commit | 1e135c54c52a71ae9267011f13fded21cc05fcc3 | [log] [tgz] |
---|---|---|
author | David Majnemer <majnemer@google.com> | Mon Feb 22 11:16:22 2021 -0800 |
committer | TensorFlower Gardener <gardener@tensorflow.org> | Mon Feb 22 11:29:40 2021 -0800 |
tree | 97f4574c01c9007cb241eeb9313a6cbcb08e4d7e | |
parent | 4856f23a49dfe44fb697d5affcf10fb2a2585523 [diff] |
[XLA:CPU] More accurate expm1 when x is small, take two We approximate it with: expm1(x) = tanh(x/2)*(exp(x)+1) Additional care is taken to handle the case when x/2 underflows but x does not by simply approximating the result with x itself. Yet further care must be taken to handle the case when exp(x) would not be all that close to 1, in which case we simply use: expm1(x) = exp(x)-1 The pseudo-code for this is roughly: if x/2 == 0: return x exp_x = exp(x) if |x| > .5: return exp_x - 1 return tanh(x/2)*(exp_x+1) The actual code sequence emitted preserves vectorization in the case where different lanes observe inputs where the magnitudes are entirely different. This suffices to get us within a relative error of 4.76e-7 or about eight ULPs when compared against libm. PiperOrigin-RevId: 358861023 Change-Id: I4a51ec8e2a16a95b6cbaa2af3305ce3a16201c54
Documentation |
---|
TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML-powered applications.
TensorFlow was originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization to conduct machine learning and deep neural networks research. The system is general enough to be applicable in a wide variety of other domains, as well.
TensorFlow provides stable Python and C++ APIs, as well as non-guaranteed backward compatible API for other languages.
Keep up-to-date with release announcements and security updates by subscribing to announce@tensorflow.org. See all the mailing lists.
See the TensorFlow install guide for the pip package, to enable GPU support, use a Docker container, and build from source.
To install the current release, which includes support for CUDA-enabled GPU cards (Ubuntu and Windows):
$ pip install tensorflow
A smaller CPU-only package is also available:
$ pip install tensorflow-cpu
To update TensorFlow to the latest version, add --upgrade
flag to the above commands.
Nightly binaries are available for testing using the tf-nightly and tf-nightly-cpu packages on PyPi.
$ python
>>> import tensorflow as tf >>> tf.add(1, 2).numpy() 3 >>> hello = tf.constant('Hello, TensorFlow!') >>> hello.numpy() b'Hello, TensorFlow!'
For more examples, see the TensorFlow tutorials.
If you want to contribute to TensorFlow, be sure to review the contribution guidelines. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.
We use GitHub issues for tracking requests and bugs, please see TensorFlow Discuss for general questions and discussion, and please direct specific questions to Stack Overflow.
The TensorFlow project strives to abide by generally accepted best practices in open-source software development:
Build Type | Status | Artifacts |
---|---|---|
Linux CPU | PyPI | |
Linux GPU | PyPI | |
Linux XLA | TBA | |
macOS | PyPI | |
Windows CPU | PyPI | |
Windows GPU | PyPI | |
Android | ||
Raspberry Pi 0 and 1 | Py3 | |
Raspberry Pi 2 and 3 | Py3 | |
Libtensorflow MacOS CPU | Status Temporarily Unavailable | Nightly Binary Official GCS |
Libtensorflow Linux CPU | Status Temporarily Unavailable | Nightly Binary Official GCS |
Libtensorflow Linux GPU | Status Temporarily Unavailable | Nightly Binary Official GCS |
Libtensorflow Windows CPU | Status Temporarily Unavailable | Nightly Binary Official GCS |
Libtensorflow Windows GPU | Status Temporarily Unavailable | Nightly Binary Official GCS |
Build Type | Status | Artifacts |
---|---|---|
Linux AMD ROCm GPU Nightly | Nightly | |
Linux AMD ROCm GPU Stable Release | Release 1.15 / 2.x | |
Linux s390x Nightly | Nightly | |
Linux s390x CPU Stable Release | Release | |
Linux ppc64le CPU Nightly | Nightly | |
Linux ppc64le CPU Stable Release | Release 1.15 / 2.x | |
Linux ppc64le GPU Nightly | Nightly | |
Linux ppc64le GPU Stable Release | Release 1.15 / 2.x | |
Linux aarch64 CPU Nightly (Linaro) | Nightly | |
Linux aarch64 CPU Stable Release (Linaro) | Release 1.x & 2.x | |
Linux aarch64 CPU Nightly (OpenLab) Python 3.6 | Nightly | |
Linux aarch64 CPU Stable Release (OpenLab) | Release 1.15 / 2.x | |
Linux CPU with Intel oneAPI Deep Neural Network Library (oneDNN) Nightly | Nightly | |
Linux CPU with Intel oneAPI Deep Neural Network Library (oneDNN) Stable Release | Release 1.15 / 2.x | |
Red Hat® Enterprise Linux® 7.6 CPU & GPU Python 2.7, 3.6 | 1.13.1 PyPI |
Container Type | Status | Artifacts |
---|---|---|
TensorFlow aarch64 Neoverse-N1 CPU Stable (Linaro) Debian | Static | Release 2.3 |
Learn more about the TensorFlow community and how to contribute.