blob: f36544628669a716c75cff8fe788370beae9454c [file] [log] [blame]
// AUTOGENERATED FROM executor/common.h
package csource
var commonHeader = `
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#if GOOS_freebsd || GOOS_test && HOSTGOOS_freebsd
#include <sys/endian.h>
#else
#include <endian.h>
#endif
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if SYZ_TRACE
#include <errno.h>
#endif
#if SYZ_EXECUTOR && !GOOS_linux
#include <unistd.h>
NORETURN void doexit(int status)
{
_exit(status);
for (;;) {
}
}
#endif
#if SYZ_EXECUTOR || SYZ_PROCS || SYZ_REPEAT && SYZ_ENABLE_CGROUPS || \
SYZ_ENABLE_NETDEV || __NR_syz_mount_image || __NR_syz_read_part_table || \
__NR_syz_usb_connect || (GOOS_openbsd || GOOS_freebsd) && SYZ_TUN_ENABLE
unsigned long long procid;
#endif
#if !GOOS_fuchsia && !GOOS_windows
#if SYZ_EXECUTOR || SYZ_HANDLE_SEGV
#include <setjmp.h>
#include <signal.h>
#include <string.h>
#if GOOS_linux
#include <sys/syscall.h>
#endif
static __thread int skip_segv;
static __thread jmp_buf segv_env;
#if GOOS_akaros
#include <parlib/parlib.h>
static void recover(void)
{
_longjmp(segv_env, 1);
}
#endif
static void segv_handler(int sig, siginfo_t* info, void* ctx)
{
uintptr_t addr = (uintptr_t)info->si_addr;
const uintptr_t prog_start = 1 << 20;
const uintptr_t prog_end = 100 << 20;
if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) {
debug("SIGSEGV on %p, skipping\n", (void*)addr);
#if GOOS_akaros
struct user_context* uctx = (struct user_context*)ctx;
uctx->tf.hw_tf.tf_rip = (long)(void*)recover;
return;
#else
_longjmp(segv_env, 1);
#endif
}
debug("SIGSEGV on %p, exiting\n", (void*)addr);
doexit(sig);
}
static void install_segv_handler(void)
{
struct sigaction sa;
#if GOOS_linux
memset(&sa, 0, sizeof(sa));
sa.sa_handler = SIG_IGN;
syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8);
syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8);
#endif
memset(&sa, 0, sizeof(sa));
sa.sa_sigaction = segv_handler;
sa.sa_flags = SA_NODEFER | SA_SIGINFO;
sigaction(SIGSEGV, &sa, NULL);
sigaction(SIGBUS, &sa, NULL);
}
#define NONFAILING(...) \
{ \
__atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \
if (_setjmp(segv_env) == 0) { \
__VA_ARGS__; \
} \
__atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \
}
#endif
#endif
#if !GOOS_linux
#if (SYZ_EXECUTOR || SYZ_REPEAT) && SYZ_EXECUTOR_USES_FORK_SERVER
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
static void kill_and_wait(int pid, int* status)
{
kill(pid, SIGKILL);
while (waitpid(-1, status, 0) != pid) {
}
}
#endif
#endif
#if !GOOS_windows
#if SYZ_EXECUTOR || SYZ_THREADED || SYZ_REPEAT && SYZ_EXECUTOR_USES_FORK_SERVER || \
__NR_syz_usb_connect
static void sleep_ms(uint64 ms)
{
usleep(ms * 1000);
}
#endif
#if SYZ_EXECUTOR || SYZ_THREADED || SYZ_REPEAT && SYZ_EXECUTOR_USES_FORK_SERVER
#include <time.h>
static uint64 current_time_ms(void)
{
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts))
fail("clock_gettime failed");
return (uint64)ts.tv_sec * 1000 + (uint64)ts.tv_nsec / 1000000;
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_ANDROID_UNTRUSTED_APP || SYZ_USE_TMP_DIR
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>
static void use_temporary_dir(void)
{
#if SYZ_SANDBOX_ANDROID_UNTRUSTED_APP
char tmpdir_template[] = "/data/data/syzkaller/syzkaller.XXXXXX";
#else
char tmpdir_template[] = "./syzkaller.XXXXXX";
#endif
char* tmpdir = mkdtemp(tmpdir_template);
if (!tmpdir)
fail("failed to mkdtemp");
if (chmod(tmpdir, 0777))
fail("failed to chmod");
if (chdir(tmpdir))
fail("failed to chdir");
}
#endif
#endif
#if GOOS_akaros || GOOS_netbsd || GOOS_freebsd || GOOS_openbsd || GOOS_test
#if SYZ_EXECUTOR || SYZ_EXECUTOR_USES_FORK_SERVER && SYZ_REPEAT && SYZ_USE_TMP_DIR
#include <dirent.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
static void remove_dir(const char* dir)
{
DIR* dp;
struct dirent* ep;
dp = opendir(dir);
if (dp == NULL)
exitf("opendir(%s) failed", dir);
while ((ep = readdir(dp))) {
if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0)
continue;
char filename[FILENAME_MAX];
snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name);
struct stat st;
if (lstat(filename, &st))
exitf("lstat(%s) failed", filename);
if (S_ISDIR(st.st_mode)) {
remove_dir(filename);
continue;
}
if (unlink(filename))
exitf("unlink(%s) failed", filename);
}
closedir(dp);
if (rmdir(dir))
exitf("rmdir(%s) failed", dir);
}
#endif
#endif
#if !GOOS_linux
#if SYZ_EXECUTOR || SYZ_FAULT_INJECTION
static int inject_fault(int nth)
{
return 0;
}
#endif
#if SYZ_EXECUTOR
static int fault_injected(int fail_fd)
{
return 0;
}
#endif
#endif
#if !GOOS_windows
#if SYZ_EXECUTOR || SYZ_THREADED
#include <errno.h>
#include <pthread.h>
static void thread_start(void* (*fn)(void*), void* arg)
{
pthread_t th;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, 128 << 10);
int i;
for (i = 0; i < 100; i++) {
if (pthread_create(&th, &attr, fn, arg) == 0) {
pthread_attr_destroy(&attr);
return;
}
if (errno == EAGAIN) {
usleep(50);
continue;
}
break;
}
exitf("pthread_create failed");
}
#endif
#endif
#if GOOS_freebsd || GOOS_netbsd || GOOS_openbsd || GOOS_akaros || GOOS_test
#if SYZ_EXECUTOR || SYZ_THREADED
#include <pthread.h>
#include <time.h>
typedef struct {
pthread_mutex_t mu;
pthread_cond_t cv;
int state;
} event_t;
static void event_init(event_t* ev)
{
if (pthread_mutex_init(&ev->mu, 0))
fail("pthread_mutex_init failed");
if (pthread_cond_init(&ev->cv, 0))
fail("pthread_cond_init failed");
ev->state = 0;
}
static void event_reset(event_t* ev)
{
ev->state = 0;
}
static void event_set(event_t* ev)
{
pthread_mutex_lock(&ev->mu);
if (ev->state)
fail("event already set");
ev->state = 1;
pthread_mutex_unlock(&ev->mu);
pthread_cond_broadcast(&ev->cv);
}
static void event_wait(event_t* ev)
{
pthread_mutex_lock(&ev->mu);
while (!ev->state)
pthread_cond_wait(&ev->cv, &ev->mu);
pthread_mutex_unlock(&ev->mu);
}
static int event_isset(event_t* ev)
{
pthread_mutex_lock(&ev->mu);
int res = ev->state;
pthread_mutex_unlock(&ev->mu);
return res;
}
static int event_timedwait(event_t* ev, uint64 timeout)
{
uint64 start = current_time_ms();
uint64 now = start;
pthread_mutex_lock(&ev->mu);
for (;;) {
if (ev->state)
break;
uint64 remain = timeout - (now - start);
struct timespec ts;
ts.tv_sec = remain / 1000;
ts.tv_nsec = (remain % 1000) * 1000 * 1000;
pthread_cond_timedwait(&ev->cv, &ev->mu, &ts);
now = current_time_ms();
if (now - start > timeout)
break;
}
int res = ev->state;
pthread_mutex_unlock(&ev->mu);
return res;
}
#endif
#endif
#if SYZ_EXECUTOR || SYZ_USE_BITMASKS
#define BITMASK(bf_off, bf_len) (((1ull << (bf_len)) - 1) << (bf_off))
#define STORE_BY_BITMASK(type, htobe, addr, val, bf_off, bf_len) \
*(type*)(addr) = htobe((htobe(*(type*)(addr)) & ~BITMASK((bf_off), (bf_len))) | \
(((type)(val) << (bf_off)) & BITMASK((bf_off), (bf_len))))
#endif
#if SYZ_EXECUTOR || SYZ_USE_CHECKSUMS
struct csum_inet {
uint32 acc;
};
static void csum_inet_init(struct csum_inet* csum)
{
csum->acc = 0;
}
static void csum_inet_update(struct csum_inet* csum, const uint8* data, size_t length)
{
if (length == 0)
return;
size_t i;
for (i = 0; i < length - 1; i += 2)
csum->acc += *(uint16*)&data[i];
if (length & 1)
csum->acc += (uint16)data[length - 1];
while (csum->acc > 0xffff)
csum->acc = (csum->acc & 0xffff) + (csum->acc >> 16);
}
static uint16 csum_inet_digest(struct csum_inet* csum)
{
return ~csum->acc;
}
#endif
#if GOOS_akaros
#include <ros/syscall.h>
#include <stdlib.h>
#include <unistd.h>
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
static void loop();
static int do_sandbox_none(void)
{
loop();
return 0;
}
#endif
#if SYZ_EXECUTOR || SYZ_REPEAT
static void execute_one();
const char* program_name;
void child()
{
#if SYZ_EXECUTOR || SYZ_HANDLE_SEGV
install_segv_handler();
#endif
#if SYZ_EXECUTOR
receive_execute();
close(kInPipeFd);
#endif
execute_one();
doexit(0);
}
#endif
#elif GOOS_freebsd || GOOS_netbsd || GOOS_openbsd
#include <unistd.h>
#include <pwd.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <sys/syscall.h>
#if GOOS_openbsd
#define __syscall syscall
#if SYZ_EXECUTOR || __NR_syz_open_pts
#include <termios.h>
#include <util.h>
static uintptr_t syz_open_pts(void)
{
int master, slave;
if (openpty(&master, &slave, NULL, NULL, NULL) == -1)
return -1;
if (dup2(master, master + 100) != -1)
close(master);
return slave;
}
#endif
#endif
#if GOOS_freebsd || GOOS_openbsd
#if SYZ_EXECUTOR || SYZ_TUN_ENABLE
#include <fcntl.h>
#include <net/if_tun.h>
#include <sys/types.h>
static int tunfd = -1;
#define SYZ_TUN_MAX_PACKET_SIZE 1000
#define MAX_TUN 4
#define TUN_IFACE "tap%d"
#define TUN_DEVICE "/dev/tap%d"
#define LOCAL_IPV4 "172.20.%d.170"
#define LOCAL_IPV6 "fe80::%02hxaa"
static void vsnprintf_check(char* str, size_t size, const char* format, va_list args)
{
int rv;
rv = vsnprintf(str, size, format, args);
if (rv < 0)
fail("vsnprintf failed");
if ((size_t)rv >= size)
fail("vsnprintf: string '%s...' doesn't fit into buffer", str);
}
static void snprintf_check(char* str, size_t size, const char* format, ...)
{
va_list args;
va_start(args, format);
vsnprintf_check(str, size, format, args);
va_end(args);
}
#define COMMAND_MAX_LEN 128
#define PATH_PREFIX "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin "
#define PATH_PREFIX_LEN (sizeof(PATH_PREFIX) - 1)
static void execute_command(bool panic, const char* format, ...)
{
va_list args;
char command[PATH_PREFIX_LEN + COMMAND_MAX_LEN];
int rv;
va_start(args, format);
memcpy(command, PATH_PREFIX, PATH_PREFIX_LEN);
vsnprintf_check(command + PATH_PREFIX_LEN, COMMAND_MAX_LEN, format, args);
va_end(args);
rv = system(command);
if (rv) {
if (panic)
fail("command '%s' failed: %d", &command[0], rv);
debug("command '%s': %d\n", &command[0], rv);
}
}
static void initialize_tun(int tun_id)
{
#if SYZ_EXECUTOR
if (!flag_enable_tun)
return;
#endif
if (tun_id < 0 || tun_id >= MAX_TUN) {
fail("tun_id out of range %d\n", tun_id);
}
char tun_device[sizeof(TUN_DEVICE)];
snprintf_check(tun_device, sizeof(tun_device), TUN_DEVICE, tun_id);
tunfd = open(tun_device, O_RDWR | O_NONBLOCK);
#if GOOS_freebsd
if ((tunfd < 0) && (errno == ENOENT)) {
execute_command(0, "kldload -q if_tap");
tunfd = open(tun_device, O_RDWR | O_NONBLOCK);
}
#endif
if (tunfd == -1) {
#if SYZ_EXECUTOR
fail("tun: can't open %s\n", tun_device);
#else
printf("tun: can't open %s: errno=%d\n", tun_device, errno);
return;
#endif
}
const int kTunFd = 240;
if (dup2(tunfd, kTunFd) < 0)
fail("dup2(tunfd, kTunFd) failed");
close(tunfd);
tunfd = kTunFd;
char tun_iface[sizeof(TUN_IFACE)];
snprintf_check(tun_iface, sizeof(tun_iface), TUN_IFACE, tun_id);
char local_ipv4[sizeof(LOCAL_IPV4)];
snprintf_check(local_ipv4, sizeof(local_ipv4), LOCAL_IPV4, tun_id);
execute_command(1, "ifconfig %s inet %s", tun_iface, local_ipv4);
char local_ipv6[sizeof(LOCAL_IPV6)];
snprintf_check(local_ipv6, sizeof(local_ipv6), LOCAL_IPV6, tun_id);
execute_command(1, "ifconfig %s inet6 %s", tun_iface, local_ipv6);
}
#endif
#if SYZ_EXECUTOR || __NR_syz_emit_ethernet && SYZ_TUN_ENABLE
#include <stdbool.h>
#include <sys/uio.h>
static long syz_emit_ethernet(volatile long a0, volatile long a1)
{
if (tunfd < 0)
return (uintptr_t)-1;
size_t length = a0;
const char* data = (char*)a1;
debug_dump_data(data, length);
return write(tunfd, data, length);
}
#endif
#if SYZ_EXECUTOR || SYZ_TUN_ENABLE && (__NR_syz_extract_tcp_res || SYZ_REPEAT)
#include <errno.h>
static int read_tun(char* data, int size)
{
if (tunfd < 0)
return -1;
int rv = read(tunfd, data, size);
if (rv < 0) {
if (errno == EAGAIN)
return -1;
fail("tun: read failed with %d", rv);
}
return rv;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_extract_tcp_res && SYZ_TUN_ENABLE
struct tcp_resources {
uint32 seq;
uint32 ack;
};
#if GOOS_freebsd
#include <net/ethernet.h>
#else
#include <net/ethertypes.h>
#endif
#include <net/if.h>
#include <net/if_arp.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/if_ether.h>
static long syz_extract_tcp_res(volatile long a0, volatile long a1, volatile long a2)
{
if (tunfd < 0)
return (uintptr_t)-1;
char data[SYZ_TUN_MAX_PACKET_SIZE];
int rv = read_tun(&data[0], sizeof(data));
if (rv == -1)
return (uintptr_t)-1;
size_t length = rv;
debug_dump_data(data, length);
struct tcphdr* tcphdr;
if (length < sizeof(struct ether_header))
return (uintptr_t)-1;
struct ether_header* ethhdr = (struct ether_header*)&data[0];
if (ethhdr->ether_type == htons(ETHERTYPE_IP)) {
if (length < sizeof(struct ether_header) + sizeof(struct ip))
return (uintptr_t)-1;
struct ip* iphdr = (struct ip*)&data[sizeof(struct ether_header)];
if (iphdr->ip_p != IPPROTO_TCP)
return (uintptr_t)-1;
if (length < sizeof(struct ether_header) + iphdr->ip_hl * 4 + sizeof(struct tcphdr))
return (uintptr_t)-1;
tcphdr = (struct tcphdr*)&data[sizeof(struct ether_header) + iphdr->ip_hl * 4];
} else {
if (length < sizeof(struct ether_header) + sizeof(struct ip6_hdr))
return (uintptr_t)-1;
struct ip6_hdr* ipv6hdr = (struct ip6_hdr*)&data[sizeof(struct ether_header)];
if (ipv6hdr->ip6_nxt != IPPROTO_TCP)
return (uintptr_t)-1;
if (length < sizeof(struct ether_header) + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
return (uintptr_t)-1;
tcphdr = (struct tcphdr*)&data[sizeof(struct ether_header) + sizeof(struct ip6_hdr)];
}
struct tcp_resources* res = (struct tcp_resources*)a0;
NONFAILING(res->seq = htonl((ntohl(tcphdr->th_seq) + (uint32)a1)));
NONFAILING(res->ack = htonl((ntohl(tcphdr->th_ack) + (uint32)a2)));
debug("extracted seq: %08x\n", res->seq);
debug("extracted ack: %08x\n", res->ack);
return 0;
}
#endif
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NONE
#include <sys/resource.h>
#include <unistd.h>
static void sandbox_common()
{
if (setsid() == -1)
fail("setsid failed");
struct rlimit rlim;
#ifdef GOOS_freebsd
rlim.rlim_cur = rlim.rlim_max = 128 << 20;
setrlimit(RLIMIT_AS, &rlim);
#endif
rlim.rlim_cur = rlim.rlim_max = 8 << 20;
setrlimit(RLIMIT_MEMLOCK, &rlim);
rlim.rlim_cur = rlim.rlim_max = 1 << 20;
setrlimit(RLIMIT_FSIZE, &rlim);
rlim.rlim_cur = rlim.rlim_max = 1 << 20;
setrlimit(RLIMIT_STACK, &rlim);
rlim.rlim_cur = rlim.rlim_max = 0;
setrlimit(RLIMIT_CORE, &rlim);
rlim.rlim_cur = rlim.rlim_max = 256;
setrlimit(RLIMIT_NOFILE, &rlim);
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
static void loop();
static int do_sandbox_none(void)
{
sandbox_common();
#if (GOOS_freebsd || GOOS_openbsd) && (SYZ_EXECUTOR || SYZ_TUN_ENABLE)
initialize_tun(procid);
#endif
loop();
return 0;
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_SETUID
#include <sys/resource.h>
#include <sys/wait.h>
#include <unistd.h>
static void loop();
static int wait_for_loop(int pid)
{
if (pid < 0)
fail("sandbox fork failed");
debug("spawned loop pid %d\n", pid);
int status = 0;
while (waitpid(-1, &status, WUNTRACED) != pid) {
}
return WEXITSTATUS(status);
}
#define SYZ_HAVE_SANDBOX_SETUID 1
static int do_sandbox_setuid(void)
{
int pid = fork();
if (pid != 0)
return wait_for_loop(pid);
sandbox_common();
#if (GOOS_freebsd || GOOS_openbsd) && (SYZ_EXECUTOR || SYZ_TUN_ENABLE)
initialize_tun(procid);
#endif
char pwbuf[1024];
struct passwd *pw, pwres;
if (getpwnam_r("nobody", &pwres, pwbuf, sizeof(pwbuf), &pw) != 0 || !pw)
fail("getpwnam_r(\"nobody\") failed");
if (setgroups(0, NULL))
fail("failed to setgroups");
if (setgid(pw->pw_gid))
fail("failed to setgid");
if (setuid(pw->pw_uid))
fail("failed to setuid");
loop();
doexit(1);
}
#endif
#elif GOOS_fuchsia
#include <fcntl.h>
#include <lib/fdio/directory.h>
#include <poll.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <time.h>
#include <unistd.h>
#include <utime.h>
#include <zircon/process.h>
#include <zircon/syscalls.h>
#if SYZ_EXECUTOR || __NR_get_root_resource
#include <ddk/driver.h>
#endif
#if SYZ_EXECUTOR || SYZ_HANDLE_SEGV
#include <pthread.h>
#include <setjmp.h>
#include <zircon/syscalls/debug.h>
#include <zircon/syscalls/exception.h>
#include <zircon/syscalls/object.h>
#include <zircon/syscalls/port.h>
static __thread int skip_segv;
static __thread jmp_buf segv_env;
static void segv_handler(void)
{
if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED)) {
debug("recover: skipping\n");
longjmp(segv_env, 1);
}
debug("recover: exiting\n");
doexit(SIGSEGV);
}
static void* ex_handler(void* arg)
{
zx_handle_t port = (zx_handle_t)(long)arg;
for (int i = 0; i < 10000; i++) {
zx_port_packet_t packet = {};
zx_status_t status = zx_port_wait(port, ZX_TIME_INFINITE, &packet);
if (status != ZX_OK) {
debug("zx_port_wait failed: %d\n", status);
continue;
}
debug("got exception packet: type=%d status=%d tid=%llu\n",
packet.type, packet.status, (unsigned long long)(packet.exception.tid));
zx_handle_t thread;
status = zx_object_get_child(zx_process_self(), packet.exception.tid,
ZX_RIGHT_SAME_RIGHTS, &thread);
if (status != ZX_OK) {
debug("zx_object_get_child failed: %d\n", status);
continue;
}
zx_thread_state_general_regs_t regs;
status = zx_thread_read_state(thread, ZX_THREAD_STATE_GENERAL_REGS,
&regs, sizeof(regs));
if (status != ZX_OK) {
debug("zx_thread_read_state failed: %d (%d)\n",
(int)sizeof(regs), status);
} else {
#if GOARCH_amd64
regs.rip = (uint64)(void*)&segv_handler;
#elif GOARCH_arm64
regs.pc = (uint64)(void*)&segv_handler;
#else
#error "unsupported arch"
#endif
status = zx_thread_write_state(thread, ZX_THREAD_STATE_GENERAL_REGS, &regs, sizeof(regs));
if (status != ZX_OK) {
debug("zx_thread_write_state failed: %d\n", status);
}
}
status = zx_task_resume_from_exception(thread, port, 0);
if (status != ZX_OK) {
debug("zx_task_resume_from_exception failed: %d\n", status);
}
zx_handle_close(thread);
}
doexit(1);
return 0;
}
static void install_segv_handler(void)
{
zx_status_t status;
zx_handle_t port;
if ((status = zx_port_create(0, &port)) != ZX_OK)
fail("zx_port_create failed: %d", status);
if ((status = zx_task_bind_exception_port(zx_process_self(), port, 0, 0)) != ZX_OK)
fail("zx_task_bind_exception_port failed: %d", status);
pthread_t th;
if (pthread_create(&th, 0, ex_handler, (void*)(long)port))
fail("pthread_create failed");
}
#define NONFAILING(...) \
{ \
__atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \
if (sigsetjmp(segv_env, 0) == 0) { \
__VA_ARGS__; \
} \
__atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \
}
#endif
#if SYZ_EXECUTOR || SYZ_THREADED
#include <unistd.h>
typedef struct {
int state;
} event_t;
static void event_init(event_t* ev)
{
ev->state = 0;
}
static void event_reset(event_t* ev)
{
ev->state = 0;
}
static void event_set(event_t* ev)
{
if (ev->state)
fail("event already set");
__atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE);
}
static void event_wait(event_t* ev)
{
while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
usleep(200);
}
static int event_isset(event_t* ev)
{
return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE);
}
static int event_timedwait(event_t* ev, uint64 timeout_ms)
{
uint64 start = current_time_ms();
for (;;) {
if (__atomic_load_n(&ev->state, __ATOMIC_RELAXED))
return 1;
if (current_time_ms() - start > timeout_ms)
return 0;
usleep(200);
}
}
#endif
#if SYZ_EXECUTOR || __NR_syz_mmap
long syz_mmap(size_t addr, size_t size)
{
zx_handle_t root = zx_vmar_root_self();
zx_info_vmar_t info;
zx_status_t status = zx_object_get_info(root, ZX_INFO_VMAR, &info, sizeof(info), 0, 0);
if (status != ZX_OK)
fail("zx_object_get_info(ZX_INFO_VMAR) failed: %d", status);
zx_handle_t vmo;
status = zx_vmo_create(size, 0, &vmo);
if (status != ZX_OK) {
debug("zx_vmo_create failed with: %d\n", status);
return status;
}
status = zx_vmo_replace_as_executable(vmo, ZX_HANDLE_INVALID, &vmo);
if (status != ZX_OK)
return status;
uintptr_t mapped_addr;
status = zx_vmar_map(root, ZX_VM_FLAG_SPECIFIC_OVERWRITE | ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE | ZX_VM_FLAG_PERM_EXECUTE,
addr - info.base, vmo, 0, size,
&mapped_addr);
return status;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_process_self
static long syz_process_self(void)
{
return zx_process_self();
}
#endif
#if SYZ_EXECUTOR || __NR_syz_thread_self
static long syz_thread_self(void)
{
return zx_thread_self();
}
#endif
#if SYZ_EXECUTOR || __NR_syz_vmar_root_self
static long syz_vmar_root_self(void)
{
return zx_vmar_root_self();
}
#endif
#if SYZ_EXECUTOR || __NR_syz_job_default
static long syz_job_default(void)
{
return zx_job_default();
}
#endif
#if SYZ_EXECUTOR || __NR_syz_future_time
static long syz_future_time(volatile long when)
{
zx_time_t delta_ms;
switch (when) {
case 0:
delta_ms = 5;
break;
case 1:
delta_ms = 30;
break;
default:
delta_ms = 10000;
break;
}
zx_time_t now = zx_clock_get(ZX_CLOCK_MONOTONIC);
return now + delta_ms * 1000 * 1000;
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
static void loop();
static int do_sandbox_none(void)
{
loop();
return 0;
}
#endif
#define CAST(f) ({void* p = (void*)f; p; })
#elif GOOS_linux
#include <stdlib.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#if SYZ_EXECUTOR
const int kExtraCoverSize = 256 << 10;
struct cover_t;
static void cover_reset(cover_t* cov);
#endif
#if SYZ_EXECUTOR || SYZ_THREADED
#include <linux/futex.h>
#include <pthread.h>
typedef struct {
int state;
} event_t;
static void event_init(event_t* ev)
{
ev->state = 0;
}
static void event_reset(event_t* ev)
{
ev->state = 0;
}
static void event_set(event_t* ev)
{
if (ev->state)
fail("event already set");
__atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE);
syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG);
}
static void event_wait(event_t* ev)
{
while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0);
}
static int event_isset(event_t* ev)
{
return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE);
}
static int event_timedwait(event_t* ev, uint64 timeout)
{
uint64 start = current_time_ms();
uint64 now = start;
for (;;) {
uint64 remain = timeout - (now - start);
struct timespec ts;
ts.tv_sec = remain / 1000;
ts.tv_nsec = (remain % 1000) * 1000 * 1000;
syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts);
if (__atomic_load_n(&ev->state, __ATOMIC_RELAXED))
return 1;
now = current_time_ms();
if (now - start > timeout)
return 0;
}
}
#endif
#if SYZ_EXECUTOR || SYZ_REPEAT || SYZ_TUN_ENABLE || SYZ_FAULT_INJECTION || SYZ_SANDBOX_NONE || \
SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID_UNTRUSTED_APP
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
static bool write_file(const char* file, const char* what, ...)
{
char buf[1024];
va_list args;
va_start(args, what);
vsnprintf(buf, sizeof(buf), what, args);
va_end(args);
buf[sizeof(buf) - 1] = 0;
int len = strlen(buf);
int fd = open(file, O_WRONLY | O_CLOEXEC);
if (fd == -1)
return false;
if (write(fd, buf, len) != len) {
int err = errno;
close(fd);
debug("write(%s) failed: %d\n", file, err);
errno = err;
return false;
}
close(fd);
return true;
}
#endif
#if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV || SYZ_TUN_ENABLE
#include <arpa/inet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <linux/if_addr.h>
#include <linux/if_link.h>
#include <linux/in6.h>
#include <linux/neighbour.h>
#include <linux/net.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <linux/veth.h>
static struct {
char* pos;
int nesting;
struct nlattr* nested[8];
char buf[1024];
} nlmsg;
static void netlink_init(int typ, int flags, const void* data, int size)
{
memset(&nlmsg, 0, sizeof(nlmsg));
struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg.buf;
hdr->nlmsg_type = typ;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags;
memcpy(hdr + 1, data, size);
nlmsg.pos = (char*)(hdr + 1) + NLMSG_ALIGN(size);
}
static void netlink_attr(int typ, const void* data, int size)
{
struct nlattr* attr = (struct nlattr*)nlmsg.pos;
attr->nla_len = sizeof(*attr) + size;
attr->nla_type = typ;
memcpy(attr + 1, data, size);
nlmsg.pos += NLMSG_ALIGN(attr->nla_len);
}
#if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV
static void netlink_nest(int typ)
{
struct nlattr* attr = (struct nlattr*)nlmsg.pos;
attr->nla_type = typ;
nlmsg.pos += sizeof(*attr);
nlmsg.nested[nlmsg.nesting++] = attr;
}
static void netlink_done(void)
{
struct nlattr* attr = nlmsg.nested[--nlmsg.nesting];
attr->nla_len = nlmsg.pos - (char*)attr;
}
#endif
static int netlink_send(int sock)
{
if (nlmsg.pos > nlmsg.buf + sizeof(nlmsg.buf) || nlmsg.nesting)
fail("nlmsg overflow/bad nesting");
struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg.buf;
hdr->nlmsg_len = nlmsg.pos - nlmsg.buf;
struct sockaddr_nl addr;
memset(&addr, 0, sizeof(addr));
addr.nl_family = AF_NETLINK;
unsigned n = sendto(sock, nlmsg.buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr));
if (n != hdr->nlmsg_len)
fail("short netlink write: %d/%d", n, hdr->nlmsg_len);
n = recv(sock, nlmsg.buf, sizeof(nlmsg.buf), 0);
if (n < sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr))
fail("short netlink read: %d", n);
if (hdr->nlmsg_type != NLMSG_ERROR)
fail("short netlink ack: %d", hdr->nlmsg_type);
return -((struct nlmsgerr*)(hdr + 1))->error;
}
#if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV
static void netlink_add_device_impl(const char* type, const char* name)
{
struct ifinfomsg hdr;
memset(&hdr, 0, sizeof(hdr));
netlink_init(RTM_NEWLINK, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr));
if (name)
netlink_attr(IFLA_IFNAME, name, strlen(name));
netlink_nest(IFLA_LINKINFO);
netlink_attr(IFLA_INFO_KIND, type, strlen(type));
}
static void netlink_add_device(int sock, const char* type, const char* name)
{
netlink_add_device_impl(type, name);
netlink_done();
int err = netlink_send(sock);
debug("netlink: adding device %s type %s: %s\n", name, type, strerror(err));
(void)err;
}
static void netlink_add_veth(int sock, const char* name, const char* peer)
{
netlink_add_device_impl("veth", name);
netlink_nest(IFLA_INFO_DATA);
netlink_nest(VETH_INFO_PEER);
nlmsg.pos += sizeof(struct ifinfomsg);
netlink_attr(IFLA_IFNAME, peer, strlen(peer));
netlink_done();
netlink_done();
netlink_done();
int err = netlink_send(sock);
debug("netlink: adding device %s type veth peer %s: %s\n", name, peer, strerror(err));
(void)err;
}
static void netlink_add_hsr(int sock, const char* name, const char* slave1, const char* slave2)
{
netlink_add_device_impl("hsr", name);
netlink_nest(IFLA_INFO_DATA);
int ifindex1 = if_nametoindex(slave1);
netlink_attr(IFLA_HSR_SLAVE1, &ifindex1, sizeof(ifindex1));
int ifindex2 = if_nametoindex(slave2);
netlink_attr(IFLA_HSR_SLAVE2, &ifindex2, sizeof(ifindex2));
netlink_done();
netlink_done();
int err = netlink_send(sock);
debug("netlink: adding device %s type hsr slave1 %s slave2 %s: %s\n",
name, slave1, slave2, strerror(err));
(void)err;
}
#endif
static void netlink_device_change(int sock, const char* name, bool up,
const char* master, const void* mac, int macsize)
{
struct ifinfomsg hdr;
memset(&hdr, 0, sizeof(hdr));
if (up)
hdr.ifi_flags = hdr.ifi_change = IFF_UP;
netlink_init(RTM_NEWLINK, 0, &hdr, sizeof(hdr));
netlink_attr(IFLA_IFNAME, name, strlen(name));
if (master) {
int ifindex = if_nametoindex(master);
netlink_attr(IFLA_MASTER, &ifindex, sizeof(ifindex));
}
if (macsize)
netlink_attr(IFLA_ADDRESS, mac, macsize);
int err = netlink_send(sock);
debug("netlink: device %s up master %s: %s\n", name, master, strerror(err));
(void)err;
}
static int netlink_add_addr(int sock, const char* dev, const void* addr, int addrsize)
{
struct ifaddrmsg hdr;
memset(&hdr, 0, sizeof(hdr));
hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6;
hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120;
hdr.ifa_scope = RT_SCOPE_UNIVERSE;
hdr.ifa_index = if_nametoindex(dev);
netlink_init(RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr));
netlink_attr(IFA_LOCAL, addr, addrsize);
netlink_attr(IFA_ADDRESS, addr, addrsize);
return netlink_send(sock);
}
static void netlink_add_addr4(int sock, const char* dev, const char* addr)
{
struct in_addr in_addr;
inet_pton(AF_INET, addr, &in_addr);
int err = netlink_add_addr(sock, dev, &in_addr, sizeof(in_addr));
debug("netlink: add addr %s dev %s: %s\n", addr, dev, strerror(err));
(void)err;
}
static void netlink_add_addr6(int sock, const char* dev, const char* addr)
{
struct in6_addr in6_addr;
inet_pton(AF_INET6, addr, &in6_addr);
int err = netlink_add_addr(sock, dev, &in6_addr, sizeof(in6_addr));
debug("netlink: add addr %s dev %s: %s\n", addr, dev, strerror(err));
(void)err;
}
#if SYZ_EXECUTOR || SYZ_TUN_ENABLE
static void netlink_add_neigh(int sock, const char* name,
const void* addr, int addrsize, const void* mac, int macsize)
{
struct ndmsg hdr;
memset(&hdr, 0, sizeof(hdr));
hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6;
hdr.ndm_ifindex = if_nametoindex(name);
hdr.ndm_state = NUD_PERMANENT;
netlink_init(RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr));
netlink_attr(NDA_DST, addr, addrsize);
netlink_attr(NDA_LLADDR, mac, macsize);
int err = netlink_send(sock);
debug("netlink: add neigh %s addr %d lladdr %d: %s\n",
name, addrsize, macsize, strerror(err));
(void)err;
}
#endif
#endif
#if SYZ_EXECUTOR || SYZ_TUN_ENABLE
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <linux/if_ether.h>
#include <linux/if_tun.h>
#include <linux/ip.h>
#include <linux/tcp.h>
static int tunfd = -1;
static int tun_frags_enabled;
#define SYZ_TUN_MAX_PACKET_SIZE 1000
#define TUN_IFACE "syz_tun"
#define LOCAL_MAC 0xaaaaaaaaaaaa
#define REMOTE_MAC 0xaaaaaaaaaabb
#define LOCAL_IPV4 "172.20.20.170"
#define REMOTE_IPV4 "172.20.20.187"
#define LOCAL_IPV6 "fe80::aa"
#define REMOTE_IPV6 "fe80::bb"
#ifndef IFF_NAPI
#define IFF_NAPI 0x0010
#endif
#ifndef IFF_NAPI_FRAGS
#define IFF_NAPI_FRAGS 0x0020
#endif
static void initialize_tun(void)
{
#if SYZ_EXECUTOR
if (!flag_enable_tun)
return;
#endif
tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK);
if (tunfd == -1) {
#if SYZ_EXECUTOR
fail("tun: can't open /dev/net/tun");
#else
printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n");
printf("otherwise fuzzing or reproducing might not work as intended\n");
return;
#endif
}
const int kTunFd = 240;
if (dup2(tunfd, kTunFd) < 0)
fail("dup2(tunfd, kTunFd) failed");
close(tunfd);
tunfd = kTunFd;
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ);
ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS;
if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) {
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0)
fail("tun: ioctl(TUNSETIFF) failed");
}
if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0)
fail("tun: ioctl(TUNGETIFF) failed");
tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0;
debug("tun_frags_enabled=%d\n", tun_frags_enabled);
char sysctl[64];
sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE);
write_file(sysctl, "0");
sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE);
write_file(sysctl, "0");
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1)
fail("socket(AF_NETLINK) failed");
netlink_add_addr4(sock, TUN_IFACE, LOCAL_IPV4);
netlink_add_addr6(sock, TUN_IFACE, LOCAL_IPV6);
uint64 macaddr = REMOTE_MAC;
struct in_addr in_addr;
inet_pton(AF_INET, REMOTE_IPV4, &in_addr);
netlink_add_neigh(sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN);
struct in6_addr in6_addr;
inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr);
netlink_add_neigh(sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN);
macaddr = LOCAL_MAC;
netlink_device_change(sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN);
close(sock);
}
#endif
#if SYZ_EXECUTOR || SYZ_ENABLE_NETDEV
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include <linux/if_ether.h>
#include <linux/if_tun.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#define DEV_IPV4 "172.20.20.%d"
#define DEV_IPV6 "fe80::%02x"
#define DEV_MAC 0x00aaaaaaaaaa
static void initialize_netdevices(void)
{
#if SYZ_EXECUTOR
if (!flag_enable_net_dev)
return;
#endif
char netdevsim[16];
sprintf(netdevsim, "netdevsim%d", (int)procid);
struct {
const char* type;
const char* dev;
} devtypes[] = {
{"ip6gretap", "ip6gretap0"},
{"bridge", "bridge0"},
{"vcan", "vcan0"},
{"bond", "bond0"},
{"team", "team0"},
{"dummy", "dummy0"},
{"nlmon", "nlmon0"},
{"caif", "caif0"},
{"batadv", "batadv0"},
{"vxcan", "vxcan1"},
{"netdevsim", netdevsim},
{"veth", 0},
};
const char* devmasters[] = {"bridge", "bond", "team"};
struct {
const char* name;
int macsize;
bool noipv6;
} devices[] = {
{"lo", ETH_ALEN},
{"sit0", 0},
{"bridge0", ETH_ALEN},
{"vcan0", 0, true},
{"tunl0", 0},
{"gre0", 0},
{"gretap0", ETH_ALEN},
{"ip_vti0", 0},
{"ip6_vti0", 0},
{"ip6tnl0", 0},
{"ip6gre0", 0},
{"ip6gretap0", ETH_ALEN},
{"erspan0", ETH_ALEN},
{"bond0", ETH_ALEN},
{"veth0", ETH_ALEN},
{"veth1", ETH_ALEN},
{"team0", ETH_ALEN},
{"veth0_to_bridge", ETH_ALEN},
{"veth1_to_bridge", ETH_ALEN},
{"veth0_to_bond", ETH_ALEN},
{"veth1_to_bond", ETH_ALEN},
{"veth0_to_team", ETH_ALEN},
{"veth1_to_team", ETH_ALEN},
{"veth0_to_hsr", ETH_ALEN},
{"veth1_to_hsr", ETH_ALEN},
{"hsr0", 0},
{"dummy0", ETH_ALEN},
{"nlmon0", 0},
{"vxcan1", 0, true},
{"caif0", ETH_ALEN},
{"batadv0", ETH_ALEN},
{netdevsim, ETH_ALEN},
};
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1)
fail("socket(AF_NETLINK) failed");
unsigned i;
for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++)
netlink_add_device(sock, devtypes[i].type, devtypes[i].dev);
for (i = 0; i < sizeof(devmasters) / (sizeof(devmasters[0])); i++) {
char master[32], slave0[32], veth0[32], slave1[32], veth1[32];
sprintf(slave0, "%s_slave_0", devmasters[i]);
sprintf(veth0, "veth0_to_%s", devmasters[i]);
netlink_add_veth(sock, slave0, veth0);
sprintf(slave1, "%s_slave_1", devmasters[i]);
sprintf(veth1, "veth1_to_%s", devmasters[i]);
netlink_add_veth(sock, slave1, veth1);
sprintf(master, "%s0", devmasters[i]);
netlink_device_change(sock, slave0, false, master, 0, 0);
netlink_device_change(sock, slave1, false, master, 0, 0);
}
netlink_device_change(sock, "bridge_slave_0", true, 0, 0, 0);
netlink_device_change(sock, "bridge_slave_1", true, 0, 0, 0);
netlink_add_veth(sock, "hsr_slave_0", "veth0_to_hsr");
netlink_add_veth(sock, "hsr_slave_1", "veth1_to_hsr");
netlink_add_hsr(sock, "hsr0", "hsr_slave_0", "hsr_slave_1");
netlink_device_change(sock, "hsr_slave_0", true, 0, 0, 0);
netlink_device_change(sock, "hsr_slave_1", true, 0, 0, 0);
for (i = 0; i < sizeof(devices) / (sizeof(devices[0])); i++) {
char addr[32];
sprintf(addr, DEV_IPV4, i + 10);
netlink_add_addr4(sock, devices[i].name, addr);
if (!devices[i].noipv6) {
sprintf(addr, DEV_IPV6, i + 10);
netlink_add_addr6(sock, devices[i].name, addr);
}
uint64 macaddr = DEV_MAC + ((i + 10ull) << 40);
netlink_device_change(sock, devices[i].name, true, 0, &macaddr, devices[i].macsize);
}
close(sock);
}
static void initialize_netdevices_init(void)
{
#if SYZ_EXECUTOR
if (!flag_enable_net_dev)
return;
#endif
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1)
fail("socket(AF_NETLINK) failed");
struct {
const char* type;
int macsize;
bool noipv6;
bool noup;
} devtypes[] = {
{"nr", 7, true},
{"rose", 5, true, true},
};
unsigned i;
for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++) {
char dev[32], addr[32];
sprintf(dev, "%s%d", devtypes[i].type, (int)procid);
sprintf(addr, "172.30.%d.%d", i, (int)procid + 1);
netlink_add_addr4(sock, dev, addr);
if (!devtypes[i].noipv6) {
sprintf(addr, "fe88::%02x:%02x", i, (int)procid + 1);
netlink_add_addr6(sock, dev, addr);
}
int macsize = devtypes[i].macsize;
uint64 macaddr = 0xbbbbbb + ((unsigned long long)i << (8 * (macsize - 2))) +
(procid << (8 * (macsize - 1)));
netlink_device_change(sock, dev, !devtypes[i].noup, 0, &macaddr, macsize);
}
close(sock);
}
#endif
#if SYZ_EXECUTOR || SYZ_TUN_ENABLE && (__NR_syz_extract_tcp_res || SYZ_REPEAT)
#include <errno.h>
static int read_tun(char* data, int size)
{
if (tunfd < 0)
return -1;
int rv = read(tunfd, data, size);
if (rv < 0) {
if (errno == EAGAIN)
return -1;
if (errno == EBADFD)
return -1;
fail("tun: read failed with %d", rv);
}
return rv;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_emit_ethernet && SYZ_TUN_ENABLE
#include <stdbool.h>
#include <sys/uio.h>
#define MAX_FRAGS 4
struct vnet_fragmentation {
uint32 full;
uint32 count;
uint32 frags[MAX_FRAGS];
};
static long syz_emit_ethernet(volatile long a0, volatile long a1, volatile long a2)
{
if (tunfd < 0)
return (uintptr_t)-1;
uint32 length = a0;
char* data = (char*)a1;
debug_dump_data(data, length);
struct vnet_fragmentation* frags = (struct vnet_fragmentation*)a2;
struct iovec vecs[MAX_FRAGS + 1];
uint32 nfrags = 0;
if (!tun_frags_enabled || frags == NULL) {
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = length;
nfrags++;
} else {
bool full = true;
uint32 i, count = 0;
NONFAILING(full = frags->full);
NONFAILING(count = frags->count);
if (count > MAX_FRAGS)
count = MAX_FRAGS;
for (i = 0; i < count && length != 0; i++) {
uint32 size = 0;
NONFAILING(size = frags->frags[i]);
if (size > length)
size = length;
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = size;
nfrags++;
data += size;
length -= size;
}
if (length != 0 && (full || nfrags == 0)) {
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = length;
nfrags++;
}
}
return writev(tunfd, vecs, nfrags);
}
#endif
#if SYZ_EXECUTOR || SYZ_REPEAT && SYZ_TUN_ENABLE
static void flush_tun()
{
#if SYZ_EXECUTOR
if (!flag_enable_tun)
return;
#endif
char data[SYZ_TUN_MAX_PACKET_SIZE];
while (read_tun(&data[0], sizeof(data)) != -1) {
}
}
#endif
#if SYZ_EXECUTOR || __NR_syz_extract_tcp_res && SYZ_TUN_ENABLE
#ifndef __ANDROID__
struct ipv6hdr {
__u8 priority : 4,
version : 4;
__u8 flow_lbl[3];
__be16 payload_len;
__u8 nexthdr;
__u8 hop_limit;
struct in6_addr saddr;
struct in6_addr daddr;
};
#endif
struct tcp_resources {
uint32 seq;
uint32 ack;
};
static long syz_extract_tcp_res(volatile long a0, volatile long a1, volatile long a2)
{
if (tunfd < 0)
return (uintptr_t)-1;
char data[SYZ_TUN_MAX_PACKET_SIZE];
int rv = read_tun(&data[0], sizeof(data));
if (rv == -1)
return (uintptr_t)-1;
size_t length = rv;
debug_dump_data(data, length);
struct tcphdr* tcphdr;
if (length < sizeof(struct ethhdr))
return (uintptr_t)-1;
struct ethhdr* ethhdr = (struct ethhdr*)&data[0];
if (ethhdr->h_proto == htons(ETH_P_IP)) {
if (length < sizeof(struct ethhdr) + sizeof(struct iphdr))
return (uintptr_t)-1;
struct iphdr* iphdr = (struct iphdr*)&data[sizeof(struct ethhdr)];
if (iphdr->protocol != IPPROTO_TCP)
return (uintptr_t)-1;
if (length < sizeof(struct ethhdr) + iphdr->ihl * 4 + sizeof(struct tcphdr))
return (uintptr_t)-1;
tcphdr = (struct tcphdr*)&data[sizeof(struct ethhdr) + iphdr->ihl * 4];
} else {
if (length < sizeof(struct ethhdr) + sizeof(struct ipv6hdr))
return (uintptr_t)-1;
struct ipv6hdr* ipv6hdr = (struct ipv6hdr*)&data[sizeof(struct ethhdr)];
if (ipv6hdr->nexthdr != IPPROTO_TCP)
return (uintptr_t)-1;
if (length < sizeof(struct ethhdr) + sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
return (uintptr_t)-1;
tcphdr = (struct tcphdr*)&data[sizeof(struct ethhdr) + sizeof(struct ipv6hdr)];
}
struct tcp_resources* res = (struct tcp_resources*)a0;
NONFAILING(res->seq = htonl((ntohl(tcphdr->seq) + (uint32)a1)));
NONFAILING(res->ack = htonl((ntohl(tcphdr->ack_seq) + (uint32)a2)));
debug("extracted seq: %08x\n", res->seq);
debug("extracted ack: %08x\n", res->ack);
return 0;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_usb_connect
#include <errno.h>
#include <fcntl.h>
#include <linux/usb/ch9.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#define USB_MAX_EP_NUM 32
struct usb_device_index {
struct usb_device_descriptor* dev;
struct usb_config_descriptor* config;
unsigned config_length;
struct usb_interface_descriptor* iface;
struct usb_endpoint_descriptor* eps[USB_MAX_EP_NUM];
unsigned eps_num;
};
static bool parse_usb_descriptor(char* buffer, size_t length, struct usb_device_index* index)
{
if (length < sizeof(*index->dev) + sizeof(*index->config) + sizeof(*index->iface))
return false;
index->dev = (struct usb_device_descriptor*)buffer;
index->config = (struct usb_config_descriptor*)(buffer + sizeof(*index->dev));
index->config_length = length - sizeof(*index->dev);
index->iface = (struct usb_interface_descriptor*)(buffer + sizeof(*index->dev) + sizeof(*index->config));
index->eps_num = 0;
size_t offset = 0;
while (true) {
if (offset == length)
break;
if (offset + 1 < length)
break;
uint8 length = buffer[offset];
uint8 type = buffer[offset + 1];
if (type == USB_DT_ENDPOINT) {
index->eps[index->eps_num] = (struct usb_endpoint_descriptor*)(buffer + offset);
index->eps_num++;
}
if (index->eps_num == USB_MAX_EP_NUM)
break;
offset += length;
}
return true;
}
enum usb_fuzzer_event_type {
USB_FUZZER_EVENT_INVALID,
USB_FUZZER_EVENT_CONNECT,
USB_FUZZER_EVENT_DISCONNECT,
USB_FUZZER_EVENT_SUSPEND,
USB_FUZZER_EVENT_RESUME,
USB_FUZZER_EVENT_CONTROL,
};
struct usb_fuzzer_event {
uint32 type;
uint32 length;
char data[0];
};
struct usb_fuzzer_init {
uint64 speed;
const char* driver_name;
const char* device_name;
};
struct usb_fuzzer_ep_io {
uint16 ep;
uint16 flags;
uint32 length;
char data[0];
};
#define USB_FUZZER_IOCTL_INIT _IOW('U', 0, struct usb_fuzzer_init)
#define USB_FUZZER_IOCTL_RUN _IO('U', 1)
#define USB_FUZZER_IOCTL_EP0_READ _IOWR('U', 2, struct usb_fuzzer_event)
#define USB_FUZZER_IOCTL_EP0_WRITE _IOW('U', 3, struct usb_fuzzer_ep_io)
#define USB_FUZZER_IOCTL_EP_ENABLE _IOW('U', 4, struct usb_endpoint_descriptor)
#define USB_FUZZER_IOCTL_EP_WRITE _IOW('U', 6, struct usb_fuzzer_ep_io)
#define USB_FUZZER_IOCTL_CONFIGURE _IO('U', 8)
#define USB_FUZZER_IOCTL_VBUS_DRAW _IOW('U', 9, uint32)
int usb_fuzzer_open()
{
return open("/sys/kernel/debug/usb-fuzzer", O_RDWR);
}
int usb_fuzzer_init(int fd, uint32 speed, const char* driver, const char* device)
{
struct usb_fuzzer_init arg;
arg.speed = speed;
arg.driver_name = driver;
arg.device_name = device;
return ioctl(fd, USB_FUZZER_IOCTL_INIT, &arg);
}
int usb_fuzzer_run(int fd)
{
return ioctl(fd, USB_FUZZER_IOCTL_RUN, 0);
}
int usb_fuzzer_ep0_read(int fd, struct usb_fuzzer_event* event)
{
return ioctl(fd, USB_FUZZER_IOCTL_EP0_READ, event);
}
int usb_fuzzer_ep0_write(int fd, struct usb_fuzzer_ep_io* io)
{
return ioctl(fd, USB_FUZZER_IOCTL_EP0_WRITE, io);
}
int usb_fuzzer_ep_write(int fd, struct usb_fuzzer_ep_io* io)
{
return ioctl(fd, USB_FUZZER_IOCTL_EP_WRITE, io);
}
int usb_fuzzer_ep_enable(int fd, struct usb_endpoint_descriptor* desc)
{
return ioctl(fd, USB_FUZZER_IOCTL_EP_ENABLE, desc);
}
int usb_fuzzer_configure(int fd)
{
return ioctl(fd, USB_FUZZER_IOCTL_CONFIGURE, 0);
}
int usb_fuzzer_vbus_draw(int fd, uint32 power)
{
return ioctl(fd, USB_FUZZER_IOCTL_VBUS_DRAW, power);
}
#define USB_MAX_PACKET_SIZE 1024
struct usb_fuzzer_control_event {
struct usb_fuzzer_event inner;
struct usb_ctrlrequest ctrl;
};
struct usb_fuzzer_ep_io_data {
struct usb_fuzzer_ep_io inner;
char data[USB_MAX_PACKET_SIZE];
};
struct vusb_connect_string_descriptor {
uint32 len;
char* str;
} __attribute__((packed));
struct vusb_connect_descriptors {
uint32 qual_len;
char* qual;
uint32 bos_len;
char* bos;
uint32 strs_len;
struct vusb_connect_string_descriptor strs[0];
} __attribute__((packed));
static volatile long syz_usb_connect(volatile long a0, volatile long a1, volatile long a2, volatile long a3)
{
int64_t speed = a0;
int64_t dev_len = a1;
char* dev = (char*)a2;
struct vusb_connect_descriptors* conn_descs = (struct vusb_connect_descriptors*)a3;
debug("syz_usb_connect: dev: %p\n", dev);
if (!dev)
return -1;
debug("syz_usb_connect: device data:\n");
debug_dump_data(dev, dev_len);
struct usb_device_index index;
memset(&index, 0, sizeof(index));
int rv = parse_usb_descriptor(dev, dev_len, &index);
if (!rv)
return -1;
debug("syz_usb_connect: parsed usb descriptor\n");
int fd = usb_fuzzer_open();
if (fd < 0)
return -1;
debug("syz_usb_connect: usb_fuzzer_open success\n");
char device[32];
sprintf(&device[0], "dummy_udc.%llu", procid);
rv = usb_fuzzer_init(fd, speed, "dummy_udc", &device[0]);
if (rv < 0)
return -1;
debug("syz_usb_connect: usb_fuzzer_init success\n");
rv = usb_fuzzer_run(fd);
if (rv < 0)
return -1;
debug("syz_usb_connect: usb_fuzzer_run success\n");
bool done = false;
while (!done) {
char* response_data = NULL;
uint32 response_length = 0;
unsigned ep;
uint8 str_idx;
struct usb_fuzzer_control_event event;
event.inner.type = 0;
event.inner.length = sizeof(event.ctrl);
rv = usb_fuzzer_ep0_read(fd, (struct usb_fuzzer_event*)&event);
if (rv < 0)
return -1;
if (event.inner.type != USB_FUZZER_EVENT_CONTROL)
continue;
debug("syz_usb_connect: bRequestType: 0x%x, bRequest: 0x%x, wValue: 0x%x, wIndex: 0x%x, wLength: %d\n",
event.ctrl.bRequestType, event.ctrl.bRequest, event.ctrl.wValue, event.ctrl.wIndex, event.ctrl.wLength);
switch (event.ctrl.bRequestType & USB_TYPE_MASK) {
case USB_TYPE_STANDARD:
switch (event.ctrl.bRequest) {
case USB_REQ_GET_DESCRIPTOR:
switch (event.ctrl.wValue >> 8) {
case USB_DT_DEVICE:
response_data = (char*)index.dev;
response_length = sizeof(*index.dev);
goto reply;
case USB_DT_CONFIG:
response_data = (char*)index.config;
response_length = index.config_length;
goto reply;
case USB_DT_STRING:
str_idx = (uint8)event.ctrl.wValue;
if (str_idx >= conn_descs->strs_len)
goto reply;
response_data = conn_descs->strs[str_idx].str;
response_length = conn_descs->strs[str_idx].len;
goto reply;
case USB_DT_BOS:
response_data = conn_descs->bos;
response_length = conn_descs->bos_len;
goto reply;
case USB_DT_DEVICE_QUALIFIER:
response_data = conn_descs->qual;
response_length = conn_descs->qual_len;
goto reply;
default:
fail("syz_usb_connect: no response");
continue;
}
break;
case USB_REQ_SET_CONFIGURATION:
rv = usb_fuzzer_vbus_draw(fd, index.config->bMaxPower);
if (rv < 0)
return -1;
rv = usb_fuzzer_configure(fd);
if (rv < 0)
return -1;
for (ep = 0; ep < index.eps_num; ep++) {
rv = usb_fuzzer_ep_enable(fd, index.eps[ep]);
if (rv < 0)
fail("syz_usb_connect: ep enable failed");
}
done = true;
goto reply;
default:
fail("syz_usb_connect: no response");
continue;
}
break;
default:
fail("syz_usb_connect: no response");
continue;
}
struct usb_fuzzer_ep_io_data response;
reply:
response.inner.ep = 0;
response.inner.flags = 0;
if (response_length > sizeof(response.data))
response_length = 0;
response.inner.length = response_length;
if (response_data)
memcpy(&response.data[0], response_data, response_length);
if (event.ctrl.wLength < response.inner.length)
response.inner.length = event.ctrl.wLength;
debug("syz_usb_connect: reply length = %d\n", response.inner.length);
usb_fuzzer_ep0_write(fd, (struct usb_fuzzer_ep_io*)&response);
}
sleep_ms(200);
debug("syz_usb_connect: configured\n");
return fd;
}
#if SYZ_EXECUTOR || __NR_syz_usb_control_io
struct vusb_descriptor {
uint8 req_type;
uint8 desc_type;
uint32 len;
char data[0];
} __attribute__((packed));
struct vusb_descriptors {
uint32 len;
struct vusb_descriptor* generic;
struct vusb_descriptor* descs[0];
} __attribute__((packed));
struct vusb_response {
uint8 type;
uint8 req;
uint32 len;
char data[0];
} __attribute__((packed));
struct vusb_responses {
uint32 len;
struct vusb_response* generic;
struct vusb_response* resps[0];
} __attribute__((packed));
static volatile long syz_usb_control_io(volatile long a0, volatile long a1, volatile long a2)
{
int fd = a0;
struct vusb_descriptors* descs = (struct vusb_descriptors*)a1;
struct vusb_responses* resps = (struct vusb_responses*)a2;
struct usb_fuzzer_control_event event;
event.inner.type = 0;
event.inner.length = sizeof(event.ctrl);
int rv = usb_fuzzer_ep0_read(fd, (struct usb_fuzzer_event*)&event);
if (rv < 0)
return -1;
if (event.inner.type != USB_FUZZER_EVENT_CONTROL)
return -1;
debug("syz_usb_control_io: bRequestType: 0x%x, bRequest: 0x%x, wValue: 0x%x, wIndex: 0x%x, wLength: %d\n",
event.ctrl.bRequestType, event.ctrl.bRequest, event.ctrl.wValue, event.ctrl.wIndex, event.ctrl.wLength);
uint8 req = event.ctrl.bRequest;
uint8 req_type = event.ctrl.bRequestType & USB_TYPE_MASK;
uint8 desc_type = event.ctrl.wValue >> 8;
char* response_data = NULL;
uint32 response_length = 0;
if (req == USB_REQ_GET_DESCRIPTOR) {
int i;
int descs_num = (descs->len - offsetof(struct vusb_descriptors, descs)) / sizeof(descs->descs[0]);
for (i = 0; i < descs_num; i++) {
struct vusb_descriptor* desc = descs->descs[i];
if (!desc)
continue;
if (desc->req_type == req_type && desc->desc_type == desc_type) {
response_length = desc->len;
if (response_length != 0)
response_data = &desc->data[0];
goto reply;
}
}
if (descs->generic) {
response_data = &descs->generic->data[0];
response_length = descs->generic->len;
goto reply;
}
} else {
int i;
int resps_num = (resps->len - offsetof(struct vusb_responses, resps)) / sizeof(resps->resps[0]);
for (i = 0; i < resps_num; i++) {
struct vusb_response* resp = resps->resps[i];
if (!resp)
continue;
if (resp->type == req_type && resp->req == req) {
response_length = resp->len;
if (response_length != 0)
response_data = &resp->data[0];
goto reply;
}
}
if (resps->generic) {
response_data = &resps->generic->data[0];
response_length = resps->generic->len;
goto reply;
}
}
return -1;
struct usb_fuzzer_ep_io_data response;
reply:
response.inner.ep = 0;
response.inner.flags = 0;
if (response_length > sizeof(response.data))
response_length = 0;
response.inner.length = response_length;
if (response_data)
memcpy(&response.data[0], response_data, response_length);
if (event.ctrl.wLength < response.inner.length)
response.inner.length = event.ctrl.wLength;
debug("syz_usb_control_io: reply length = %d\n", response.inner.length);
usb_fuzzer_ep0_write(fd, (struct usb_fuzzer_ep_io*)&response);
sleep_ms(200);
return 0;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_usb_ep_write
static volatile long syz_usb_ep_write(volatile long a0, volatile long a1, volatile long a2, volatile long a3)
{
int fd = a0;
uint16 ep = a1;
uint32 len = a2;
char* data = (char*)a3;
struct usb_fuzzer_ep_io_data response;
response.inner.ep = ep;
response.inner.flags = 0;
if (len > sizeof(response.data))
len = 0;
response.inner.length = len;
if (data)
memcpy(&response.data[0], data, len);
return usb_fuzzer_ep_write(fd, (struct usb_fuzzer_ep_io*)&response);
}
#endif
#if SYZ_EXECUTOR || __NR_syz_usb_disconnect
static volatile long syz_usb_disconnect(volatile long a0)
{
int fd = a0;
int rv = close(fd);
sleep_ms(200);
return rv;
}
#endif
#endif
#if SYZ_EXECUTOR || __NR_syz_open_dev
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
static long syz_open_dev(volatile long a0, volatile long a1, volatile long a2)
{
if (a0 == 0xc || a0 == 0xb) {
char buf[128];
sprintf(buf, "/dev/%s/%d:%d", a0 == 0xc ? "char" : "block", (uint8)a1, (uint8)a2);
return open(buf, O_RDWR, 0);
} else {
char buf[1024];
char* hash;
NONFAILING(strncpy(buf, (char*)a0, sizeof(buf) - 1));
buf[sizeof(buf) - 1] = 0;
while ((hash = strchr(buf, '#'))) {
*hash = '0' + (char)(a1 % 10);
a1 /= 10;
}
return open(buf, a2, 0);
}
}
#endif
#if SYZ_EXECUTOR || __NR_syz_open_procfs
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
static long syz_open_procfs(volatile long a0, volatile long a1)
{
char buf[128];
memset(buf, 0, sizeof(buf));
if (a0 == 0) {
NONFAILING(snprintf(buf, sizeof(buf), "/proc/self/%s", (char*)a1));
} else if (a0 == -1) {
NONFAILING(snprintf(buf, sizeof(buf), "/proc/thread-self/%s", (char*)a1));
} else {
NONFAILING(snprintf(buf, sizeof(buf), "/proc/self/task/%d/%s", (int)a0, (char*)a1));
}
int fd = open(buf, O_RDWR);
if (fd == -1)
fd = open(buf, O_RDONLY);
return fd;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_open_pts
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
static long syz_open_pts(volatile long a0, volatile long a1)
{
int ptyno = 0;
if (ioctl(a0, TIOCGPTN, &ptyno))
return -1;
char buf[128];
sprintf(buf, "/dev/pts/%d", ptyno);
return open(buf, a1, 0);
}
#endif
#if SYZ_EXECUTOR || __NR_syz_init_net_socket
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID_UNTRUSTED_APP
#include <fcntl.h>
#include <sched.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
const int kInitNetNsFd = 239;
static long syz_init_net_socket(volatile long domain, volatile long type, volatile long proto)
{
int netns = open("/proc/self/ns/net", O_RDONLY);
if (netns == -1)
return netns;
if (setns(kInitNetNsFd, 0))
return -1;
int sock = syscall(__NR_socket, domain, type, proto);
int err = errno;
if (setns(netns, 0))
fail("setns(netns) failed");
close(netns);
errno = err;
return sock;
}
#else
static long syz_init_net_socket(volatile long domain, volatile long type, volatile long proto)
{
return syscall(__NR_socket, domain, type, proto);
}
#endif
#endif
#if SYZ_EXECUTOR || __NR_syz_genetlink_get_family_id
#include <errno.h>
#include <linux/genetlink.h>
#include <linux/netlink.h>
#include <sys/socket.h>
#include <sys/types.h>
static long syz_genetlink_get_family_id(volatile long name)
{
char buf[512] = {0};
struct nlmsghdr* hdr = (struct nlmsghdr*)buf;
struct genlmsghdr* genlhdr = (struct genlmsghdr*)NLMSG_DATA(hdr);
struct nlattr* attr = (struct nlattr*)(genlhdr + 1);
hdr->nlmsg_len = sizeof(*hdr) + sizeof(*genlhdr) + sizeof(*attr) + GENL_NAMSIZ;
hdr->nlmsg_type = GENL_ID_CTRL;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
genlhdr->cmd = CTRL_CMD_GETFAMILY;
attr->nla_type = CTRL_ATTR_FAMILY_NAME;
attr->nla_len = sizeof(*attr) + GENL_NAMSIZ;
NONFAILING(strncpy((char*)(attr + 1), (char*)name, GENL_NAMSIZ));
struct iovec iov = {hdr, hdr->nlmsg_len};
struct sockaddr_nl addr = {0};
addr.nl_family = AF_NETLINK;
debug("syz_genetlink_get_family_id(%s)\n", (char*)(attr + 1));
int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (fd == -1) {
debug("syz_genetlink_get_family_id: socket failed: %d\n", errno);
return -1;
}
struct msghdr msg = {&addr, sizeof(addr), &iov, 1, NULL, 0, 0};
if (sendmsg(fd, &msg, 0) == -1) {
debug("syz_genetlink_get_family_id: sendmsg failed: %d\n", errno);
close(fd);
return -1;
}
ssize_t n = recv(fd, buf, sizeof(buf), 0);
close(fd);
if (n <= 0) {
debug("syz_genetlink_get_family_id: recv failed: %d\n", errno);
return -1;
}
if (hdr->nlmsg_type != GENL_ID_CTRL) {
debug("syz_genetlink_get_family_id: wrong reply type: %d\n", hdr->nlmsg_type);
return -1;
}
for (; (char*)attr < buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) {
if (attr->nla_type == CTRL_ATTR_FAMILY_ID)
return *(uint16*)(attr + 1);
}
debug("syz_genetlink_get_family_id: no CTRL_ATTR_FAMILY_ID attr\n");
return -1;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_mount_image || __NR_syz_read_part_table
#include <errno.h>
#include <fcntl.h>
#include <linux/loop.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
struct fs_image_segment {
void* data;
uintptr_t size;
uintptr_t offset;
};
#define IMAGE_MAX_SEGMENTS 4096
#define IMAGE_MAX_SIZE (129 << 20)
#if GOARCH_386
#define SYZ_memfd_create 356
#elif GOARCH_amd64
#define SYZ_memfd_create 319
#elif GOARCH_arm
#define SYZ_memfd_create 385
#elif GOARCH_arm64
#define SYZ_memfd_create 279
#elif GOARCH_ppc64le
#define SYZ_memfd_create 360
#endif
#endif
#if SYZ_EXECUTOR || __NR_syz_read_part_table
static long syz_read_part_table(volatile unsigned long size, volatile unsigned long nsegs, volatile long segments)
{
char loopname[64], linkname[64];
int loopfd, err = 0, res = -1;
unsigned long i, j;
struct fs_image_segment* segs = (struct fs_image_segment*)segments;
if (nsegs > IMAGE_MAX_SEGMENTS)
nsegs = IMAGE_MAX_SEGMENTS;
for (i = 0; i < nsegs; i++) {
if (segs[i].size > IMAGE_MAX_SIZE)
segs[i].size = IMAGE_MAX_SIZE;
segs[i].offset %= IMAGE_MAX_SIZE;
if (segs[i].offset > IMAGE_MAX_SIZE - segs[i].size)
segs[i].offset = IMAGE_MAX_SIZE - segs[i].size;
if (size < segs[i].offset + segs[i].offset)
size = segs[i].offset + segs[i].offset;
}
if (size > IMAGE_MAX_SIZE)
size = IMAGE_MAX_SIZE;
int memfd = syscall(SYZ_memfd_create, "syz_read_part_table", 0);
if (memfd == -1) {
err = errno;
goto error;
}
if (ftruncate(memfd, size)) {
err = errno;
goto error_close_memfd;
}
for (i = 0; i < nsegs; i++) {
if (pwrite(memfd, segs[i].data, segs[i].size, segs[i].offset) < 0) {
debug("syz_read_part_table: pwrite[%u] failed: %d\n", (int)i, errno);
}
}
snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid);
loopfd = open(loopname, O_RDWR);
if (loopfd == -1) {
err = errno;
goto error_close_memfd;
}
if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
if (errno != EBUSY) {
err = errno;
goto error_close_loop;
}
ioctl(loopfd, LOOP_CLR_FD, 0);
usleep(1000);
if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
err = errno;
goto error_close_loop;
}
}
struct loop_info64 info;
if (ioctl(loopfd, LOOP_GET_STATUS64, &info)) {
err = errno;
goto error_clear_loop;
}
#if SYZ_EXECUTOR
cover_reset(0);
#endif
info.lo_flags |= LO_FLAGS_PARTSCAN;
if (ioctl(loopfd, LOOP_SET_STATUS64, &info)) {
err = errno;
goto error_clear_loop;
}
res = 0;
for (i = 1, j = 0; i < 8; i++) {
snprintf(loopname, sizeof(loopname), "/dev/loop%llup%d", procid, (int)i);
struct stat statbuf;
if (stat(loopname, &statbuf) == 0) {
snprintf(linkname, sizeof(linkname), "./file%d", (int)j++);
if (symlink(loopname, linkname)) {
debug("syz_read_part_table: symlink(%s, %s) failed: %d\n", loopname, linkname, errno);
}
}
}
error_clear_loop:
ioctl(loopfd, LOOP_CLR_FD, 0);
error_close_loop:
close(loopfd);
error_close_memfd:
close(memfd);
error:
errno = err;
return res;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_mount_image
#include <string.h>
#include <sys/mount.h>
static long syz_mount_image(volatile long fsarg, volatile long dir, volatile unsigned long size, volatile unsigned long nsegs, volatile long segments, volatile long flags, volatile long optsarg)
{
char loopname[64], fs[32], opts[256];
int loopfd, err = 0, res = -1;
unsigned long i;
struct fs_image_segment* segs = (struct fs_image_segment*)segments;
if (nsegs > IMAGE_MAX_SEGMENTS)
nsegs = IMAGE_MAX_SEGMENTS;
for (i = 0; i < nsegs; i++) {
if (segs[i].size > IMAGE_MAX_SIZE)
segs[i].size = IMAGE_MAX_SIZE;
segs[i].offset %= IMAGE_MAX_SIZE;
if (segs[i].offset > IMAGE_MAX_SIZE - segs[i].size)
segs[i].offset = IMAGE_MAX_SIZE - segs[i].size;
if (size < segs[i].offset + segs[i].offset)
size = segs[i].offset + segs[i].offset;
}
if (size > IMAGE_MAX_SIZE)
size = IMAGE_MAX_SIZE;
int memfd = syscall(SYZ_memfd_create, "syz_mount_image", 0);
if (memfd == -1) {
err = errno;
goto error;
}
if (ftruncate(memfd, size)) {
err = errno;
goto error_close_memfd;
}
for (i = 0; i < nsegs; i++) {
if (pwrite(memfd, segs[i].data, segs[i].size, segs[i].offset) < 0) {
debug("syz_mount_image: pwrite[%u] failed: %d\n", (int)i, errno);
}
}
snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid);
loopfd = open(loopname, O_RDWR);
if (loopfd == -1) {
err = errno;
goto error_close_memfd;
}
if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
if (errno != EBUSY) {
err = errno;
goto error_close_loop;
}
ioctl(loopfd, LOOP_CLR_FD, 0);
usleep(1000);
if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
err = errno;
goto error_close_loop;
}
}
mkdir((char*)dir, 0777);
memset(fs, 0, sizeof(fs));
NONFAILING(strncpy(fs, (char*)fsarg, sizeof(fs) - 1));
memset(opts, 0, sizeof(opts));
NONFAILING(strncpy(opts, (char*)optsarg, sizeof(opts) - 32));
if (strcmp(fs, "iso9660") == 0) {
flags |= MS_RDONLY;
} else if (strncmp(fs, "ext", 3) == 0) {
if (strstr(opts, "errors=panic") || strstr(opts, "errors=remount-ro") == 0)
strcat(opts, ",errors=continue");
} else if (strcmp(fs, "xfs") == 0) {
strcat(opts, ",nouuid");
}
debug("syz_mount_image: size=%llu segs=%llu loop='%s' dir='%s' fs='%s' flags=%llu opts='%s'\n", (uint64)size, (uint64)nsegs, loopname, (char*)dir, fs, (uint64)flags, opts);
#if SYZ_EXECUTOR
cover_reset(0);
#endif
if (mount(loopname, (char*)dir, fs, flags, opts)) {
err = errno;
goto error_clear_loop;
}
res = 0;
error_clear_loop:
ioctl(loopfd, LOOP_CLR_FD, 0);
error_close_loop:
close(loopfd);
error_close_memfd:
close(memfd);
error:
errno = err;
return res;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_kvm_setup_cpu
#include <errno.h>
#include <fcntl.h>
#include <linux/kvm.h>
#include <stdarg.h>
#include <stddef.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#if GOARCH_amd64
const char kvm_asm16_cpl3[] = "\x0f\x20\xc0\x66\x83\xc8\x01\x0f\x22\xc0\xb8\xa0\x00\x0f\x00\xd8\xb8\x2b\x00\x8e\xd8\x8e\xc0\x8e\xe0\x8e\xe8\xbc\x00\x01\xc7\x06\x00\x01\x1d\xba\xc7\x06\x02\x01\x23\x00\xc7\x06\x04\x01\x00\x01\xc7\x06\x06\x01\x2b\x00\xcb";
const char kvm_asm32_paged[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0";
const char kvm_asm32_vm86[] = "\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00";
const char kvm_asm32_paged_vm86[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00";
const char kvm_asm64_enable_long[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8";
const char kvm_asm64_init_vm[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8\x48\xc7\xc1\x3a\x00\x00\x00\x0f\x32\x48\x83\xc8\x05\x0f\x30\x0f\x20\xe0\x48\x0d\x00\x20\x00\x00\x0f\x22\xe0\x48\xc7\xc1\x80\x04\x00\x00\x0f\x32\x48\xc7\xc2\x00\x60\x00\x00\x89\x02\x48\xc7\xc2\x00\x70\x00\x00\x89\x02\x48\xc7\xc0\x00\x5f\x00\x00\xf3\x0f\xc7\x30\x48\xc7\xc0\x08\x5f\x00\x00\x66\x0f\xc7\x30\x0f\xc7\x30\x48\xc7\xc1\x81\x04\x00\x00\x0f\x32\x48\x83\xc8\x3f\x48\x21\xd0\x48\xc7\xc2\x00\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x40\x00\x00\x48\xb8\x84\x9e\x99\xf3\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x40\x00\x00\x48\xc7\xc0\x81\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x83\x04\x00\x00\x0f\x32\x48\x0d\xff\x6f\x03\x00\x48\x21\xd0\x48\xc7\xc2\x0c\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x84\x04\x00\x00\x0f\x32\x48\x0d\xff\x17\x00\x00\x48\x21\xd0\x48\xc7\xc2\x12\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x2c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x28\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x02\x0c\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc0\x58\x00\x00\x00\x48\xc7\xc2\x00\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc0\xd8\x00\x00\x00\x48\xc7\xc2\x0c\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x2c\x00\x00\x48\xc7\xc0\x00\x05\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x4c\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x0f\x20\xc0\x48\xc7\xc2\x00\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xd8\x48\xc7\xc2\x02\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xe0\x48\xc7\xc2\x04\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc2\x06\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x6c\x00\x00\x48\xc7\xc0\x00\x3a\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x6c\x00\x00\x48\xc7\xc0\x00\x10\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x6c\x00\x00\x48\xc7\xc0\x00\x38\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x6c\x00\x00\x48\x8b\x04\x25\x10\x5f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x00\x00\x00\x48\xc7\xc0\x01\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x00\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x77\x02\x00\x00\x0f\x32\x48\xc1\xe2\x20\x48\x09\xd0\x48\xc7\xc2\x00\x2c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc2\x04\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x60\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x02\x60\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x1c\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x22\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x08\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x08\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x08\x00\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x68\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x68\x00\x00\x48\xc7\xc0\x00\x3a\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x68\x00\x00\x48\xc7\xc0\x00\x10\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x18\x68\x00\x00\x48\xc7\xc0\x00\x38\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x48\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x48\x00\x00\x48\xc7\xc0\x9b\x20\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x18\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1a\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1c\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x48\x00\x00\x48\xc7\xc0\x82\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x22\x48\x00\x00\x48\xc7\xc0\x8b\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1c\x68\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x68\x00\x00\x48\xc7\xc0\x00\x91\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x68\x00\x00\x48\xc7\xc0\x02\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x28\x00\x00\x48\xc7\xc0\x00\x05\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x0f\x20\xc0\x48\xc7\xc2\x00\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xd8\x48\xc7\xc2\x02\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xe0\x48\xc7\xc2\x04\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc0\x18\x5f\x00\x00\x48\x8b\x10\x48\xc7\xc0\x20\x5f\x00\x00\x48\x8b\x08\x48\x31\xc0\x0f\x78\xd0\x48\x31\xc8\x0f\x79\xd0\x0f\x01\xc2\x48\xc7\xc2\x00\x44\x00\x00\x0f\x78\xd0\xf4";
const char kvm_asm64_vm_exit[] = "\x48\xc7\xc3\x00\x44\x00\x00\x0f\x78\xda\x48\xc7\xc3\x02\x44\x00\x00\x0f\x78\xd9\x48\xc7\xc0\x00\x64\x00\x00\x0f\x78\xc0\x48\xc7\xc3\x1e\x68\x00\x00\x0f\x78\xdb\xf4";
const char kvm_asm64_cpl3[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8\x48\xc7\xc0\x6b\x00\x00\x00\x8e\xd8\x8e\xc0\x8e\xe0\x8e\xe8\x48\xc7\xc4\x80\x0f\x00\x00\x48\xc7\x04\x24\x1d\xba\x00\x00\x48\xc7\x44\x24\x04\x63\x00\x00\x00\x48\xc7\x44\x24\x08\x80\x0f\x00\x00\x48\xc7\x44\x24\x0c\x6b\x00\x00\x00\xcb";
#define ADDR_TEXT 0x0000
#define ADDR_GDT 0x1000
#define ADDR_LDT 0x1800
#define ADDR_PML4 0x2000
#define ADDR_PDP 0x3000
#define ADDR_PD 0x4000
#define ADDR_STACK0 0x0f80
#define ADDR_VAR_HLT 0x2800
#define ADDR_VAR_SYSRET 0x2808
#define ADDR_VAR_SYSEXIT 0x2810
#define ADDR_VAR_IDT 0x3800
#define ADDR_VAR_TSS64 0x3a00
#define ADDR_VAR_TSS64_CPL3 0x3c00
#define ADDR_VAR_TSS16 0x3d00
#define ADDR_VAR_TSS16_2 0x3e00
#define ADDR_VAR_TSS16_CPL3 0x3f00
#define ADDR_VAR_TSS32 0x4800
#define ADDR_VAR_TSS32_2 0x4a00
#define ADDR_VAR_TSS32_CPL3 0x4c00
#define ADDR_VAR_TSS32_VM86 0x4e00
#define ADDR_VAR_VMXON_PTR 0x5f00
#define ADDR_VAR_VMCS_PTR 0x5f08
#define ADDR_VAR_VMEXIT_PTR 0x5f10
#define ADDR_VAR_VMWRITE_FLD 0x5f18
#define ADDR_VAR_VMWRITE_VAL 0x5f20
#define ADDR_VAR_VMXON 0x6000
#define ADDR_VAR_VMCS 0x7000
#define ADDR_VAR_VMEXIT_CODE 0x9000
#define ADDR_VAR_USER_CODE 0x9100
#define ADDR_VAR_USER_CODE2 0x9120
#define SEL_LDT (1 << 3)
#define SEL_CS16 (2 << 3)
#define SEL_DS16 (3 << 3)
#define SEL_CS16_CPL3 ((4 << 3) + 3)
#define SEL_DS16_CPL3 ((5 << 3) + 3)
#define SEL_CS32 (6 << 3)
#define SEL_DS32 (7 << 3)
#define SEL_CS32_CPL3 ((8 << 3) + 3)
#define SEL_DS32_CPL3 ((9 << 3) + 3)
#define SEL_CS64 (10 << 3)
#define SEL_DS64 (11 << 3)
#define SEL_CS64_CPL3 ((12 << 3) + 3)
#define SEL_DS64_CPL3 ((13 << 3) + 3)
#define SEL_CGATE16 (14 << 3)
#define SEL_TGATE16 (15 << 3)
#define SEL_CGATE32 (16 << 3)
#define SEL_TGATE32 (17 << 3)
#define SEL_CGATE64 (18 << 3)
#define SEL_CGATE64_HI (19 << 3)
#define SEL_TSS16 (20 << 3)
#define SEL_TSS16_2 (21 << 3)
#define SEL_TSS16_CPL3 ((22 << 3) + 3)
#define SEL_TSS32 (23 << 3)
#define SEL_TSS32_2 (24 << 3)
#define SEL_TSS32_CPL3 ((25 << 3) + 3)
#define SEL_TSS32_VM86 (26 << 3)
#define SEL_TSS64 (27 << 3)
#define SEL_TSS64_HI (28 << 3)
#define SEL_TSS64_CPL3 ((29 << 3) + 3)
#define SEL_TSS64_CPL3_HI (30 << 3)
#define MSR_IA32_FEATURE_CONTROL 0x3a
#define MSR_IA32_VMX_BASIC 0x480
#define MSR_IA32_SMBASE 0x9e
#define MSR_IA32_SYSENTER_CS 0x174
#define MSR_IA32_SYSENTER_ESP 0x175
#define MSR_IA32_SYSENTER_EIP 0x176
#define MSR_IA32_STAR 0xC0000081
#define MSR_IA32_LSTAR 0xC0000082
#define MSR_IA32_VMX_PROCBASED_CTLS2 0x48B
#define NEXT_INSN $0xbadc0de
#define PREFIX_SIZE 0xba1d
#ifndef KVM_SMI
#define KVM_SMI _IO(KVMIO, 0xb7)
#endif
#define CR0_PE 1
#define CR0_MP (1 << 1)
#define CR0_EM (1 << 2)
#define CR0_TS (1 << 3)
#define CR0_ET (1 << 4)
#define CR0_NE (1 << 5)
#define CR0_WP (1 << 16)
#define CR0_AM (1 << 18)
#define CR0_NW (1 << 29)
#define CR0_CD (1 << 30)
#define CR0_PG (1 << 31)
#define CR4_VME 1
#define CR4_PVI (1 << 1)
#define CR4_TSD (1 << 2)
#define CR4_DE (1 << 3)
#define CR4_PSE (1 << 4)
#define CR4_PAE (1 << 5)
#define CR4_MCE (1 << 6)
#define CR4_PGE (1 << 7)
#define CR4_PCE (1 << 8)
#define CR4_OSFXSR (1 << 8)
#define CR4_OSXMMEXCPT (1 << 10)
#define CR4_UMIP (1 << 11)
#define CR4_VMXE (1 << 13)
#define CR4_SMXE (1 << 14)
#define CR4_FSGSBASE (1 << 16)
#define CR4_PCIDE (1 << 17)
#define CR4_OSXSAVE (1 << 18)
#define CR4_SMEP (1 << 20)
#define CR4_SMAP (1 << 21)
#define CR4_PKE (1 << 22)
#define EFER_SCE 1
#define EFER_LME (1 << 8)
#define EFER_LMA (1 << 10)
#define EFER_NXE (1 << 11)
#define EFER_SVME (1 << 12)
#define EFER_LMSLE (1 << 13)
#define EFER_FFXSR (1 << 14)
#define EFER_TCE (1 << 15)
#define PDE32_PRESENT 1
#define PDE32_RW (1 << 1)
#define PDE32_USER (1 << 2)
#define PDE32_PS (1 << 7)
#define PDE64_PRESENT 1
#define PDE64_RW (1 << 1)
#define PDE64_USER (1 << 2)
#define PDE64_ACCESSED (1 << 5)
#define PDE64_DIRTY (1 << 6)
#define PDE64_PS (1 << 7)
#define PDE64_G (1 << 8)
struct tss16 {
uint16 prev;
uint16 sp0;
uint16 ss0;
uint16 sp1;
uint16 ss1;
uint16 sp2;
uint16 ss2;
uint16 ip;
uint16 flags;
uint16 ax;
uint16 cx;
uint16 dx;
uint16 bx;
uint16 sp;
uint16 bp;
uint16 si;
uint16 di;
uint16 es;
uint16 cs;
uint16 ss;
uint16 ds;
uint16 ldt;
} __attribute__((packed));
struct tss32 {
uint16 prev, prevh;
uint32 sp0;
uint16 ss0, ss0h;
uint32 sp1;
uint16 ss1, ss1h;
uint32 sp2;
uint16 ss2, ss2h;
uint32 cr3;
uint32 ip;
uint32 flags;
uint32 ax;
uint32 cx;
uint32 dx;
uint32 bx;
uint32 sp;
uint32 bp;
uint32 si;
uint32 di;
uint16 es, esh;
uint16 cs, csh;
uint16 ss, ssh;
uint16 ds, dsh;
uint16 fs, fsh;
uint16 gs, gsh;
uint16 ldt, ldth;
uint16 trace;
uint16 io_bitmap;
} __attribute__((packed));
struct tss64 {
uint32 reserved0;
uint64 rsp[3];
uint64 reserved1;
uint64 ist[7];
uint64 reserved2;
uint32 reserved3;
uint32 io_bitmap;
} __attribute__((packed));
static void fill_segment_descriptor(uint64* dt, uint64* lt, struct kvm_segment* seg)
{
uint16 index = seg->selector >> 3;
uint64 limit = seg->g ? seg->limit >> 12 : seg->limit;
uint64 sd = (limit & 0xffff) | (seg->base & 0xffffff) << 16 | (uint64)seg->type << 40 | (uint64)seg->s << 44 | (uint64)seg->dpl << 45 | (uint64)seg->present << 47 | (limit & 0xf0000ULL) << 48 | (uint64)seg->avl << 52 | (uint64)seg->l << 53 | (uint64)seg->db << 54 | (uint64)seg->g << 55 | (seg->base & 0xff000000ULL) << 56;
NONFAILING(dt[index] = sd);
NONFAILING(lt[index] = sd);
}
static void fill_segment_descriptor_dword(uint64* dt, uint64* lt, struct kvm_segment* seg)
{
fill_segment_descriptor(dt, lt, seg);
uint16 index = seg->selector >> 3;
NONFAILING(dt[index + 1] = 0);
NONFAILING(lt[index + 1] = 0);
}
static void setup_syscall_msrs(int cpufd, uint16 sel_cs, uint16 sel_cs_cpl3)
{
char buf[sizeof(struct kvm_msrs) + 5 * sizeof(struct kvm_msr_entry)];
memset(buf, 0, sizeof(buf));
struct kvm_msrs* msrs = (struct kvm_msrs*)buf;
struct kvm_msr_entry* entries = msrs->entries;
msrs->nmsrs = 5;
entries[0].index = MSR_IA32_SYSENTER_CS;
entries[0].data = sel_cs;
entries[1].index = MSR_IA32_SYSENTER_ESP;
entries[1].data = ADDR_STACK0;
entries[2].index = MSR_IA32_SYSENTER_EIP;
entries[2].data = ADDR_VAR_SYSEXIT;
entries[3].index = MSR_IA32_STAR;
entries[3].data = ((uint64)sel_cs << 32) | ((uint64)sel_cs_cpl3 << 48);
entries[4].index = MSR_IA32_LSTAR;
entries[4].data = ADDR_VAR_SYSRET;
ioctl(cpufd, KVM_SET_MSRS, msrs);
}
static void setup_32bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem)
{
sregs->idt.base = guest_mem + ADDR_VAR_IDT;
sregs->idt.limit = 0x1ff;
uint64* idt = (uint64*)(host_mem + sregs->idt.base);
int i;
for (i = 0; i < 32; i++) {
struct kvm_segment gate;
gate.selector = i << 3;
switch (i % 6) {
case 0:
gate.type = 6;
gate.base = SEL_CS16;
break;
case 1:
gate.type = 7;
gate.base = SEL_CS16;
break;
case 2:
gate.type = 3;
gate.base = SEL_TGATE16;
break;
case 3:
gate.type = 14;
gate.base = SEL_CS32;
break;
case 4:
gate.type = 15;
gate.base = SEL_CS32;
break;
case 6:
gate.type = 11;
gate.base = SEL_TGATE32;
break;
}
gate.limit = guest_mem + ADDR_VAR_USER_CODE2;
gate.present = 1;
gate.dpl = 0;
gate.s = 0;
gate.g = 0;
gate.db = 0;
gate.l = 0;
gate.avl = 0;
fill_segment_descriptor(idt, idt, &gate);
}
}
static void setup_64bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem)
{
sregs->idt.base = guest_mem + ADDR_VAR_IDT;
sregs->idt.limit = 0x1ff;
uint64* idt = (uint64*)(host_mem + sregs->idt.base);
int i;
for (i = 0; i < 32; i++) {
struct kvm_segment gate;
gate.selector = (i * 2) << 3;
gate.type = (i & 1) ? 14 : 15;
gate.base = SEL_CS64;
gate.limit = guest_mem + ADDR_VAR_USER_CODE2;
gate.present = 1;
gate.dpl = 0;
gate.s = 0;
gate.g = 0;
gate.db = 0;
gate.l = 0;
gate.avl = 0;
fill_segment_descriptor_dword(idt, idt, &gate);
}
}
struct kvm_text {
uintptr_t typ;
const void* text;
uintptr_t size;
};
struct kvm_opt {
uint64 typ;
uint64 val;
};
#define KVM_SETUP_PAGING (1 << 0)
#define KVM_SETUP_PAE (1 << 1)
#define KVM_SETUP_PROTECTED (1 << 2)
#define KVM_SETUP_CPL3 (1 << 3)
#define KVM_SETUP_VIRT86 (1 << 4)
#define KVM_SETUP_SMM (1 << 5)
#define KVM_SETUP_VM (1 << 6)
static long syz_kvm_setup_cpu(volatile long a0, volatile long a1, volatile long a2, volatile long a3, volatile long a4, volatile long a5, volatile long a6, volatile long a7)
{
const int vmfd = a0;
const int cpufd = a1;
char* const host_mem = (char*)a2;
const struct kvm_text* const text_array_ptr = (struct kvm_text*)a3;
const uintptr_t text_count = a4;
const uintptr_t flags = a5;
const struct kvm_opt* const opt_array_ptr = (struct kvm_opt*)a6;
uintptr_t opt_count = a7;
const uintptr_t page_size = 4 << 10;
const uintptr_t ioapic_page = 10;
const uintptr_t guest_mem_size = 24 * page_size;
const uintptr_t guest_mem = 0;
(void)text_count;
int text_type = 0;
const void* text = 0;
uintptr_t text_size = 0;
NONFAILING(text_type = text_array_ptr[0].typ);
NONFAILING(text = text_array_ptr[0].text);
NONFAILING(text_size = text_array_ptr[0].size);
uintptr_t i;
for (i = 0; i < guest_mem_size / page_size; i++) {
struct kvm_userspace_memory_region memreg;
memreg.slot = i;
memreg.flags = 0;
memreg.guest_phys_addr = guest_mem + i * page_size;
if (i == ioapic_page)
memreg.guest_phys_addr = 0xfec00000;
memreg.memory_size = page_size;
memreg.userspace_addr = (uintptr_t)host_mem + i * page_size;
ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
}
struct kvm_userspace_memory_region memreg;
memreg.slot = 1 + (1 << 16);
memreg.flags = 0;
memreg.guest_phys_addr = 0x30000;
memreg.memory_size = 64 << 10;
memreg.userspace_addr = (uintptr_t)host_mem;
ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
struct kvm_sregs sregs;
if (ioctl(cpufd, KVM_GET_SREGS, &sregs))
return -1;
struct kvm_regs regs;
memset(&regs, 0, sizeof(regs));
regs.rip = guest_mem + ADDR_TEXT;
regs.rsp = ADDR_STACK0;
sregs.gdt.base = guest_mem + ADDR_GDT;
sregs.gdt.limit = 256 * sizeof(uint64) - 1;
uint64* gdt = (uint64*)(host_mem + sregs.gdt.base);
struct kvm_segment seg_ldt;
seg_ldt.selector = SEL_LDT;
seg_ldt.type = 2;
seg_ldt.base = guest_mem + ADDR_LDT;
seg_ldt.limit = 256 * sizeof(uint64) - 1;
seg_ldt.present = 1;
seg_ldt.dpl = 0;
seg_ldt.s = 0;
seg_ldt.g = 0;
seg_ldt.db = 1;
seg_ldt.l = 0;
sregs.ldt = seg_ldt;
uint64* ldt = (uint64*)(host_mem + sregs.ldt.base);
struct kvm_segment seg_cs16;
seg_cs16.selector = SEL_CS16;
seg_cs16.type = 11;
seg_cs16.base = 0;
seg_cs16.limit = 0xfffff;
seg_cs16.present = 1;
seg_cs16.dpl = 0;
seg_cs16.s = 1;
seg_cs16.g = 0;
seg_cs16.db = 0;
seg_cs16.l = 0;
struct kvm_segment seg_ds16 = seg_cs16;
seg_ds16.selector = SEL_DS16;
seg_ds16.type = 3;
struct kvm_segment seg_cs16_cpl3 = seg_cs16;
seg_cs16_cpl3.selector = SEL_CS16_CPL3;
seg_cs16_cpl3.dpl = 3;
struct kvm_segment seg_ds16_cpl3 = seg_ds16;
seg_ds16_cpl3.selector = SEL_DS16_CPL3;
seg_ds16_cpl3.dpl = 3;
struct kvm_segment seg_cs32 = seg_cs16;
seg_cs32.selector = SEL_CS32;
seg_cs32.db = 1;
struct kvm_segment seg_ds32 = seg_ds16;
seg_ds32.selector = SEL_DS32;
seg_ds32.db = 1;
struct kvm_segment seg_cs32_cpl3 = seg_cs32;
seg_cs32_cpl3.selector = SEL_CS32_CPL3;
seg_cs32_cpl3.dpl = 3;
struct kvm_segment seg_ds32_cpl3 = seg_ds32;
seg_ds32_cpl3.selector = SEL_DS32_CPL3;
seg_ds32_cpl3.dpl = 3;
struct kvm_segment seg_cs64 = seg_cs16;
seg_cs64.selector = SEL_CS64;
seg_cs64.l = 1;
struct kvm_segment seg_ds64 = seg_ds32;
seg_ds64.selector = SEL_DS64;
struct kvm_segment seg_cs64_cpl3 = seg_cs64;
seg_cs64_cpl3.selector = SEL_CS64_CPL3;
seg_cs64_cpl3.dpl = 3;
struct kvm_segment seg_ds64_cpl3 = seg_ds64;
seg_ds64_cpl3.selector = SEL_DS64_CPL3;
seg_ds64_cpl3.dpl = 3;
struct kvm_segment seg_tss32;
seg_tss32.selector = SEL_TSS32;
seg_tss32.type = 9;
seg_tss32.base = ADDR_VAR_TSS32;
seg_tss32.limit = 0x1ff;
seg_tss32.present = 1;
seg_tss32.dpl = 0;
seg_tss32.s = 0;
seg_tss32.g = 0;
seg_tss32.db = 0;
seg_tss32.l = 0;
struct kvm_segment seg_tss32_2 = seg_tss32;
seg_tss32_2.selector = SEL_TSS32_2;
seg_tss32_2.base = ADDR_VAR_TSS32_2;
struct kvm_segment seg_tss32_cpl3 = seg_tss32;
seg_tss32_cpl3.selector = SEL_TSS32_CPL3;
seg_tss32_cpl3.base = ADDR_VAR_TSS32_CPL3;
struct kvm_segment seg_tss32_vm86 = seg_tss32;
seg_tss32_vm86.selector = SEL_TSS32_VM86;
seg_tss32_vm86.base = ADDR_VAR_TSS32_VM86;
struct kvm_segment seg_tss16 = seg_tss32;
seg_tss16.selector = SEL_TSS16;
seg_tss16.base = ADDR_VAR_TSS16;
seg_tss16.limit = 0xff;
seg_tss16.type = 1;
struct kvm_segment seg_tss16_2 = seg_tss16;
seg_tss16_2.selector = SEL_TSS16_2;
seg_tss16_2.base = ADDR_VAR_TSS16_2;
seg_tss16_2.dpl = 0;
struct kvm_segment seg_tss16_cpl3 = seg_tss16;
seg_tss16_cpl3.selector = SEL_TSS16_CPL3;
seg_tss16_cpl3.base = ADDR_VAR_TSS16_CPL3;
seg_tss16_cpl3.dpl = 3;
struct kvm_segment seg_tss64 = seg_tss32;
seg_tss64.selector = SEL_TSS64;
seg_tss64.base = ADDR_VAR_TSS64;
seg_tss64.limit = 0x1ff;
struct kvm_segment seg_tss64_cpl3 = seg_tss64;
seg_tss64_cpl3.selector = SEL_TSS64_CPL3;
seg_tss64_cpl3.base = ADDR_VAR_TSS64_CPL3;
seg_tss64_cpl3.dpl = 3;
struct kvm_segment seg_cgate16;
seg_cgate16.selector = SEL_CGATE16;
seg_cgate16.type = 4;
seg_cgate16.base = SEL_CS16 | (2 << 16);
seg_cgate16.limit = ADDR_VAR_USER_CODE2;
seg_cgate16.present = 1;
seg_cgate16.dpl = 0;
seg_cgate16.s = 0;
seg_cgate16.g = 0;
seg_cgate16.db = 0;
seg_cgate16.l = 0;
seg_cgate16.avl = 0;
struct kvm_segment seg_tgate16 = seg_cgate16;
seg_tgate16.selector = SEL_TGATE16;
seg_tgate16.type = 3;
seg_cgate16.base = SEL_TSS16_2;
seg_tgate16.limit = 0;
struct kvm_segment seg_cgate32 = seg_cgate16;
seg_cgate32.selector = SEL_CGATE32;
seg_cgate32.type = 12;
seg_cgate32.base = SEL_CS32 | (2 << 16);
struct kvm_segment seg_tgate32 = seg_cgate32;
seg_tgate32.selector = SEL_TGATE32;
seg_tgate32.type = 11;
seg_tgate32.base = SEL_TSS32_2;
seg_tgate32.limit = 0;
struct kvm_segment seg_cgate64 = seg_cgate16;
seg_cgate64.selector = SEL_CGATE64;
seg_cgate64.type = 12;
seg_cgate64.base = SEL_CS64;
int kvmfd = open("/dev/kvm", O_RDWR);
char buf[sizeof(struct kvm_cpuid2) + 128 * sizeof(struct kvm_cpuid_entry2)];
memset(buf, 0, sizeof(buf));
struct kvm_cpuid2* cpuid = (struct kvm_cpuid2*)buf;
cpuid->nent = 128;
ioctl(kvmfd, KVM_GET_SUPPORTED_CPUID, cpuid);
ioctl(cpufd, KVM_SET_CPUID2, cpuid);
close(kvmfd);
const char* text_prefix = 0;
int text_prefix_size = 0;
char* host_text = host_mem + ADDR_TEXT;
if (text_type == 8) {
if (flags & KVM_SETUP_SMM) {
if (flags & KVM_SETUP_PROTECTED) {
sregs.cs = seg_cs16;
sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
sregs.cr0 |= CR0_PE;
} else {
sregs.cs.selector = 0;
sregs.cs.base = 0;
}
NONFAILING(*(host_mem + ADDR_TEXT) = 0xf4);
host_text = host_mem + 0x8000;
ioctl(cpufd, KVM_SMI, 0);
} else if (flags & KVM_SETUP_VIRT86) {
sregs.cs = seg_cs32;
sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
sregs.cr0 |= CR0_PE;
sregs.efer |= EFER_SCE;
setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3);
setup_32bit_idt(&sregs, host_mem, guest_mem);
if (flags & KVM_SETUP_PAGING) {
uint64 pd_addr = guest_mem + ADDR_PD;
uint64* pd = (uint64*)(host_mem + ADDR_PD);
NONFAILING(pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS);
sregs.cr3 = pd_addr;
sregs.cr4 |= CR4_PSE;
text_prefix = kvm_asm32_paged_vm86;
text_prefix_size = sizeof(kvm_asm32_paged_vm86) - 1;
} else {
text_prefix = kvm_asm32_vm86;
text_prefix_size = sizeof(kvm_asm32_vm86) - 1;
}
} else {
sregs.cs.selector = 0;
sregs.cs.base = 0;
}
} else if (text_type == 16) {
if (flags & KVM_SETUP_CPL3) {
sregs.cs = seg_cs16;
sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
text_prefix = kvm_asm16_cpl3;
text_prefix_size = sizeof(kvm_asm16_cpl3) - 1;
} else {
sregs.cr0 |= CR0_PE;
sregs.cs = seg_cs16;
sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
}
} else if (text_type == 32) {
sregs.cr0 |= CR0_PE;
sregs.efer |= EFER_SCE;
setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3);
setup_32bit_idt(&sregs, host_mem, guest_mem);
if (flags & KVM_SETUP_SMM) {
sregs.cs = seg_cs32;
sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
NONFAILING(*(host_mem + ADDR_TEXT) = 0xf4);
host_text = host_mem + 0x8000;
ioctl(cpufd, KVM_SMI, 0);
} else if (flags & KVM_SETUP_PAGING) {
sregs.cs = seg_cs32;
sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
uint64 pd_addr = guest_mem + ADDR_PD;
uint64* pd = (uint64*)(host_mem + ADDR_PD);
NONFAILING(pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS);
sregs.cr3 = pd_addr;
sregs.cr4 |= CR4_PSE;
text_prefix = kvm_asm32_paged;
text_prefix_size = sizeof(kvm_asm32_paged) - 1;
} else if (flags & KVM_SETUP_CPL3) {
sregs.cs = seg_cs32_cpl3;
sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32_cpl3;
} else {
sregs.cs = seg_cs32;
sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
}
} else {
sregs.efer |= EFER_LME | EFER_SCE;
sregs.cr0 |= CR0_PE;
setup_syscall_msrs(cpufd, SEL_CS64, SEL_CS64_CPL3);
setup_64bit_idt(&sregs, host_mem, guest_mem);
sregs.cs = seg_cs32;
sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
uint64 pml4_addr = guest_mem + ADDR_PML4;
uint64* pml4 = (uint64*)(host_mem + ADDR_PML4);
uint64 pdpt_addr = guest_mem + ADDR_PDP;
uint64* pdpt = (uint64*)(host_mem + ADDR_PDP);
uint64 pd_addr = guest_mem + ADDR_PD;
uint64* pd = (uint64*)(host_mem + ADDR_PD);
NONFAILING(pml4[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pdpt_addr);
NONFAILING(pdpt[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pd_addr);
NONFAILING(pd[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | PDE64_PS);
sregs.cr3 = pml4_addr;
sregs.cr4 |= CR4_PAE;
if (flags & KVM_SETUP_VM) {
sregs.cr0 |= CR0_NE;
NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMXON_PTR)) = ADDR_VAR_VMXON);
NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMCS_PTR)) = ADDR_VAR_VMCS);
NONFAILING(memcpy(host_mem + ADDR_VAR_VMEXIT_CODE, kvm_asm64_vm_exit, sizeof(kvm_asm64_vm_exit) - 1));
NONFAILING(*((uint64*)(host_mem + ADDR_VAR_VMEXIT_PTR)) = ADDR_VAR_VMEXIT_CODE);
text_prefix = kvm_asm64_init_vm;
text_prefix_size = sizeof(kvm_asm64_init_vm) - 1;
} else if (flags & KVM_SETUP_CPL3) {
text_prefix = kvm_asm64_cpl3;
text_prefix_size = sizeof(kvm_asm64_cpl3) - 1;
} else {
text_prefix = kvm_asm64_enable_long;
text_prefix_size = sizeof(kvm_asm64_enable_long) - 1;
}
}
struct tss16 tss16;
memset(&tss16, 0, sizeof(tss16));
tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16;
tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0;
tss16.ip = ADDR_VAR_USER_CODE2;
tss16.flags = (1 << 1);
tss16.cs = SEL_CS16;
tss16.es = tss16.ds = tss16.ss = SEL_DS16;
tss16.ldt = SEL_LDT;
struct tss16* tss16_addr = (struct tss16*)(host_mem + seg_tss16_2.base);
NONFAILING(memcpy(tss16_addr, &tss16, sizeof(tss16)));
memset(&tss16, 0, sizeof(tss16));
tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16;
tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0;
tss16.ip = ADDR_VAR_USER_CODE2;
tss16.flags = (1 << 1);
tss16.cs = SEL_CS16_CPL3;
tss16.es = tss16.ds = tss16.ss = SEL_DS16_CPL3;
tss16.ldt = SEL_LDT;
struct tss16* tss16_cpl3_addr = (struct tss16*)(host_mem + seg_tss16_cpl3.base);
NONFAILING(memcpy(tss16_cpl3_addr, &tss16, sizeof(tss16)));
struct tss32 tss32;
memset(&tss32, 0, sizeof(tss32));
tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32;
tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0;
tss32.ip = ADDR_VAR_USER_CODE;
tss32.flags = (1 << 1) | (1 << 17);
tss32.ldt = SEL_LDT;
tss32.cr3 = sregs.cr3;
tss32.io_bitmap = offsetof(struct tss32, io_bitmap);
struct tss32* tss32_addr = (struct tss32*)(host_mem + seg_tss32_vm86.base);
NONFAILING(memcpy(tss32_addr, &tss32, sizeof(tss32)));
memset(&tss32, 0, sizeof(tss32));
tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32;
tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0;
tss32.ip = ADDR_VAR_USER_CODE;
tss32.flags = (1 << 1);
tss32.cr3 = sregs.cr3;
tss32.es = tss32.ds = tss32.ss = tss32.gs = tss32.fs = SEL_DS32;
tss32.cs = SEL_CS32;
tss32.ldt = SEL_LDT;
tss32.cr3 = sregs.cr3;
tss32.io_bitmap = offsetof(struct tss32, io_bitmap);
struct tss32* tss32_cpl3_addr = (struct tss32*)(host_mem + seg_tss32_2.base);
NONFAILING(memcpy(tss32_cpl3_addr, &tss32, sizeof(tss32)));
struct tss64 tss64;
memset(&tss64, 0, sizeof(tss64));
tss64.rsp[0] = ADDR_STACK0;
tss64.rsp[1] = ADDR_STACK0;
tss64.rsp[2] = ADDR_STACK0;
tss64.io_bitmap = offsetof(struct tss64, io_bitmap);
struct tss64* tss64_addr = (struct tss64*)(host_mem + seg_tss64.base);
NONFAILING(memcpy(tss64_addr, &tss64, sizeof(tss64)));
memset(&tss64, 0, sizeof(tss64));
tss64.rsp[0] = ADDR_STACK0;
tss64.rsp[1] = ADDR_STACK0;
tss64.rsp[2] = ADDR_STACK0;
tss64.io_bitmap = offsetof(struct tss64, io_bitmap);
struct tss64* tss64_cpl3_addr = (struct tss64*)(host_mem + seg_tss64_cpl3.base);
NONFAILING(memcpy(tss64_cpl3_addr, &tss64, sizeof(tss64)));
if (text_size > 1000)
text_size = 1000;
if (text_prefix) {
NONFAILING(memcpy(host_text, text_prefix, text_prefix_size));
void* patch = 0;
NONFAILING(patch = memmem(host_text, text_prefix_size, "\xde\xc0\xad\x0b", 4));
if (patch)
NONFAILING(*((uint32*)patch) = guest_mem + ADDR_TEXT + ((char*)patch - host_text) + 6);
uint16 magic = PREFIX_SIZE;
patch = 0;
NONFAILING(patch = memmem(host_text, text_prefix_size, &magic, sizeof(magic)));
if (patch)
NONFAILING(*((uint16*)patch) = guest_mem + ADDR_TEXT + text_prefix_size);
}
NONFAILING(memcpy((void*)(host_text + text_prefix_size), text, text_size));
NONFAILING(*(host_text + text_prefix_size + text_size) = 0xf4);
NONFAILING(memcpy(host_mem + ADDR_VAR_USER_CODE, text, text_size));
NONFAILING(*(host_mem + ADDR_VAR_USER_CODE + text_size) = 0xf4);
NONFAILING(*(host_mem + ADDR_VAR_HLT) = 0xf4);
NONFAILING(memcpy(host_mem + ADDR_VAR_SYSRET, "\x0f\x07\xf4", 3));
NONFAILING(memcpy(host_mem + ADDR_VAR_SYSEXIT, "\x0f\x35\xf4", 3));
NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_FLD) = 0);
NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_VAL) = 0);
if (opt_count > 2)
opt_count = 2;
for (i = 0; i < opt_count; i++) {
uint64 typ = 0;
uint64 val = 0;
NONFAILING(typ = opt_array_ptr[i].typ);
NONFAILING(val = opt_array_ptr[i].val);
switch (typ % 9) {
case 0:
sregs.cr0 ^= val & (CR0_MP | CR0_EM | CR0_ET | CR0_NE | CR0_WP | CR0_AM | CR0_NW | CR0_CD);
break;
case 1:
sregs.cr4 ^= val & (CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | CR4_MCE | CR4_PGE | CR4_PCE |
CR4_OSFXSR | CR4_OSXMMEXCPT | CR4_UMIP | CR4_VMXE | CR4_SMXE | CR4_FSGSBASE | CR4_PCIDE |
CR4_OSXSAVE | CR4_SMEP | CR4_SMAP | CR4_PKE);
break;
case 2:
sregs.efer ^= val & (EFER_SCE | EFER_NXE | EFER_SVME | EFER_LMSLE | EFER_FFXSR | EFER_TCE);
break;
case 3:
val &= ((1 << 8) | (1 << 9) | (1 << 10) | (1 << 12) | (1 << 13) | (1 << 14) |
(1 << 15) | (1 << 18) | (1 << 19) | (1 << 20) | (1 << 21));
regs.rflags ^= val;
NONFAILING(tss16_addr->flags ^= val);
NONFAILING(tss16_cpl3_addr->flags ^= val);
NONFAILING(tss32_addr->flags ^= val);
NONFAILING(tss32_cpl3_addr->flags ^= val);
break;
case 4:
seg_cs16.type = val & 0xf;
seg_cs32.type = val & 0xf;
seg_cs64.type = val & 0xf;
break;
case 5:
seg_cs16_cpl3.type = val & 0xf;
seg_cs32_cpl3.type = val & 0xf;
seg_cs64_cpl3.type = val & 0xf;
break;
case 6:
seg_ds16.type = val & 0xf;
seg_ds32.type = val & 0xf;
seg_ds64.type = val & 0xf;
break;
case 7:
seg_ds16_cpl3.type = val & 0xf;
seg_ds32_cpl3.type = val & 0xf;
seg_ds64_cpl3.type = val & 0xf;
break;
case 8:
NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_FLD) = (val & 0xffff));
NONFAILING(*(uint64*)(host_mem + ADDR_VAR_VMWRITE_VAL) = (val >> 16));
break;
default:
fail("bad kvm setup opt");
}
}
regs.rflags |= 2;
fill_segment_descriptor(gdt, ldt, &seg_ldt);
fill_segment_descriptor(gdt, ldt, &seg_cs16);
fill_segment_descriptor(gdt, ldt, &seg_ds16);
fill_segment_descriptor(gdt, ldt, &seg_cs16_cpl3);
fill_segment_descriptor(gdt, ldt, &seg_ds16_cpl3);
fill_segment_descriptor(gdt, ldt, &seg_cs32);
fill_segment_descriptor(gdt, ldt, &seg_ds32);
fill_segment_descriptor(gdt, ldt, &seg_cs32_cpl3);
fill_segment_descriptor(gdt, ldt, &seg_ds32_cpl3);
fill_segment_descriptor(gdt, ldt, &seg_cs64);
fill_segment_descriptor(gdt, ldt, &seg_ds64);
fill_segment_descriptor(gdt, ldt, &seg_cs64_cpl3);
fill_segment_descriptor(gdt, ldt, &seg_ds64_cpl3);
fill_segment_descriptor(gdt, ldt, &seg_tss32);
fill_segment_descriptor(gdt, ldt, &seg_tss32_2);
fill_segment_descriptor(gdt, ldt, &seg_tss32_cpl3);
fill_segment_descriptor(gdt, ldt, &seg_tss32_vm86);
fill_segment_descriptor(gdt, ldt, &seg_tss16);
fill_segment_descriptor(gdt, ldt, &seg_tss16_2);
fill_segment_descriptor(gdt, ldt, &seg_tss16_cpl3);
fill_segment_descriptor_dword(gdt, ldt, &seg_tss64);
fill_segment_descriptor_dword(gdt, ldt, &seg_tss64_cpl3);
fill_segment_descriptor(gdt, ldt, &seg_cgate16);
fill_segment_descriptor(gdt, ldt, &seg_tgate16);
fill_segment_descriptor(gdt, ldt, &seg_cgate32);
fill_segment_descriptor(gdt, ldt, &seg_tgate32);
fill_segment_descriptor_dword(gdt, ldt, &seg_cgate64);
if (ioctl(cpufd, KVM_SET_SREGS, &sregs))
return -1;
if (ioctl(cpufd, KVM_SET_REGS, &regs))
return -1;
return 0;
}
#elif GOARCH_arm64
struct kvm_text {
uintptr_t typ;
const void* text;
uintptr_t size;
};
struct kvm_opt {
uint64 typ;
uint64 val;
};
static long syz_kvm_setup_cpu(volatile long a0, volatile long a1, volatile long a2, volatile long a3, volatile long a4, volatile long a5, volatile long a6, volatile long a7)
{
const int vmfd = a0;
const int cpufd = a1;
char* const host_mem = (char*)a2;
const struct kvm_text* const text_array_ptr = (struct kvm_text*)a3;
const uintptr_t text_count = a4;
const uintptr_t flags = a5;
const struct kvm_opt* const opt_array_ptr = (struct kvm_opt*)a6;
uintptr_t opt_count = a7;
(void)flags;
(void)opt_count;
const uintptr_t page_size = 4 << 10;
const uintptr_t guest_mem = 0;
const uintptr_t guest_mem_size = 24 * page_size;
(void)text_count;
int text_type = 0;
const void* text = 0;
int text_size = 0;
NONFAILING(text_type = text_array_ptr[0].typ);
NONFAILING(text = text_array_ptr[0].text);
NONFAILING(text_size = text_array_ptr[0].size);
(void)text_type;
(void)opt_array_ptr;
uint32 features = 0;
if (opt_count > 1)
opt_count = 1;
uintptr_t i;
for (i = 0; i < opt_count; i++) {
uint64 typ = 0;
uint64 val = 0;
NONFAILING(typ = opt_array_ptr[i].typ);
NONFAILING(val = opt_array_ptr[i].val);
switch (typ) {
case 1:
features = val;
break;
}
}
for (i = 0; i < guest_mem_size / page_size; i++) {
struct kvm_userspace_memory_region memreg;
memreg.slot = i;
memreg.flags = 0;
memreg.guest_phys_addr = guest_mem + i * page_size;
memreg.memory_size = page_size;
memreg.userspace_addr = (uintptr_t)host_mem + i * page_size;
ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
}
struct kvm_vcpu_init init;
ioctl(cpufd, KVM_ARM_PREFERRED_TARGET, &init);
init.features[0] = features;
ioctl(cpufd, KVM_ARM_VCPU_INIT, &init);
if (text_size > 1000)
text_size = 1000;
NONFAILING(memcpy(host_mem, text, text_size));
return 0;
}
#else
static long syz_kvm_setup_cpu(volatile long a0, volatile long a1, volatile long a2, volatile long a3, volatile long a4, volatile long a5, volatile long a6, volatile long a7)
{
return 0;
}
#endif
#endif
#if SYZ_EXECUTOR || SYZ_RESET_NET_NAMESPACE
#include <errno.h>
#include <net/if.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/socket.h>
#include <linux/net.h>
#define XT_TABLE_SIZE 1536
#define XT_MAX_ENTRIES 10
struct xt_counters {
uint64 pcnt, bcnt;
};
struct ipt_getinfo {
char name[32];
unsigned int valid_hooks;
unsigned int hook_entry[5];
unsigned int underflow[5];
unsigned int num_entries;
unsigned int size;
};
struct ipt_get_entries {
char name[32];
unsigned int size;
void* entrytable[XT_TABLE_SIZE / sizeof(void*)];
};
struct ipt_replace {
char name[32];
unsigned int valid_hooks;
unsigned int num_entries;
unsigned int size;
unsigned int hook_entry[5];
unsigned int underflow[5];
unsigned int num_counters;
struct xt_counters* counters;
char entrytable[XT_TABLE_SIZE];
};
struct ipt_table_desc {
const char* name;
struct ipt_getinfo info;
struct ipt_replace replace;
};
static struct ipt_table_desc ipv4_tables[] = {
{.name = "filter"},
{.name = "nat"},
{.name = "mangle"},
{.name = "raw"},
{.name = "security"},
};
static struct ipt_table_desc ipv6_tables[] = {
{.name = "filter"},
{.name = "nat"},
{.name = "mangle"},
{.name = "raw"},
{.name = "security"},
};
#define IPT_BASE_CTL 64
#define IPT_SO_SET_REPLACE (IPT_BASE_CTL)
#define IPT_SO_GET_INFO (IPT_BASE_CTL)
#define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1)
struct arpt_getinfo {
char name[32];
unsigned int valid_hooks;
unsigned int hook_entry[3];
unsigned int underflow[3];
unsigned int num_entries;
unsigned int size;
};
struct arpt_get_entries {
char name[32];
unsigned int size;
void* entrytable[XT_TABLE_SIZE / sizeof(void*)];
};
struct arpt_replace {
char name[32];
unsigned int valid_hooks;
unsigned int num_entries;
unsigned int size;
unsigned int hook_entry[3];
unsigned int underflow[3];
unsigned int num_counters;
struct xt_counters* counters;
char entrytable[XT_TABLE_SIZE];
};
struct arpt_table_desc {
const char* name;
struct arpt_getinfo info;
struct arpt_replace replace;
};
static struct arpt_table_desc arpt_tables[] = {
{.name = "filter"},
};
#define ARPT_BASE_CTL 96
#define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL)
#define ARPT_SO_GET_INFO (ARPT_BASE_CTL)
#define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1)
static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level)
{
struct ipt_get_entries entries;
socklen_t optlen;
int fd, i;
fd = socket(family, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
fail("iptable checkpoint %d: socket failed", family);
}
for (i = 0; i < num_tables; i++) {
struct ipt_table_desc* table = &tables[i];
strcpy(table->info.name, table->name);
strcpy(table->replace.name, table->name);
optlen = sizeof(table->info);
if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) {
switch (errno) {
case EPERM:
case ENOENT:
case ENOPROTOOPT:
continue;
}
fail("iptable checkpoint %s/%d: getsockopt(IPT_SO_GET_INFO)", table->name, family);
}
debug("iptable checkpoint %s/%d: checkpoint entries=%d hooks=%x size=%d\n",
table->name, family, table->info.num_entries,
table->info.valid_hooks, table->info.size);
if (table->info.size > sizeof(table->replace.entrytable))
fail("iptable checkpoint %s/%d: table size is too large: %u",
table->name, family, table->info.size);
if (table->info.num_entries > XT_MAX_ENTRIES)
fail("iptable checkpoint %s/%d: too many counters: %u",
table->name, family, table->info.num_entries);
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size;
if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen))
fail("iptable checkpoint %s/%d: getsockopt(IPT_SO_GET_ENTRIES)",
table->name, family);
table->replace.valid_hooks = table->info.valid_hooks;
table->replace.num_entries = table->info.num_entries;
table->replace.size = table->info.size;
memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry));
memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow));
memcpy(table->replace.entrytable, entries.entrytable, table->info.size);
}
close(fd);
}
static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level)
{
struct xt_counters counters[XT_MAX_ENTRIES];
struct ipt_get_entries entries;
struct ipt_getinfo info;
socklen_t optlen;
int fd, i;
fd = socket(family, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
fail("iptable %d: socket failed", family);
}
for (i = 0; i < num_tables; i++) {
struct ipt_table_desc* table = &tables[i];
if (table->info.valid_hooks == 0)
continue;
memset(&info, 0, sizeof(info));
strcpy(info.name, table->name);
optlen = sizeof(info);
if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen))
fail("iptable %s/%d: getsockopt(IPT_SO_GET_INFO)", table->name, family);
if (memcmp(&table->info, &info, sizeof(table->info)) == 0) {
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size;
if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen))
fail("iptable %s/%d: getsockopt(IPT_SO_GET_ENTRIES)", table->name, family);
if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0)
continue;
}
debug("iptable %s/%d: resetting\n", table->name, family);
table->replace.num_counters = info.num_entries;
table->replace.counters = counters;
optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size;
if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen))
fail("iptable %s/%d: setsockopt(IPT_SO_SET_REPLACE)", table->name, family);
}
close(fd);
}
static void checkpoint_arptables(void)
{
struct arpt_get_entries entries;
socklen_t optlen;
unsigned i;
int fd;
fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
fail("arptable checkpoint: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)");
}
for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) {
struct arpt_table_desc* table = &arpt_tables[i];
strcpy(table->info.name, table->name);
strcpy(table->replace.name, table->name);
optlen = sizeof(table->info);
if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) {
switch (errno) {
case EPERM:
case ENOENT:
case ENOPROTOOPT:
continue;
}
fail("arptable checkpoint %s: getsockopt(ARPT_SO_GET_INFO)", table->name);
}
debug("arptable checkpoint %s: entries=%d hooks=%x size=%d\n",
table->name, table->info.num_entries, table->info.valid_hooks, table->info.size);
if (table->info.size > sizeof(table->replace.entrytable))
fail("arptable checkpoint %s: table size is too large: %u",
table->name, table->info.size);
if (table->info.num_entries > XT_MAX_ENTRIES)
fail("arptable checkpoint %s: too many counters: %u",
table->name, table->info.num_entries);
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size;
if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen))
fail("arptable checkpoint %s: getsockopt(ARPT_SO_GET_ENTRIES)", table->name);
table->replace.valid_hooks = table->info.valid_hooks;
table->replace.num_entries = table->info.num_entries;
table->replace.size = table->info.size;