Remove support for different input and output quantization
diff --git a/tensorflow/lite/micro/kernels/reduce.cc b/tensorflow/lite/micro/kernels/reduce.cc
index 3ecfa7a..3ad1068 100644
--- a/tensorflow/lite/micro/kernels/reduce.cc
+++ b/tensorflow/lite/micro/kernels/reduce.cc
@@ -291,6 +291,9 @@
               }));
       break;
     case kTfLiteInt8:
+      TF_LITE_ENSURE_EQ(context, static_cast<double>(op_data->input_scale),
+                        static_cast<double>(op_data->output_scale));
+      TF_LITE_ENSURE_EQ(context, op_data->input_zp, op_data->output_zp);
       TF_LITE_ENSURE(
           context,
           reference_ops::ReduceGeneric<int8_t>(
@@ -303,18 +306,6 @@
               [](const int8_t current, const int8_t in) -> int8_t {
                 return (in > current) ? in : current;
               }));
-
-      // Convert between different output scales
-      if (op_data->input_scale != op_data->output_scale) {
-        int8_t* output_data = tflite::micro::GetTensorData<int8_t>(output);
-        for (int i = 0; i < op_data->num_output_elements; i++) {
-          output_data[i] = static_cast<int8_t>(std::max(
-              std::min(MultiplyByQuantizedMultiplier(
-                           output_data[i], op_data->multiplier, op_data->shift),
-                       static_cast<int>(std::numeric_limits<int8_t>::max())),
-              static_cast<int>(std::numeric_limits<int8_t>::min())));
-        }
-      }
       break;
     default:
       TF_LITE_KERNEL_LOG(context,
diff --git a/tensorflow/lite/micro/kernels/reduce_test.cc b/tensorflow/lite/micro/kernels/reduce_test.cc
index dd5fd1b..8a649d7 100644
--- a/tensorflow/lite/micro/kernels/reduce_test.cc
+++ b/tensorflow/lite/micro/kernels/reduce_test.cc
@@ -397,32 +397,6 @@
       tflite::ops::micro::Register_REDUCE_MAX(), &params);
 }
 
-TF_LITE_MICRO_TEST(Int8MaxOpTestKeepDimsDifferentScale) {
-  const int input_shape[] = {3, 1, 3, 2};
-  const float input_data[] = {0.4, 0.2, 0.3, 0.4, 0.5, 0.6};
-  const int axis_shape[] = {1, 1};
-  const int axis_data[] = {1, 1};
-  const int output_shape[] = {1, 2};
-  const float expected_output_data[] = {0.5, 0.6};
-
-  float input_scale = 2 / 255.0;
-  int input_zp = 0;
-  float output_scale = 3 / 255.0;
-  int output_zp = 0;
-
-  TfLiteReducerParams params = {true};
-
-  int8_t input_data_quant[6];
-  int8_t output_data_quant[2];
-  int8_t expected_output_data_quant[2];
-
-  tflite::testing::TestReduceOpQuantized<int8_t>(
-      input_shape, input_data, input_data_quant, input_scale, input_zp,
-      axis_shape, axis_data, output_shape, expected_output_data,
-      output_data_quant, expected_output_data_quant, output_scale, output_zp,
-      tflite::ops::micro::Register_REDUCE_MAX(), &params);
-}
-
 TF_LITE_MICRO_TEST(Int8MaxOpTestWithoutKeepDims) {
   const int input_shape[] = {3, 1, 3, 2};
   const float input_data[] = {0.4, 0.2, 0.3, 0.4, 0.5, 0.6};
@@ -449,32 +423,6 @@
       tflite::ops::micro::Register_REDUCE_MAX(), &params);
 }
 
-TF_LITE_MICRO_TEST(Int8MaxOpTestWithoutKeepDimsDifferentScale) {
-  const int input_shape[] = {3, 1, 3, 2};
-  const float input_data[] = {0.4, 0.2, 0.3, 0.4, 0.5, 0.6};
-  const int axis_shape[] = {1, 1};
-  const int axis_data[] = {1, 1};
-  const int output_shape[] = {1, 2};
-  const float expected_output_data[] = {0.5, 0.6};
-
-  float input_scale = 2 / 255.0;
-  int input_zp = 0;
-  float output_scale = 3 / 255.0;
-  int output_zp = 0;
-
-  TfLiteReducerParams params = {false};
-
-  int8_t input_data_quant[6];
-  int8_t output_data_quant[2];
-  int8_t expected_output_data_quant[2];
-
-  tflite::testing::TestReduceOpQuantized<int8_t>(
-      input_shape, input_data, input_data_quant, input_scale, input_zp,
-      axis_shape, axis_data, output_shape, expected_output_data,
-      output_data_quant, expected_output_data_quant, output_scale, output_zp,
-      tflite::ops::micro::Register_REDUCE_MAX(), &params);
-}
-
 TF_LITE_MICRO_TEST(MeanInt84DWithoutKeepDimsWithPrecision) {
   const int kInputShape4D[] = {4, 2, 2, 3, 1};
   const float kInputData4D[] = {1.0,  24.0, 13.0, 3.0,  9.0,  17.0,