator!() const { return expr == nullptr; }
+
+ template <typename U> bool isa() const {
+ using PtrType = typename U::ImplType;
+ return llvm::isa<PtrType>(const_cast<AffineExprType *>(this->expr));
+ }
+ template <typename U> U dyn_cast() const {
+ using PtrType = typename U::ImplType;
+ return U(llvm::dyn_cast<PtrType>(const_cast<AffineExprType *>(this->expr)));
+ }
+ template <typename U> U cast() const {
+ using PtrType = typename U::ImplType;
+ return U(llvm::cast<PtrType>(const_cast<AffineExprType *>(this->expr)));
+ }
+
+ AffineExprBaseRef operator+(int64_t v) const;
+ AffineExprBaseRef operator+(AffineExprBaseRef other) const;
+ AffineExprBaseRef operator-() const;
+ AffineExprBaseRef operator-(int64_t v) const;
+ AffineExprBaseRef operator-(AffineExprBaseRef other) const;
+ AffineExprBaseRef operator*(int64_t v) const;
+ AffineExprBaseRef operator*(AffineExprBaseRef other) const;
+ AffineExprBaseRef floorDiv(uint64_t v) const;
+ AffineExprBaseRef floorDiv(AffineExprBaseRef other) const;
+ AffineExprBaseRef ceilDiv(uint64_t v) const;
+ AffineExprBaseRef ceilDiv(AffineExprBaseRef other) const;
+ AffineExprBaseRef operator%(uint64_t v) const;
+ AffineExprBaseRef operator%(AffineExprBaseRef other) const;
+
+ friend ::llvm::hash_code hash_value(AffineExprBaseRef arg);
+
+private:
+ AffineExprType *expr;
+};
+
+using AffineExprRef = AffineExprBaseRef<AffineExpr>;
+using AffineBinaryOpExprRef = AffineExprBaseRef<AffineBinaryOpExpr>;
+using AffineDimExprRef = AffineExprBaseRef<AffineDimExpr>;
+using AffineSymbolExprRef = AffineExprBaseRef<AffineSymbolExpr>;
+using AffineConstantExprRef = AffineExprBaseRef<AffineConstantExpr>;
+
+// Make AffineExprRef hashable.
+inline ::llvm::hash_code hash_value(AffineExprRef arg) {
+ return ::llvm::hash_value(static_cast<AffineExpr *>(arg.expr));
+}
+
+} // namespace mlir
+
+namespace llvm {
+
+// AffineExprRef hash just like pointers
+template <> struct DenseMapInfo<mlir::AffineExprRef> {
+ static mlir::AffineExprRef getEmptyKey() {
+ auto pointer = llvm::DenseMapInfo<mlir::AffineExpr *>::getEmptyKey();
+ return mlir::AffineExprRef(pointer);
+ }
+ static mlir::AffineExprRef getTombstoneKey() {
+ auto pointer = llvm::DenseMapInfo<mlir::AffineExpr *>::getTombstoneKey();
+ return mlir::AffineExprRef(pointer);
+ }
+ static unsigned getHashValue(mlir::AffineExprRef val) {
+ return mlir::hash_value(val);
+ }
+ static bool isEqual(mlir::AffineExprRef LHS, mlir::AffineExprRef RHS) {
+ return LHS == RHS;
+ }
+};
+
+} // namespace llvm
namespace mlir {
@@ -99,93 +214,6 @@
return os;
}
-/// Helper structure to build AffineExpr with intuitive operators in order to
-/// operate on chainable, lightweight value types instead of pointer types.
-/// This structure operates on immutable types so it freely casts constness
-/// away.
-/// TODO(ntv): Remove all redundant MLIRContext* arguments through the API
-/// TODO(ntv): Remove all uses of AffineExpr* in Parser.cpp
-/// TODO(ntv): Add extra out-of-class operators for int op AffineExprBaseRef
-/// TODO(ntv): Rename
-/// TODO(ntv): Drop const everywhere it makes sense in AffineExpr
-/// TODO(ntv): remove const comment
-/// TODO(ntv): pointer pair
-template <typename AffineExprType> class AffineExprBaseRef {
-public:
- /* implicit */ AffineExprBaseRef(AffineExprType *expr) : expr(expr) {}
-
- AffineExprBaseRef(const AffineExprBaseRef &other) : expr(other.expr){};
- AffineExprBaseRef &operator=(AffineExprBaseRef other) {
- expr = other;
- return *this;
- };
- bool operator==(AffineExprBaseRef other) const { return expr == other.expr; };
- AffineExprType *operator->() { return expr; }
- /* implicit */ operator AffineExprType *() { return expr; }
-
- bool operator!() { return expr == nullptr; }
-
- AffineExprBaseRef operator+(int64_t v) const;
- AffineExprBaseRef operator+(AffineExprBaseRef other) const;
- AffineExprBaseRef operator-() const;
- AffineExprBaseRef operator-(int64_t v) const;
- AffineExprBaseRef operator-(AffineExprBaseRef other) const;
- AffineExprBaseRef operator*(int64_t v) const;
- AffineExprBaseRef operator*(AffineExprBaseRef other) const;
- AffineExprBaseRef floorDiv(uint64_t v) const;
- AffineExprBaseRef floorDiv(AffineExprBaseRef other) const;
- AffineExprBaseRef ceilDiv(uint64_t v) const;
- AffineExprBaseRef ceilDiv(AffineExprBaseRef other) const;
- AffineExprBaseRef operator%(uint64_t v) const;
- AffineExprBaseRef operator%(AffineExprBaseRef other) const;
-
-private:
- AffineExprType *expr;
-};
-
-using AffineExprRef = AffineExprBaseRef<AffineExpr>;
-
-inline ::llvm::hash_code hash_value(AffineExprRef arg);
-} // namespace mlir
-
-namespace llvm {
-
-/// This helper structure allows classof/isa/cast/dyn_cast to operate on
-/// AffineExprBaseRef<T>.
-template <typename T> struct simplify_type<mlir::AffineExprBaseRef<T>> {
- using SimpleType = T *;
- static SimpleType getSimplifiedValue(mlir::AffineExprBaseRef<T> &input) {
- return input;
- }
-};
-
-// AffineExprRef hash just like pointers
-template <> struct DenseMapInfo<mlir::AffineExprRef> {
- static mlir::AffineExprRef getEmptyKey() {
- auto pointer = llvm::DenseMapInfo<mlir::AffineExpr *>::getEmptyKey();
- return mlir::AffineExprRef(pointer);
- }
- static mlir::AffineExprRef getTombstoneKey() {
- auto pointer = llvm::DenseMapInfo<mlir::AffineExpr *>::getTombstoneKey();
- return mlir::AffineExprRef(pointer);
- }
- static unsigned getHashValue(mlir::AffineExprRef val) {
- return mlir::hash_value(val);
- }
- static bool isEqual(mlir::AffineExprRef LHS, mlir::AffineExprRef RHS) {
- return LHS == RHS;
- }
-};
-
-} // namespace llvm
-
-namespace mlir {
-
-// Make AffineExprRef hashable.
-inline ::llvm::hash_code hash_value(AffineExprRef arg) {
- return ::llvm::hash_value(static_cast<AffineExpr *>(arg));
-}
-
/// Affine binary operation expression. An affine binary operation could be an
/// add, mul, floordiv, ceildiv, or a modulo operation. (Subtraction is
/// represented through a multiply by -1 and add.) These expressions are always
diff --git a/include/mlir/IR/AffineExprVisitor.h b/include/mlir/IR/AffineExprVisitor.h
index a4dcb10..7dff48a 100644
--- a/include/mlir/IR/AffineExprVisitor.h
+++ b/include/mlir/IR/AffineExprVisitor.h
@@ -46,7 +46,7 @@
/// struct DimExprCounter : public AffineExprVisitor<DimExprCounter> {
/// unsigned numDimExprs;
/// DimExprCounter() : numDimExprs(0) {}
-/// void visitAffineDimExpr(AffineDimExpr *expr) { ++numDimExprs; }
+/// void visitAffineDimExpr(AffineDimExprRef expr) { ++numDimExprs; }
/// };
///
/// And this class would be used like this:
@@ -83,39 +83,39 @@
"Must instantiate with a derived type of AffineExprVisitor");
switch (expr->getKind()) {
case AffineExpr::Kind::Add: {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
walkOperandsPostOrder(binOpExpr);
return static_cast<SubClass *>(this)->visitAddExpr(binOpExpr);
}
case AffineExpr::Kind::Mul: {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
walkOperandsPostOrder(binOpExpr);
return static_cast<SubClass *>(this)->visitMulExpr(binOpExpr);
}
case AffineExpr::Kind::Mod: {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
walkOperandsPostOrder(binOpExpr);
return static_cast<SubClass *>(this)->visitModExpr(binOpExpr);
}
case AffineExpr::Kind::FloorDiv: {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
walkOperandsPostOrder(binOpExpr);
return static_cast<SubClass *>(this)->visitFloorDivExpr(binOpExpr);
}
case AffineExpr::Kind::CeilDiv: {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
walkOperandsPostOrder(binOpExpr);
return static_cast<SubClass *>(this)->visitCeilDivExpr(binOpExpr);
}
case AffineExpr::Kind::Constant:
return static_cast<SubClass *>(this)->visitConstantExpr(
- cast<AffineConstantExpr>(expr));
+ expr.cast<AffineConstantExprRef>());
case AffineExpr::Kind::DimId:
return static_cast<SubClass *>(this)->visitDimExpr(
- cast<AffineDimExpr>(expr));
+ expr.cast<AffineDimExprRef>());
case AffineExpr::Kind::SymbolId:
return static_cast<SubClass *>(this)->visitSymbolExpr(
- cast<AffineSymbolExpr>(expr));
+ expr.cast<AffineSymbolExprRef>());
}
}
@@ -125,34 +125,34 @@
"Must instantiate with a derived type of AffineExprVisitor");
switch (expr->getKind()) {
case AffineExpr::Kind::Add: {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
return static_cast<SubClass *>(this)->visitAddExpr(binOpExpr);
}
case AffineExpr::Kind::Mul: {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
return static_cast<SubClass *>(this)->visitMulExpr(binOpExpr);
}
case AffineExpr::Kind::Mod: {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
return static_cast<SubClass *>(this)->visitModExpr(binOpExpr);
}
case AffineExpr::Kind::FloorDiv: {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
return static_cast<SubClass *>(this)->visitFloorDivExpr(binOpExpr);
}
case AffineExpr::Kind::CeilDiv: {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
return static_cast<SubClass *>(this)->visitCeilDivExpr(binOpExpr);
}
case AffineExpr::Kind::Constant:
return static_cast<SubClass *>(this)->visitConstantExpr(
- cast<AffineConstantExpr>(expr));
+ expr.cast<AffineConstantExprRef>());
case AffineExpr::Kind::DimId:
return static_cast<SubClass *>(this)->visitDimExpr(
- cast<AffineDimExpr>(expr));
+ expr.cast<AffineDimExprRef>());
case AffineExpr::Kind::SymbolId:
return static_cast<SubClass *>(this)->visitSymbolExpr(
- cast<AffineSymbolExpr>(expr));
+ expr.cast<AffineSymbolExprRef>());
}
}
@@ -166,29 +166,29 @@
// Default visit methods. Note that the default op-specific binary op visit
// methods call the general visitAffineBinaryOpExpr visit method.
- void visitAffineBinaryOpExpr(AffineBinaryOpExpr *expr) {}
- void visitAddExpr(AffineBinaryOpExpr *expr) {
+ void visitAffineBinaryOpExpr(AffineBinaryOpExprRef expr) {}
+ void visitAddExpr(AffineBinaryOpExprRef expr) {
static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
}
- void visitMulExpr(AffineBinaryOpExpr *expr) {
+ void visitMulExpr(AffineBinaryOpExprRef expr) {
static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
}
- void visitModExpr(AffineBinaryOpExpr *expr) {
+ void visitModExpr(AffineBinaryOpExprRef expr) {
static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
}
- void visitFloorDivExpr(AffineBinaryOpExpr *expr) {
+ void visitFloorDivExpr(AffineBinaryOpExprRef expr) {
static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
}
- void visitCeilDivExpr(AffineBinaryOpExpr *expr) {
+ void visitCeilDivExpr(AffineBinaryOpExprRef expr) {
static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
}
- void visitConstantExpr(AffineConstantExpr *expr) {}
- void visitAffineDimExpr(AffineDimExpr *expr) {}
- void visitAffineSymbolExpr(AffineSymbolExpr *expr) {}
+ void visitConstantExpr(AffineConstantExprRef expr) {}
+ void visitAffineDimExpr(AffineDimExprRef expr) {}
+ void visitAffineSymbolExpr(AffineSymbolExprRef expr) {}
private:
// Walk the operands - each operand is itself walked in post order.
- void walkOperandsPostOrder(AffineBinaryOpExpr *expr) {
+ void walkOperandsPostOrder(AffineBinaryOpExprRef expr) {
walkPostOrder(expr->getLHS());
walkPostOrder(expr->getRHS());
}
diff --git a/lib/Analysis/AffineAnalysis.cpp b/lib/Analysis/AffineAnalysis.cpp
index ebcc50a..2f58500 100644
--- a/lib/Analysis/AffineAnalysis.cpp
+++ b/lib/Analysis/AffineAnalysis.cpp
@@ -139,10 +139,10 @@
operandExprStack.reserve(8);
}
- void visitMulExpr(AffineBinaryOpExpr *expr) {
+ void visitMulExpr(AffineBinaryOpExprRef expr) {
assert(operandExprStack.size() >= 2);
// This is a pure affine expr; the RHS will be a constant.
- assert(isa<AffineConstantExpr>(expr->getRHS()));
+ assert(expr->getRHS().isa<AffineConstantExprRef>());
// Get the RHS constant.
auto rhsConst = operandExprStack.back()[getConstantIndex()];
operandExprStack.pop_back();
@@ -153,7 +153,7 @@
}
}
- void visitAddExpr(AffineBinaryOpExpr *expr) {
+ void visitAddExpr(AffineBinaryOpExprRef expr) {
assert(operandExprStack.size() >= 2);
const auto &rhs = operandExprStack.back();
auto &lhs = operandExprStack[operandExprStack.size() - 2];
@@ -166,10 +166,10 @@
operandExprStack.pop_back();
}
- void visitModExpr(AffineBinaryOpExpr *expr) {
+ void visitModExpr(AffineBinaryOpExprRef expr) {
assert(operandExprStack.size() >= 2);
// This is a pure affine expr; the RHS will be a constant.
- assert(isa<AffineConstantExpr>(expr->getRHS()));
+ assert(expr->getRHS().isa<AffineConstantExprRef>());
auto rhsConst = operandExprStack.back()[getConstantIndex()];
operandExprStack.pop_back();
auto &lhs = operandExprStack.back();
@@ -195,32 +195,32 @@
AffineConstantExpr::get(rhsConst, context), context));
lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst;
}
- void visitCeilDivExpr(AffineBinaryOpExpr *expr) {
+ void visitCeilDivExpr(AffineBinaryOpExprRef expr) {
visitDivExpr(expr, /*isCeil=*/true);
}
- void visitFloorDivExpr(AffineBinaryOpExpr *expr) {
+ void visitFloorDivExpr(AffineBinaryOpExprRef expr) {
visitDivExpr(expr, /*isCeil=*/false);
}
- void visitDimExpr(AffineDimExpr *expr) {
+ void visitDimExpr(AffineDimExprRef expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
eq[getDimStartIndex() + expr->getPosition()] = 1;
}
- void visitSymbolExpr(AffineSymbolExpr *expr) {
+ void visitSymbolExpr(AffineSymbolExprRef expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
eq[getSymbolStartIndex() + expr->getPosition()] = 1;
}
- void visitConstantExpr(AffineConstantExpr *expr) {
+ void visitConstantExpr(AffineConstantExprRef expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
eq[getConstantIndex()] = expr->getValue();
}
private:
- void visitDivExpr(AffineBinaryOpExpr *expr, bool isCeil) {
+ void visitDivExpr(AffineBinaryOpExprRef expr, bool isCeil) {
assert(operandExprStack.size() >= 2);
- assert(isa<AffineConstantExpr>(expr->getRHS()));
+ assert(expr->getRHS().isa<AffineConstantExprRef>());
// This is a pure affine expr; the RHS is a positive constant.
auto rhsConst = operandExprStack.back()[getConstantIndex()];
// TODO(bondhugula): handle division by zero at the same time the issue is
diff --git a/lib/Analysis/HyperRectangularSet.cpp b/lib/Analysis/HyperRectangularSet.cpp
index 772ec85..4d72808 100644
--- a/lib/Analysis/HyperRectangularSet.cpp
+++ b/lib/Analysis/HyperRectangularSet.cpp
@@ -38,8 +38,7 @@
unsigned j = 0;
AffineBoundExprList::const_iterator it, e;
for (it = ubs.begin(), e = ubs.end(); it != e; it++, j++) {
- if (auto *cExpr = const_cast<AffineConstantExpr *>(
- dyn_cast<AffineConstantExpr>(*it))) {
+ if (auto cExpr = it->dyn_cast<AffineConstantExprRef>()) {
if (val == None) {
val = cExpr->getValue();
*idx = j;
@@ -69,7 +68,7 @@
}
if (it == lhsList.end()) {
// There can only be one constant affine expr in this bound list.
- if (auto cExpr = dyn_cast<AffineConstantExpr>(expr)) {
+ if (auto cExpr = expr.dyn_cast<AffineConstantExprRef>()) {
unsigned idx;
if (lb) {
auto cb = getReducedConstBound(
diff --git a/lib/Analysis/LoopAnalysis.cpp b/lib/Analysis/LoopAnalysis.cpp
index babe95f..0b50494 100644
--- a/lib/Analysis/LoopAnalysis.cpp
+++ b/lib/Analysis/LoopAnalysis.cpp
@@ -61,7 +61,7 @@
auto loopSpanExpr = simplifyAffineExpr(
ubExpr - lbExpr + 1, std::max(lbMap->getNumDims(), ubMap->getNumDims()),
std::max(lbMap->getNumSymbols(), ubMap->getNumSymbols()));
- auto *cExpr = dyn_cast<AffineConstantExpr>(loopSpanExpr);
+ auto cExpr = loopSpanExpr.dyn_cast<AffineConstantExprRef>();
if (!cExpr)
return AffineBinaryOpExpr::getCeilDiv(loopSpanExpr, step, context);
loopSpan = cExpr->getValue();
@@ -81,7 +81,10 @@
llvm::Optional<uint64_t> mlir::getConstantTripCount(const ForStmt &forStmt) {
auto tripCountExpr = getTripCountExpr(forStmt);
- if (auto constExpr = dyn_cast_or_null<AffineConstantExpr>(tripCountExpr))
+ if (!tripCountExpr)
+ return None;
+
+ if (auto constExpr = tripCountExpr.dyn_cast<AffineConstantExprRef>())
return constExpr->getValue();
return None;
@@ -96,7 +99,7 @@
if (!tripCountExpr)
return 1;
- if (auto constExpr = dyn_cast<AffineConstantExpr>(tripCountExpr)) {
+ if (auto constExpr = tripCountExpr.dyn_cast<AffineConstantExprRef>()) {
uint64_t tripCount = constExpr->getValue();
// 0 iteration loops (greatest divisor is 2^64 - 1).
diff --git a/lib/IR/AffineExpr.cpp b/lib/IR/AffineExpr.cpp
index 1ddf697..8f00fb1 100644
--- a/lib/IR/AffineExpr.cpp
+++ b/lib/IR/AffineExpr.cpp
@@ -27,10 +27,10 @@
// We verify affine op expr forms at construction time.
switch (kind) {
case Kind::Add:
- assert(!isa<AffineConstantExpr>(lhs));
+ assert(!lhs.isa<AffineConstantExprRef>());
break;
case Kind::Mul:
- assert(!isa<AffineConstantExpr>(lhs));
+ assert(!lhs.isa<AffineConstantExprRef>());
assert(rhs->isSymbolicOrConstant());
break;
case Kind::FloorDiv:
@@ -124,15 +124,15 @@
// possible, allowing this to merge into the next case.
auto *op = cast<AffineBinaryOpExpr>(this);
return op->getLHS()->isPureAffine() && op->getRHS()->isPureAffine() &&
- (isa<AffineConstantExpr>(op->getLHS()) ||
- isa<AffineConstantExpr>(op->getRHS()));
+ (op->getLHS().isa<AffineConstantExprRef>() ||
+ op->getRHS().isa<AffineConstantExprRef>());
}
case Kind::FloorDiv:
case Kind::CeilDiv:
case Kind::Mod: {
auto *op = cast<AffineBinaryOpExpr>(this);
return op->getLHS()->isPureAffine() &&
- isa<AffineConstantExpr>(op->getRHS());
+ op->getRHS().isa<AffineConstantExprRef>();
}
}
}
@@ -214,7 +214,7 @@
}
// Unary minus, delegate to operator*.
template <> AffineExprRef AffineExprRef::operator-() const {
- return *this * (-1);
+ return AffineBinaryOpExpr::getMul(expr, -1, expr->getContext());
}
// Delegate to operator+.
template <> AffineExprRef AffineExprRef::operator-(int64_t v) const {
diff --git a/lib/IR/AffineMap.cpp b/lib/IR/AffineMap.cpp
index f98df70..4643183 100644
--- a/lib/IR/AffineMap.cpp
+++ b/lib/IR/AffineMap.cpp
@@ -55,14 +55,15 @@
return constantFoldBinExpr(
expr, [](int64_t lhs, uint64_t rhs) { return ceilDiv(lhs, rhs); });
case AffineExpr::Kind::Constant:
- return IntegerAttr::get(cast<AffineConstantExpr>(expr)->getValue(),
+ return IntegerAttr::get(expr.cast<AffineConstantExprRef>()->getValue(),
expr->getContext());
case AffineExpr::Kind::DimId:
return dyn_cast_or_null<IntegerAttr>(
- operandConsts[cast<AffineDimExpr>(expr)->getPosition()]);
+ operandConsts[expr.cast<AffineDimExprRef>()->getPosition()]);
case AffineExpr::Kind::SymbolId:
return dyn_cast_or_null<IntegerAttr>(
- operandConsts[numDims + cast<AffineSymbolExpr>(expr)->getPosition()]);
+ operandConsts[numDims +
+ expr.cast<AffineSymbolExprRef>()->getPosition()]);
}
}
@@ -70,7 +71,7 @@
IntegerAttr *
constantFoldBinExpr(AffineExprRef expr,
std::function<uint64_t(int64_t, uint64_t)> op) {
- auto *binOpExpr = cast<AffineBinaryOpExpr>(expr);
+ auto binOpExpr = expr.cast<AffineBinaryOpExprRef>();
auto *lhs = constantFold(binOpExpr->getLHS());
auto *rhs = constantFold(binOpExpr->getRHS());
if (!lhs || !rhs)
@@ -104,8 +105,7 @@
return false;
ArrayRef<AffineExprRef> results = getResults();
for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) {
- auto *expr =
- const_cast<AffineDimExpr *>(dyn_cast<AffineDimExpr>(results[i]));
+ auto expr = results[i].dyn_cast<AffineDimExprRef>();
if (!expr || expr->getPosition() != i)
return false;
}
@@ -113,14 +113,12 @@
}
bool AffineMap::isSingleConstant() {
- return getNumResults() == 1 && isa<AffineConstantExpr>(getResult(0));
+ return getNumResults() == 1 && getResult(0).isa<AffineConstantExprRef>();
}
int64_t AffineMap::getSingleConstantResult() {
assert(isSingleConstant() && "map must have a single constant result");
- return const_cast<AffineConstantExpr *>(
- cast<AffineConstantExpr>(getResult(0)))
- ->getValue();
+ return getResult(0).cast<AffineConstantExprRef>()->getValue();
}
AffineExprRef AffineMap::getResult(unsigned idx) { return results[idx]; }
@@ -129,8 +127,8 @@
AffineExprRef AffineBinaryOpExpr::simplifyAdd(AffineExprRef lhs,
AffineExprRef rhs,
MLIRContext *context) {
- auto *lhsConst = dyn_cast<AffineConstantExpr>(lhs);
- auto *rhsConst = dyn_cast<AffineConstantExpr>(rhs);
+ auto lhsConst = lhs.dyn_cast<AffineConstantExprRef>();
+ auto rhsConst = rhs.dyn_cast<AffineConstantExprRef>();
// Fold if both LHS, RHS are a constant.
if (lhsConst && rhsConst)
@@ -139,7 +137,7 @@
// Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
// If only one of them is a symbolic expressions, make it the RHS.
- if (isa<AffineConstantExpr>(lhs) ||
+ if (lhs.isa<AffineConstantExprRef>() ||
(lhs->isSymbolicOrConstant() && !rhs->isSymbolicOrConstant())) {
return AffineBinaryOpExpr::getAdd(rhs, lhs, context);
}
@@ -152,19 +150,16 @@
return lhs;
}
// Fold successive additions like (d0 + 2) + 3 into d0 + 5.
- auto *lBin =
- const_cast<AffineBinaryOpExpr *>(dyn_cast<AffineBinaryOpExpr>(lhs));
+ auto lBin = lhs.dyn_cast<AffineBinaryOpExprRef>();
if (lBin && rhsConst && lBin->getKind() == Kind::Add) {
- if (auto *lrhs = const_cast<AffineConstantExpr *>(
- dyn_cast<AffineConstantExpr>(lBin->getRHS())))
+ if (auto lrhs = lBin->getRHS().dyn_cast<AffineConstantExprRef>())
return lBin->getLHS() + (lrhs->getValue() + rhsConst->getValue());
}
// When doing successive additions, bring constant to the right: turn (d0 + 2)
// + d1 into (d0 + d1) + 2.
if (lBin && lBin->getKind() == Kind::Add) {
- if (auto *lrhs = const_cast<AffineConstantExpr *>(
- dyn_cast<AffineConstantExpr>(lBin->getRHS()))) {
+ if (auto lrhs = lBin->getRHS().dyn_cast<AffineConstantExprRef>()) {
return lBin->getLHS() + rhs + lrhs;
}
}
@@ -176,8 +171,8 @@
AffineExprRef AffineBinaryOpExpr::simplifyMul(AffineExprRef lhs,
AffineExprRef rhs,
MLIRContext *context) {
- auto *lhsConst = dyn_cast<AffineConstantExpr>(lhs);
- auto *rhsConst = dyn_cast<AffineConstantExpr>(rhs);
+ auto lhsConst = lhs.dyn_cast<AffineConstantExprRef>();
+ auto rhsConst = rhs.dyn_cast<AffineConstantExprRef>();
if (lhsConst && rhsConst)
return AffineConstantExpr::get(lhsConst->getValue() * rhsConst->getValue(),
@@ -188,7 +183,7 @@
// Canonicalize the mul expression so that the constant/symbolic term is the
// RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
// constant. (Note that a constant is trivially symbolic).
- if (!rhs->isSymbolicOrConstant() || isa<AffineConstantExpr>(lhs)) {
+ if (!rhs->isSymbolicOrConstant() || lhs.isa<AffineConstantExprRef>()) {
// At least one of them has to be symbolic.
return AffineBinaryOpExpr::getMul(rhs, lhs, context);
}
@@ -205,19 +200,16 @@
}
// Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
- auto *lBin =
- const_cast<AffineBinaryOpExpr *>(dyn_cast<AffineBinaryOpExpr>(lhs));
+ auto lBin = lhs.dyn_cast<AffineBinaryOpExprRef>();
if (lBin && rhsConst && lBin->getKind() == Kind::Mul) {
- if (auto *lrhs = const_cast<AffineConstantExpr *>(
- dyn_cast<AffineConstantExpr>(lBin->getRHS())))
+ if (auto lrhs = lBin->getRHS().dyn_cast<AffineConstantExprRef>())
return lBin->getLHS() * (lrhs->getValue() * rhsConst->getValue());
}
// When doing successive multiplication, bring constant to the right: turn (d0
// * 2) * d1 into (d0 * d1) * 2.
if (lBin && lBin->getKind() == Kind::Mul) {
- if (auto *lrhs = const_cast<AffineConstantExpr *>(
- dyn_cast<AffineConstantExpr>(lBin->getRHS()))) {
+ if (auto lrhs = lBin->getRHS().dyn_cast<AffineConstantExprRef>()) {
return (lBin->getLHS() * rhs) * lrhs;
}
}
@@ -228,8 +220,8 @@
AffineExprRef AffineBinaryOpExpr::simplifyFloorDiv(AffineExprRef lhs,
AffineExprRef rhs,
MLIRContext *context) {
- auto *lhsConst = dyn_cast<AffineConstantExpr>(lhs);
- auto *rhsConst = dyn_cast<AffineConstantExpr>(rhs);
+ auto lhsConst = lhs.dyn_cast<AffineConstantExprRef>();
+ auto rhsConst = rhs.dyn_cast<AffineConstantExprRef>();
if (lhsConst && rhsConst)
return AffineConstantExpr::get(
@@ -241,11 +233,9 @@
if (rhsConst->getValue() == 1)
return lhs;
- auto *lBin =
- const_cast<AffineBinaryOpExpr *>(dyn_cast<AffineBinaryOpExpr>(lhs));
+ auto lBin = lhs.dyn_cast<AffineBinaryOpExprRef>();
if (lBin && lBin->getKind() == Kind::Mul) {
- if (auto *lrhs = const_cast<AffineConstantExpr *>(
- dyn_cast<AffineConstantExpr>(lBin->getRHS()))) {
+ if (auto lrhs = lBin->getRHS().dyn_cast<AffineConstantExprRef>()) {
// rhsConst is known to be positive if a constant.
if (lrhs->getValue() % rhsConst->getValue() == 0)
return lBin->getLHS() * (lrhs->getValue() / rhsConst->getValue());
@@ -259,8 +249,8 @@
AffineExprRef AffineBinaryOpExpr::simplifyCeilDiv(AffineExprRef lhs,
AffineExprRef rhs,
MLIRContext *context) {
- auto *lhsConst = dyn_cast<AffineConstantExpr>(lhs);
- auto *rhsConst = dyn_cast<AffineConstantExpr>(rhs);
+ auto lhsConst = lhs.dyn_cast<AffineConstantExprRef>();
+ auto rhsConst = rhs.dyn_cast<AffineConstantExprRef>();
if (lhsConst && rhsConst)
return AffineConstantExpr::get(
@@ -272,11 +262,9 @@
if (rhsConst->getValue() == 1)
return lhs;
- auto *lBin =
- const_cast<AffineBinaryOpExpr *>(dyn_cast<AffineBinaryOpExpr>(lhs));
+ auto lBin = lhs.dyn_cast<AffineBinaryOpExprRef>();
if (lBin && lBin->getKind() == Kind::Mul) {
- if (auto *lrhs = const_cast<AffineConstantExpr *>(
- dyn_cast<AffineConstantExpr>(lBin->getRHS()))) {
+ if (auto lrhs = lBin->getRHS().dyn_cast<AffineConstantExprRef>()) {
// rhsConst is known to be positive if a constant.
if (lrhs->getValue() % rhsConst->getValue() == 0)
return lBin->getLHS() * (lrhs->getValue() / rhsConst->getValue());
@@ -290,8 +278,8 @@
AffineExprRef AffineBinaryOpExpr::simplifyMod(AffineExprRef lhs,
AffineExprRef rhs,
MLIRContext *context) {
- auto *lhsConst = dyn_cast<AffineConstantExpr>(lhs);
- auto *rhsConst = dyn_cast<AffineConstantExpr>(rhs);
+ auto lhsConst = lhs.dyn_cast<AffineConstantExprRef>();
+ auto rhsConst = rhs.dyn_cast<AffineConstantExprRef>();
if (lhsConst && rhsConst)
return AffineConstantExpr::get(
diff --git a/lib/IR/AsmPrinter.cpp b/lib/IR/AsmPrinter.cpp
index aa55cea..ed87d7f 100644
--- a/lib/IR/AsmPrinter.cpp
+++ b/lib/IR/AsmPrinter.cpp
@@ -107,8 +107,8 @@
// Check if the affine map is single dim id or single symbol identity -
// (i)->(i) or ()[s]->(i)
return boundMap->getNumInputs() == 1 && boundMap->getNumResults() == 1 &&
- (isa<AffineDimExpr>(boundMap->getResult(0)) ||
- isa<AffineSymbolExpr>(boundMap->getResult(0)));
+ (boundMap->getResult(0).isa<AffineDimExprRef>() ||
+ boundMap->getResult(0).isa<AffineSymbolExprRef>());
}
// Visit functions.
@@ -579,13 +579,13 @@
const char *binopSpelling = nullptr;
switch (expr->getKind()) {
case AffineExpr::Kind::SymbolId:
- os << 's' << cast<AffineSymbolExpr>(expr)->getPosition();
+ os << 's' << expr.cast<AffineSymbolExprRef>()->getPosition();
return;
case AffineExpr::Kind::DimId:
- os << 'd' << cast<AffineDimExpr>(expr)->getPosition();
+ os << 'd' << expr.cast<AffineDimExprRef>()->getPosition();
return;
case AffineExpr::Kind::Constant:
- os << cast<AffineConstantExpr>(expr)->getValue();
+ os << expr.cast<AffineConstantExprRef>()->getValue();
return;
case AffineExpr::Kind::Add:
binopSpelling = " + ";
@@ -604,7 +604,7 @@
break;
}
- auto *binOp = cast<AffineBinaryOpExpr>(expr);
+ auto binOp = expr.cast<AffineBinaryOpExprRef>();
// Handle tightly binding binary operators.
if (binOp->getKind() != AffineExpr::Kind::Add) {
@@ -627,10 +627,10 @@
// Pretty print addition to a product that has a negative operand as a
// subtraction.
AffineExprRef rhsExpr = binOp->getRHS();
- if (auto *rhs = dyn_cast<AffineBinaryOpExpr>(rhsExpr)) {
+ if (auto rhs = rhsExpr.dyn_cast<AffineBinaryOpExprRef>()) {
if (rhs->getKind() == AffineExpr::Kind::Mul) {
AffineExprRef rrhsExpr = rhs->getRHS();
- if (auto *rrhs = dyn_cast<AffineConstantExpr>(rrhsExpr)) {
+ if (auto rrhs = rrhsExpr.dyn_cast<AffineConstantExprRef>()) {
if (rrhs->getValue() == -1) {
printAffineExprInternal(binOp->getLHS(), BindingStrength::Weak);
os << " - ";
@@ -655,7 +655,7 @@
}
// Pretty print addition to a negative number as a subtraction.
- if (auto *rhs = dyn_cast<AffineConstantExpr>(rhsExpr)) {
+ if (auto rhs = rhsExpr.dyn_cast<AffineConstantExprRef>()) {
if (rhs->getValue() < 0) {
printAffineExprInternal(binOp->getLHS(), BindingStrength::Weak);
os << " - " << -rhs->getValue();
@@ -1435,7 +1435,7 @@
// Print constant bound.
if (map->getNumDims() == 0 && map->getNumSymbols() == 0) {
- if (auto *constExpr = dyn_cast<AffineConstantExpr>(expr)) {
+ if (auto constExpr = expr.dyn_cast<AffineConstantExprRef>()) {
os << constExpr->getValue();
return;
}
@@ -1444,7 +1444,7 @@
// Print bound that consists of a single SSA symbol if the map is over a
// single symbol.
if (map->getNumDims() == 0 && map->getNumSymbols() == 1) {
- if (auto *symExpr = dyn_cast<AffineSymbolExpr>(expr)) {
+ if (auto symExpr = expr.dyn_cast<AffineSymbolExprRef>()) {
printOperand(bound.getOperand(0));
return;
}
diff --git a/lib/Parser/Parser.cpp b/lib/Parser/Parser.cpp
index 7affe7e..9ef2eed 100644
--- a/lib/Parser/Parser.cpp
+++ b/lib/Parser/Parser.cpp
@@ -831,37 +831,38 @@
// Identifier lists for polyhedral structures.
ParseResult parseDimIdList(unsigned &numDims);
ParseResult parseSymbolIdList(unsigned &numSymbols);
- ParseResult parseIdentifierDefinition(AffineExpr *idExpr);
+ ParseResult parseIdentifierDefinition(AffineExprRef idExpr);
- AffineExpr *parseAffineExpr();
- AffineExpr *parseParentheticalExpr();
- AffineExpr *parseNegateExpression(AffineExpr *lhs);
- AffineExpr *parseIntegerExpr();
- AffineExpr *parseBareIdExpr();
+ AffineExprRef parseAffineExpr();
+ AffineExprRef parseParentheticalExpr();
+ AffineExprRef parseNegateExpression(AffineExprRef lhs);
+ AffineExprRef parseIntegerExpr();
+ AffineExprRef parseBareIdExpr();
- AffineExpr *getBinaryAffineOpExpr(AffineHighPrecOp op, AffineExpr *lhs,
- AffineExpr *rhs, SMLoc opLoc);
- AffineExpr *getBinaryAffineOpExpr(AffineLowPrecOp op, AffineExpr *lhs,
- AffineExpr *rhs);
- AffineExpr *parseAffineOperandExpr(AffineExpr *lhs);
- AffineExpr *parseAffineLowPrecOpExpr(AffineExpr *llhs,
- AffineLowPrecOp llhsOp);
- AffineExpr *parseAffineHighPrecOpExpr(AffineExpr *llhs,
- AffineHighPrecOp llhsOp,
- SMLoc llhsOpLoc);
- AffineExpr *parseAffineConstraint(bool *isEq);
+ AffineExprRef getBinaryAffineOpExpr(AffineHighPrecOp op, AffineExprRef lhs,
+ AffineExprRef rhs, SMLoc opLoc);
+ AffineExprRef getBinaryAffineOpExpr(AffineLowPrecOp op, AffineExprRef lhs,
+ AffineExprRef rhs);
+ AffineExprRef parseAffineOperandExpr(AffineExprRef lhs);
+ AffineExprRef parseAffineLowPrecOpExpr(AffineExprRef llhs,
+ AffineLowPrecOp llhsOp);
+ AffineExprRef parseAffineHighPrecOpExpr(AffineExprRef llhs,
+ AffineHighPrecOp llhsOp,
+ SMLoc llhsOpLoc);
+ AffineExprRef parseAffineConstraint(bool *isEq);
private:
- SmallVector<std::pair<StringRef, AffineExpr *>, 4> dimsAndSymbols;
+ SmallVector<std::pair<StringRef, AffineExprRef>, 4> dimsAndSymbols;
};
} // end anonymous namespace
/// Create an affine binary high precedence op expression (mul's, div's, mod).
/// opLoc is the location of the op token to be used to report errors
/// for non-conforming expressions.
-AffineExpr *AffineParser::getBinaryAffineOpExpr(AffineHighPrecOp op,
- AffineExpr *lhs,
- AffineExpr *rhs, SMLoc opLoc) {
+AffineExprRef AffineParser::getBinaryAffineOpExpr(AffineHighPrecOp op,
+ AffineExprRef lhs,
+ AffineExprRef rhs,
+ SMLoc opLoc) {
// TODO: make the error location info accurate.
switch (op) {
case Mul:
@@ -899,9 +900,9 @@
}
/// Create an affine binary low precedence op expression (add, sub).
-AffineExpr *AffineParser::getBinaryAffineOpExpr(AffineLowPrecOp op,
- AffineExpr *lhs,
- AffineExpr *rhs) {
+AffineExprRef AffineParser::getBinaryAffineOpExpr(AffineLowPrecOp op,
+ AffineExprRef lhs,
+ AffineExprRef rhs) {
switch (op) {
case AffineLowPrecOp::Add:
return builder.getAddExpr(lhs, rhs);
@@ -959,10 +960,10 @@
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
/// report an error for non-conforming expressions.
-AffineExpr *AffineParser::parseAffineHighPrecOpExpr(AffineExpr *llhs,
- AffineHighPrecOp llhsOp,
- SMLoc llhsOpLoc) {
- AffineExpr *lhs = parseAffineOperandExpr(llhs);
+AffineExprRef AffineParser::parseAffineHighPrecOpExpr(AffineExprRef llhs,
+ AffineHighPrecOp llhsOp,
+ SMLoc llhsOpLoc) {
+ AffineExprRef lhs = parseAffineOperandExpr(llhs);
if (!lhs)
return nullptr;
@@ -970,7 +971,7 @@
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
if (llhs) {
- AffineExpr *expr = getBinaryAffineOpExpr(llhsOp, llhs, lhs, opLoc);
+ AffineExprRef expr = getBinaryAffineOpExpr(llhsOp, llhs, lhs, opLoc);
if (!expr)
return nullptr;
return parseAffineHighPrecOpExpr(expr, op, opLoc);
@@ -990,13 +991,13 @@
/// Parse an affine expression inside parentheses.
///
/// affine-expr ::= `(` affine-expr `)`
-AffineExpr *AffineParser::parseParentheticalExpr() {
+AffineExprRef AffineParser::parseParentheticalExpr() {
if (parseToken(Token::l_paren, "expected '('"))
return nullptr;
if (getToken().is(Token::r_paren))
return (emitError("no expression inside parentheses"), nullptr);
- auto *expr = parseAffineExpr();
+ auto expr = parseAffineExpr();
if (!expr)
return nullptr;
if (parseToken(Token::r_paren, "expected ')'"))
@@ -1008,11 +1009,11 @@
/// Parse the negation expression.
///
/// affine-expr ::= `-` affine-expr
-AffineExpr *AffineParser::parseNegateExpression(AffineExpr *lhs) {
+AffineExprRef AffineParser::parseNegateExpression(AffineExprRef lhs) {
if (parseToken(Token::minus, "expected '-'"))
return nullptr;
- AffineExpr *operand = parseAffineOperandExpr(lhs);
+ AffineExprRef operand = parseAffineOperandExpr(lhs);
// Since negation has the highest precedence of all ops (including high
// precedence ops) but lower than parentheses, we are only going to use
// parseAffineOperandExpr instead of parseAffineExpr here.
@@ -1027,7 +1028,7 @@
/// Parse a bare id that may appear in an affine expression.
///
/// affine-expr ::= bare-id
-AffineExpr *AffineParser::parseBareIdExpr() {
+AffineExprRef AffineParser::parseBareIdExpr() {
if (getToken().isNot(Token::bare_identifier))
return (emitError("expected bare identifier"), nullptr);
@@ -1045,7 +1046,7 @@
/// Parse a positive integral constant appearing in an affine expression.
///
/// affine-expr ::= integer-literal
-AffineExpr *AffineParser::parseIntegerExpr() {
+AffineExprRef AffineParser::parseIntegerExpr() {
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0)
return (emitError("constant too large for index"), nullptr);
@@ -1063,7 +1064,7 @@
// operand expression, it's an op expression and will be parsed via
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and -l
// are valid operands that will be parsed by this function.
-AffineExpr *AffineParser::parseAffineOperandExpr(AffineExpr *lhs) {
+AffineExprRef AffineParser::parseAffineOperandExpr(AffineExprRef lhs) {
switch (getToken().getKind()) {
case Token::bare_identifier:
return parseBareIdExpr();
@@ -1113,16 +1114,16 @@
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where (e2*e3)
/// will be parsed using parseAffineHighPrecOpExpr().
-AffineExpr *AffineParser::parseAffineLowPrecOpExpr(AffineExpr *llhs,
- AffineLowPrecOp llhsOp) {
- AffineExpr *lhs;
+AffineExprRef AffineParser::parseAffineLowPrecOpExpr(AffineExprRef llhs,
+ AffineLowPrecOp llhsOp) {
+ AffineExprRef lhs;
if (!(lhs = parseAffineOperandExpr(llhs)))
return nullptr;
// Found an LHS. Deal with the ops.
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
if (llhs) {
- AffineExpr *sum = getBinaryAffineOpExpr(llhsOp, llhs, lhs);
+ AffineExprRef sum = getBinaryAffineOpExpr(llhsOp, llhs, lhs);
return parseAffineLowPrecOpExpr(sum, lOp);
}
// No LLHS, get RHS and form the expression.
@@ -1132,13 +1133,13 @@
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
// We have a higher precedence op here. Get the rhs operand for the llhs
// through parseAffineHighPrecOpExpr.
- AffineExpr *highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
+ AffineExprRef highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
if (!highRes)
return nullptr;
// If llhs is null, the product forms the first operand of the yet to be
// found expression. If non-null, the op to associate with llhs is llhsOp.
- AffineExpr *expr =
+ AffineExprRef expr =
llhs ? getBinaryAffineOpExpr(llhsOp, llhs, highRes) : highRes;
// Recurse for subsequent low prec op's after the affine high prec op
@@ -1169,14 +1170,14 @@
/// Additional conditions are checked depending on the production. For eg., one
/// of the operands for `*` has to be either constant/symbolic; the second
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
-AffineExpr *AffineParser::parseAffineExpr() {
+AffineExprRef AffineParser::parseAffineExpr() {
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
}
/// Parse a dim or symbol from the lists appearing before the actual expressions
/// of the affine map. Update our state to store the dimensional/symbolic
/// identifier.
-ParseResult AffineParser::parseIdentifierDefinition(AffineExpr *idExpr) {
+ParseResult AffineParser::parseIdentifierDefinition(AffineExprRef idExpr) {
if (getToken().isNot(Token::bare_identifier))
return emitError("expected bare identifier");
@@ -1240,7 +1241,7 @@
SmallVector<AffineExprRef, 4> exprs;
auto parseElt = [&]() -> ParseResult {
- auto *elt = parseAffineExpr();
+ auto elt = parseAffineExpr();
ParseResult res = elt ? ParseSuccess : ParseFailure;
exprs.push_back(elt);
return res;
@@ -1266,7 +1267,7 @@
auto parseRangeSize = [&]() -> ParseResult {
auto loc = getToken().getLoc();
- auto *elt = parseAffineExpr();
+ auto elt = parseAffineExpr();
if (!elt)
return ParseFailure;
@@ -2445,8 +2446,8 @@
/// isEq is set to true if the parsed constraint is an equality, false if it is
/// an inequality (greater than or equal).
///
-AffineExpr *AffineParser::parseAffineConstraint(bool *isEq) {
- AffineExpr *expr = parseAffineExpr();
+AffineExprRef AffineParser::parseAffineConstraint(bool *isEq) {
+ AffineExprRef expr = parseAffineExpr();
if (!expr)
return nullptr;
@@ -2504,7 +2505,7 @@
SmallVector<bool, 4> isEqs;
auto parseElt = [&]() -> ParseResult {
bool isEq;
- auto *elt = parseAffineConstraint(&isEq);
+ auto elt = parseAffineConstraint(&isEq);
ParseResult res = elt ? ParseSuccess : ParseFailure;
if (elt) {
constraints.push_back(elt);
diff --git a/lib/Transforms/Utils.cpp b/lib/Transforms/Utils.cpp
index 008a364..cc1c797 100644
--- a/lib/Transforms/Utils.cpp
+++ b/lib/Transforms/Utils.cpp
@@ -53,6 +53,7 @@
ArrayRef<SSAValue *> extraIndices,
AffineMap *indexRemap) {
unsigned newMemRefRank = cast<MemRefType>(newMemRef->getType())->getRank();
+ (void)newMemRefRank; // unused in opt mode
unsigned oldMemRefRank = cast<MemRefType>(oldMemRef->getType())->getRank();
(void)newMemRefRank;
if (indexRemap) {