Integrate LLVM at llvm/llvm-project@da3ed58b97c1
Updates LLVM usage to match
[da3ed58b97c1](https://github.com/llvm/llvm-project/commit/da3ed58b97c1)
PiperOrigin-RevId: 377432380
Change-Id: I57dca7c4a401e3b85a091fd60a5d7000b37a7d51
diff --git a/tensorflow/compiler/mlir/hlo/include/mlir-hlo/utils/cycle_detector.h b/tensorflow/compiler/mlir/hlo/include/mlir-hlo/utils/cycle_detector.h
index 79b56b3..93cb464 100644
--- a/tensorflow/compiler/mlir/hlo/include/mlir-hlo/utils/cycle_detector.h
+++ b/tensorflow/compiler/mlir/hlo/include/mlir-hlo/utils/cycle_detector.h
@@ -19,6 +19,7 @@
#include <vector>
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
namespace mlir {
diff --git a/tensorflow/compiler/mlir/hlo/lib/Dialect/mhlo/transforms/legalize_to_linalg.cc b/tensorflow/compiler/mlir/hlo/lib/Dialect/mhlo/transforms/legalize_to_linalg.cc
index c93a093..d72ee6c 100644
--- a/tensorflow/compiler/mlir/hlo/lib/Dialect/mhlo/transforms/legalize_to_linalg.cc
+++ b/tensorflow/compiler/mlir/hlo/lib/Dialect/mhlo/transforms/legalize_to_linalg.cc
@@ -701,16 +701,16 @@
collapsed_dims_list.back().push_back(dims);
}
- // `linalg.reshape` is inserted only if necessary, i.e. when the rank can be
- // reduced.
+ // `linalg.collapse_shape` is inserted only if necessary, i.e. when the rank
+ // can be reduced.
if (new_shape.size() < operand_shape.size()) {
auto new_memref_type = MemRefType::get(
new_shape, operand_type.getElementType(),
makeStridedLinearLayoutMap(new_strides, operand_offset,
rewriter.getContext()));
- operand = rewriter.create<linalg::ReshapeOp>(op.getLoc(), new_memref_type,
- operand_adaptor.operand(),
- collapsed_dims_list);
+ operand = rewriter.create<linalg::CollapseShapeOp>(
+ op.getLoc(), new_memref_type, operand_adaptor.operand(),
+ collapsed_dims_list);
}
return std::make_pair(operand, broadcast_dims);
}
@@ -868,30 +868,45 @@
if (isLHLO) {
auto collapsed_type = MemRefType::get({total_elems}, elem_type);
- Value collapsed_op = rewriter.create<linalg::ReshapeOp>(
+ Value collapsed_op = rewriter.create<linalg::CollapseShapeOp>(
loc, collapsed_type, args[0], collapsing_map);
- Value reshape_buffer = rewriter.create<linalg::ReshapeOp>(
+ Value reshape_buffer = rewriter.create<linalg::ExpandShapeOp>(
loc, result_type, collapsed_op, expanding_map);
rewriter.replaceOpWithNewOp<linalg::CopyOp>(reshape_op, reshape_buffer,
args[1]);
} else {
auto collapsed_type = RankedTensorType::get({total_elems}, elem_type);
- Value collapsed_op = rewriter.create<linalg::TensorReshapeOp>(
+ Value collapsed_op = rewriter.create<linalg::TensorCollapseShapeOp>(
loc, collapsed_type, args[0], collapsing_map);
- rewriter.replaceOpWithNewOp<linalg::TensorReshapeOp>(
+ rewriter.replaceOpWithNewOp<linalg::TensorExpandShapeOp>(
reshape_op, result_type, collapsed_op, expanding_map);
}
return success();
}
+ bool isCollapsing =
+ result_type.getRank() < args[0].getType().cast<ShapedType>().getRank();
if (isLHLO) {
- Value reshape_buffer = rewriter.create<linalg::ReshapeOp>(
- reshape_op.getLoc(), result_type, args[0], reassociation_map);
+ Value reshape_buffer = isCollapsing ? rewriter
+ .create<linalg::CollapseShapeOp>(
+ reshape_op.getLoc(), result_type,
+ args[0], reassociation_map)
+ .getResult()
+ : rewriter
+ .create<linalg::ExpandShapeOp>(
+ reshape_op.getLoc(), result_type,
+ args[0], reassociation_map)
+ .getResult();
rewriter.replaceOpWithNewOp<linalg::CopyOp>(reshape_op, reshape_buffer,
args[1]);
} else {
- rewriter.replaceOpWithNewOp<linalg::TensorReshapeOp>(
- reshape_op, result_type, args[0], reassociation_map);
+ if (isCollapsing) {
+ rewriter.replaceOpWithNewOp<linalg::TensorCollapseShapeOp>(
+ reshape_op, result_type, args[0], reassociation_map);
+ } else {
+ rewriter.replaceOpWithNewOp<linalg::TensorExpandShapeOp>(
+ reshape_op, result_type, args[0], reassociation_map);
+ }
}
return success();
}
@@ -1910,7 +1925,7 @@
SmallVector<linalg::ReassociationIndices, 4> collapsed_dim_list = {
get_indices_vector(0, 1), get_indices_vector(1, 2),
get_indices_vector(2, 3), get_indices_vector(3, 5)};
- rewriter.replaceOpWithNewOp<linalg::TensorReshapeOp>(
+ rewriter.replaceOpWithNewOp<linalg::TensorCollapseShapeOp>(
op, result_type, conv.getResult(0), collapsed_dim_list);
} else {
// For cases where channel multiplier == 1
@@ -1936,7 +1951,7 @@
get_indices_vector(0, 1), get_indices_vector(1, 2),
get_indices_vector(2, 4)};
- Value reshaped_filter = rewriter.create<linalg::TensorReshapeOp>(
+ Value reshaped_filter = rewriter.create<linalg::TensorCollapseShapeOp>(
loc, filter_shape, filter, collapsed_dim_list);
rewriter.replaceOpWithNewOp<linalg::DepthwiseConvInputNHWCFilterHWCOp>(
diff --git a/tensorflow/compiler/mlir/hlo/lib/utils/cycle_detector.cc b/tensorflow/compiler/mlir/hlo/lib/utils/cycle_detector.cc
index 0914460..cba021b 100644
--- a/tensorflow/compiler/mlir/hlo/lib/utils/cycle_detector.cc
+++ b/tensorflow/compiler/mlir/hlo/lib/utils/cycle_detector.cc
@@ -18,6 +18,7 @@
#include <algorithm>
#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallVector.h"
namespace mlir {
diff --git a/tensorflow/compiler/mlir/hlo/tests/hlo-legalize-to-linalg.mlir b/tensorflow/compiler/mlir/hlo/tests/hlo-legalize-to-linalg.mlir
index 910c4f6..a756a3f 100644
--- a/tensorflow/compiler/mlir/hlo/tests/hlo-legalize-to-linalg.mlir
+++ b/tensorflow/compiler/mlir/hlo/tests/hlo-legalize-to-linalg.mlir
@@ -543,7 +543,7 @@
%0 = "mhlo.reshape"(%arg0) : (tensor<i32>) -> tensor<1xi32>
return %0 : tensor<1xi32>
}
-// CHECK: linalg.tensor_reshape %{{.*}} [] : tensor<i32> into tensor<1xi32>
+// CHECK: linalg.tensor_expand_shape %{{.*}} [] : tensor<i32> into tensor<1xi32>
// -----
@@ -554,7 +554,7 @@
// CHECK-LABEL: func @reshape_0D_1D_unsigned
// CHECK-SAME: %[[ARG_UNSIGNED:[a-zA-Z0-9_]*]]
// CHECK: %[[ARG_SIGNLESS:.*]] = unrealized_conversion_cast %[[ARG_UNSIGNED]] : tensor<ui32> to tensor<i32>
-// CHECK: %[[RET_SIGNLESS:.*]] = linalg.tensor_reshape %[[ARG_SIGNLESS]] [] : tensor<i32> into tensor<1xi32>
+// CHECK: %[[RET_SIGNLESS:.*]] = linalg.tensor_expand_shape %[[ARG_SIGNLESS]] [] : tensor<i32> into tensor<1xi32>
// CHECK: %[[RET_UNSIGNED:.*]] = unrealized_conversion_cast %[[RET_SIGNLESS]] : tensor<1xi32> to tensor<1xui32>
// CHECK: return %[[RET_UNSIGNED]] : tensor<1xui32>
@@ -565,7 +565,7 @@
%0 = "mhlo.reshape"(%arg0) : (tensor<1xi32>) -> tensor<i32>
return %0 : tensor<i32>
}
-// CHECK: linalg.tensor_reshape %{{.*}} [] : tensor<1xi32> into tensor<i32>
+// CHECK: linalg.tensor_collapse_shape %{{.*}} [] : tensor<1xi32> into tensor<i32>
// -----
@@ -576,7 +576,7 @@
// CHECK-LABEL: func @reshape_1D_0D_unsigned
// CHECK-SAME: %[[ARG_UNSIGNED:[a-zA-Z0-9_]*]]
// CHECK: %[[ARG_SIGNLESS:.*]] = unrealized_conversion_cast %[[ARG_UNSIGNED]] : tensor<1xui32> to tensor<1xi32>
-// CHECK: %[[RET_SIGNLESS:.*]] = linalg.tensor_reshape %[[ARG_SIGNLESS]] [] : tensor<1xi32> into tensor<i32>
+// CHECK: %[[RET_SIGNLESS:.*]] = linalg.tensor_collapse_shape %[[ARG_SIGNLESS]] [] : tensor<1xi32> into tensor<i32>
// CHECK: %[[RET_UNSIGNED:.*]] = unrealized_conversion_cast %[[RET_SIGNLESS]] : tensor<i32> to tensor<ui32>
// CHECK: return %[[RET_UNSIGNED]] : tensor<ui32>
@@ -587,7 +587,7 @@
%0 = "mhlo.reshape"(%arg0) : (tensor<12x1x42xi32>) -> tensor<12x42xi32>
return %0 : tensor<12x42xi32>
}
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1], [2]]
+// CHECK: linalg.tensor_collapse_shape %{{.*}} {{\[}}[0, 1], [2]]
// -----
@@ -596,7 +596,7 @@
%0 = "mhlo.reshape"(%arg0) : (tensor<12x42x1x1xi32>) -> tensor<12x42xi32>
return %0 : tensor<12x42xi32>
}
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0], [1, 2, 3]]
+// CHECK: linalg.tensor_collapse_shape %{{.*}} {{\[}}[0], [1, 2, 3]]
// -----
@@ -605,7 +605,7 @@
%0 = "mhlo.reshape"(%arg0) : (tensor<12x42xi32>) -> tensor<12x1x42x1xi32>
return %0 : tensor<12x1x42x1xi32>
}
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1], [2, 3]]
+// CHECK: linalg.tensor_expand_shape %{{.*}} {{\[}}[0, 1], [2, 3]]
// -----
@@ -614,8 +614,8 @@
%0 = "mhlo.reshape"(%arg0) : (tensor<1x49x16xf32>) -> tensor<1x784x1x1xf32>
return %0 : tensor<1x784x1x1xf32>
}
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1, 2]]
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1, 2, 3]]
+// CHECK: linalg.tensor_collapse_shape %{{.*}} {{\[}}[0, 1, 2]]
+// CHECK: linalg.tensor_expand_shape %{{.*}} {{\[}}[0, 1, 2, 3]]
// -----
@@ -624,8 +624,8 @@
%0 = "mhlo.reshape"(%arg0) : (tensor<1x8x10x3xf32>) -> tensor<1x240x1xf32>
return %0 : tensor<1x240x1xf32>
}
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1, 2, 3]
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1, 2]
+// CHECK: linalg.tensor_collapse_shape %{{.*}} {{\[}}[0, 1, 2, 3]
+// CHECK: linalg.tensor_expand_shape %{{.*}} {{\[}}[0, 1, 2]
// -----
@@ -634,8 +634,8 @@
%0 = "mhlo.reshape"(%arg0) : (tensor<4x512x1x1xi32>) -> tensor<1x4x1x512xi32>
return %0 : tensor<1x4x1x512xi32>
}
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1, 2, 3]
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1, 2, 3]
+// CHECK: linalg.tensor_collapse_shape %{{.*}} {{\[}}[0, 1, 2, 3]
+// CHECK: linalg.tensor_expand_shape %{{.*}} {{\[}}[0, 1, 2, 3]
// -----
@@ -644,8 +644,8 @@
%0 = "mhlo.reshape"(%arg0) : (tensor<4x1x1x1024xi32>) -> tensor<4x1024x1x1xi32>
return %0 : tensor<4x1024x1x1xi32>
}
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1, 2, 3]
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1, 2, 3]
+// CHECK: linalg.tensor_collapse_shape %{{.*}} {{\[}}[0, 1, 2, 3]
+// CHECK: linalg.tensor_expand_shape %{{.*}} {{\[}}[0, 1, 2, 3]
// -----
@@ -718,7 +718,7 @@
return %0 : tensor<1x784xf32>
}
// CHECK-LABEL: func @reshape_collapse_single_dim
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0], [1, 2, 3]]
+// CHECK: linalg.tensor_collapse_shape %{{.*}} {{\[}}[0], [1, 2, 3]]
// -----
@@ -727,7 +727,7 @@
return %0 : tensor<2x4x3xf32>
}
// CHECK-LABEL: func @reshape_collapse
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0], [1, 2], [3]]
+// CHECK: linalg.tensor_collapse_shape %{{.*}} {{\[}}[0], [1, 2], [3]]
// -----
@@ -736,7 +736,7 @@
return %0 : tensor<2x4x2xf32>
}
// CHECK-LABEL: func @reshape_expand
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0], [1, 2]]
+// CHECK: linalg.tensor_expand_shape %{{.*}} {{\[}}[0], [1, 2]]
// -----
@@ -745,7 +745,7 @@
return %0 : tensor<1x4x2xf32>
}
// CHECK-LABEL: func @reshape_single_expand
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0, 1, 2]]
+// CHECK: linalg.tensor_expand_shape %{{.*}} {{\[}}[0, 1, 2]]
// -----
@@ -755,7 +755,7 @@
return %0 : tensor<1x4x5x6xf32>
}
// CHECK-LABEL: func @reshape_multiple_collapse
-// CHECK: linalg.tensor_reshape %{{.*}} {{\[}}[0], [1, 2], [3], [4, 5]]
+// CHECK: linalg.tensor_collapse_shape %{{.*}} {{\[}}[0], [1, 2], [3], [4, 5]]
// -----
@@ -2062,7 +2062,7 @@
// CHECK-SAME: {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>}
// CHECK-SAME: ins(%[[IN]], %[[FILTER]] : tensor<2x4x5x2xf32>, tensor<2x2x2x3xf32>)
// CHECK-SAME: outs(%[[FILL]] : tensor<2x3x4x2x3xf32>) -> tensor<2x3x4x2x3xf32>
-// CHECK: %{{.+}} = linalg.tensor_reshape %[[OUT]]
+// CHECK: %{{.+}} = linalg.tensor_collapse_shape %[[OUT]]
// CHECK-SAME: [0], [1], [2], [3, 4]
// CHECK-SAME: : tensor<2x3x4x2x3xf32> into tensor<2x3x4x6xf32>
@@ -2095,7 +2095,7 @@
// CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 56, 56, 96] : tensor<1x56x56x96xf32>
// CHECK: %[[CST:.+]] = constant 0.000000e+00 : f32
// CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[CST]]) : tensor<1x56x56x96xf32>, f32 -> tensor<1x56x56x96xf32>
-// CHECK: %[[RESHAPED_FILTER:.+]] = linalg.tensor_reshape %[[FILTER]]
+// CHECK: %[[RESHAPED_FILTER:.+]] = linalg.tensor_collapse_shape %[[FILTER]]
// CHECK-SAME: [0], [1], [2, 3]
// CHECK-SAME: : tensor<3x3x1x96xf32> into tensor<3x3x96xf32>
// CHECK: %{{.+}} = linalg.depthwise_conv_2d_input_nhwc_filter_hwc
diff --git a/tensorflow/compiler/mlir/hlo/tests/lhlo-legalize-to-linalg.mlir b/tensorflow/compiler/mlir/hlo/tests/lhlo-legalize-to-linalg.mlir
index a5cbd47..a7b0e1d 100644
--- a/tensorflow/compiler/mlir/hlo/tests/lhlo-legalize-to-linalg.mlir
+++ b/tensorflow/compiler/mlir/hlo/tests/lhlo-legalize-to-linalg.mlir
@@ -346,7 +346,7 @@
} : (memref<5xf32>, memref<5x10xf32>) -> ()
return
}
-// CHECK-NOT: linalg.reshape
+// CHECK-NOT: linalg.{{.*}}shape
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %[[RESULT:.*]]: f32):
// CHECK-NEXT: linalg.yield %[[OPERAND]] : f32
@@ -363,7 +363,7 @@
} : (memref<1x5xf32>, memref<5x10x100xf32>) -> ()
return
}
-// CHECK: %[[RESHAPED_ARG:.*]] = linalg.reshape %{{.*}} {{\[}}[0, 1]]
+// CHECK: %[[RESHAPED_ARG:.*]] = linalg.collapse_shape %{{.*}} {{\[}}[0, 1]]
// CHECK-SAME: memref<1x5xf32> into memref<5xf32>
// CHECK: linalg.generic {{{.*}}indexing_maps =
// CHECK-SAME: [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
@@ -383,7 +383,7 @@
} : (memref<f32>, memref<5x10xf32>) -> ()
return
}
-// CHECK-NOT: linalg.reshape
+// CHECK-NOT: linalg.{{.*}}shape
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[RESULT_MAP_0]], #[[RESULT_MAP]]]
// CHECK-NEXT: ^bb0(%[[CONST:.*]]: f32, %[[RESULT:.*]]: f32):
// CHECK-NEXT: linalg.yield %[[CONST]] : f32
@@ -400,7 +400,7 @@
} : (memref<1xf32>, memref<1x5xf32>) -> ()
return
}
-// CHECK-NOT: linalg.reshape
+// CHECK-NOT: linalg.{{.*}}shape
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// CHECK-NEXT: ^bb0(%[[OPERAND:.+]]: f32, %{{.+}}: f32):
// CHECK-NEXT: linalg.yield %[[OPERAND]] : f32
@@ -416,7 +416,7 @@
} : (memref<1xf32>, memref<5x5xf32>) -> ()
return
}
-// CHECK-NOT: linalg.reshape
+// CHECK-NOT: linalg.{{.*}}shape
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[VALUE:.*]] = memref.load %{{.*}}[[C0]]
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[RESULT_MAP]]]
@@ -881,7 +881,7 @@
: (memref<12x1x42xi32>, memref<12x42xi32>) -> ()
return
}
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0, 1], [2]]
+// CHECK: linalg.collapse_shape %{{.*}} {{\[}}[0, 1], [2]]
// CHECK-NEXT: linalg.copy
// -----
@@ -892,7 +892,7 @@
: (memref<12x42x1x1xi32>, memref<12x42xi32>) -> ()
return
}
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0], [1, 2, 3]]
+// CHECK: linalg.collapse_shape %{{.*}} {{\[}}[0], [1, 2, 3]]
// CHECK-NEXT: linalg.copy
// -----
@@ -903,7 +903,7 @@
: (memref<12x42xi32>, memref<12x1x42x1xi32>) -> ()
return
}
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0, 1], [2, 3]]
+// CHECK: linalg.expand_shape %{{.*}} {{\[}}[0, 1], [2, 3]]
// CHECK-NEXT: linalg.copy
// -----
@@ -914,8 +914,8 @@
: (memref<1x49x16xf32>, memref<1x784x1x1xf32>) -> ()
return
}
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0, 1, 2]]
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0, 1, 2, 3]]
+// CHECK: linalg.collapse_shape %{{.*}} {{\[}}[0, 1, 2]]
+// CHECK: linalg.expand_shape %{{.*}} {{\[}}[0, 1, 2, 3]]
// CHECK: linalg.copy
// -----
@@ -926,8 +926,8 @@
: (memref<1x8x10x3xf32>, memref<1x240x1xf32>) -> ()
return
}
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0, 1, 2, 3]]
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0, 1, 2]]
+// CHECK: linalg.collapse_shape %{{.*}} {{\[}}[0, 1, 2, 3]]
+// CHECK: linalg.expand_shape %{{.*}} {{\[}}[0, 1, 2]]
// CHECK: linalg.copy
// -----
@@ -939,8 +939,8 @@
: (memref<4x512x1x1xi32>, memref<1x4x1x512xi32>) -> ()
return
}
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0, 1, 2, 3]]
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0, 1, 2, 3]]
+// CHECK: linalg.collapse_shape %{{.*}} {{\[}}[0, 1, 2, 3]]
+// CHECK: linalg.expand_shape %{{.*}} {{\[}}[0, 1, 2, 3]]
// -----
@@ -951,8 +951,8 @@
: (memref<4x1x1x1024xi32>, memref<4x1024x1x1xi32>) -> ()
return
}
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0, 1, 2, 3]]
-// CHECK: linalg.reshape %{{.*}} {{\[}}[0, 1, 2, 3]]
+// CHECK: linalg.collapse_shape %{{.*}} {{\[}}[0, 1, 2, 3]]
+// CHECK: linalg.expand_shape %{{.*}} {{\[}}[0, 1, 2, 3]]
// -----
diff --git a/tensorflow/compiler/mlir/tools/kernel_gen/tests/bufferize.mlir b/tensorflow/compiler/mlir/tools/kernel_gen/tests/bufferize.mlir
index 9725c2e..589a63a 100644
--- a/tensorflow/compiler/mlir/tools/kernel_gen/tests/bufferize.mlir
+++ b/tensorflow/compiler/mlir/tools/kernel_gen/tests/bufferize.mlir
@@ -246,8 +246,8 @@
// CHECK-LABEL: @tensor_reshape
// CHECK-SAME: (%[[T:.*]]: memref<1x2x2xf32>)
func @tensor_reshape(%t : tensor<1x2x2xf32>) -> tensor<4xf32> {
- // CHECK: linalg.reshape %[[T]] {{.*}} : memref<1x2x2xf32> into memref<4xf32>
- %result = linalg.tensor_reshape %t [[0, 1, 2]] : tensor<1x2x2xf32> into tensor<4xf32>
+ // CHECK: linalg.collapse_shape %[[T]] {{.*}} : memref<1x2x2xf32> into memref<4xf32>
+ %result = linalg.tensor_collapse_shape %t [[0, 1, 2]] : tensor<1x2x2xf32> into tensor<4xf32>
return %result : tensor<4xf32>
}
diff --git a/tensorflow/compiler/mlir/tools/kernel_gen/transforms/bufferize_pass.cc b/tensorflow/compiler/mlir/tools/kernel_gen/transforms/bufferize_pass.cc
index 36c652d..89d1bc7 100644
--- a/tensorflow/compiler/mlir/tools/kernel_gen/transforms/bufferize_pass.cc
+++ b/tensorflow/compiler/mlir/tools/kernel_gen/transforms/bufferize_pass.cc
@@ -179,7 +179,8 @@
target.addIllegalOp<tensor::GenerateOp, tensor::ExtractOp,
tensor::FromElementsOp, tensor::CastOp,
chlo::MinimumBroadcastShapesOp, memref::TensorLoadOp,
- memref::BufferCastOp, linalg::TensorReshapeOp>();
+ memref::BufferCastOp, linalg::TensorExpandShapeOp,
+ linalg::TensorCollapseShapeOp>();
BufferizeTypeConverter converter;
auto typesAreLegal = [&converter](Operation* op) {
return converter.isLegal(op->getOperandTypes()) &&
diff --git a/third_party/llvm/workspace.bzl b/third_party/llvm/workspace.bzl
index 318e7a1..8f828c4 100644
--- a/third_party/llvm/workspace.bzl
+++ b/third_party/llvm/workspace.bzl
@@ -4,8 +4,8 @@
def repo(name):
"""Imports LLVM."""
- LLVM_COMMIT = "c89dff5855bb32d47751cce087537c2b12a90f1b"
- LLVM_SHA256 = "900067ffc67a11fd1f650d8852e7706c7642d86f5cc81bbd6cd67996fae58116"
+ LLVM_COMMIT = "da3ed58b97c1cc1356b7732d5dcbb6e4de3057da"
+ LLVM_SHA256 = "d0766a8638c50daf167d699a71982bcbec3a0b41bc86054bcc642a40755dca32"
tf_http_archive(
name = name,
diff --git a/third_party/mlir/BUILD b/third_party/mlir/BUILD
index 34b410d..83ca138 100644
--- a/third_party/mlir/BUILD
+++ b/third_party/mlir/BUILD
@@ -6346,6 +6346,22 @@
],
)
+cc_library(
+ name = "MlirReduceLib",
+ srcs = ["lib/Tools/mlir-reduce/MlirReduceMain.cpp"],
+ hdrs = ["include/mlir/Tools/mlir-reduce/MlirReduceMain.h"],
+ includes = ["include"],
+ deps = [
+ ":IR",
+ ":Parser",
+ ":Pass",
+ ":Reducer",
+ ":Rewrite",
+ ":Support",
+ "@llvm-project//llvm:Support",
+ ],
+)
+
cc_binary(
name = "mlir-reduce",
srcs = ["tools/mlir-reduce/mlir-reduce.cpp"],
@@ -6355,6 +6371,7 @@
deps = [
":AllPassesAndDialects",
":IR",
+ ":MlirReduceLib",
":Parser",
":Pass",
":Reducer",