| /* ----------------------------------------------------------------------------- |
| * std_vector.i |
| * |
| * SWIG typemaps for std::vector |
| * ----------------------------------------------------------------------------- */ |
| |
| %include <std_common.i> |
| |
| // ------------------------------------------------------------------------ |
| // std::vector |
| // |
| // The aim of all that follows would be to integrate std::vector with |
| // MzScheme as much as possible, namely, to allow the user to pass and |
| // be returned MzScheme vectors or lists. |
| // const declarations are used to guess the intent of the function being |
| // exported; therefore, the following rationale is applied: |
| // |
| // -- f(std::vector<T>), f(const std::vector<T>&), f(const std::vector<T>*): |
| // the parameter being read-only, either a MzScheme sequence or a |
| // previously wrapped std::vector<T> can be passed. |
| // -- f(std::vector<T>&), f(std::vector<T>*): |
| // the parameter must be modified; therefore, only a wrapped std::vector |
| // can be passed. |
| // -- std::vector<T> f(): |
| // the vector is returned by copy; therefore, a MzScheme vector of T:s |
| // is returned which is most easily used in other MzScheme functions |
| // -- std::vector<T>& f(), std::vector<T>* f(), const std::vector<T>& f(), |
| // const std::vector<T>* f(): |
| // the vector is returned by reference; therefore, a wrapped std::vector |
| // is returned |
| // ------------------------------------------------------------------------ |
| |
| %{ |
| #include <vector> |
| #include <algorithm> |
| #include <stdexcept> |
| %} |
| |
| // exported class |
| |
| namespace std { |
| |
| template<class T> class vector { |
| %typemap(in) vector<T> { |
| if (SCHEME_VECTORP($input)) { |
| unsigned int size = SCHEME_VEC_SIZE($input); |
| $1 = std::vector<T >(size); |
| Scheme_Object** items = SCHEME_VEC_ELS($input); |
| for (unsigned int i=0; i<size; i++) { |
| (($1_type &)$1)[i] = |
| *((T*) SWIG_MustGetPtr(items[i], |
| $descriptor(T *), |
| $argnum, 0)); |
| } |
| } else if (SCHEME_NULLP($input)) { |
| $1 = std::vector<T >(); |
| } else if (SCHEME_PAIRP($input)) { |
| Scheme_Object *head, *tail; |
| $1 = std::vector<T >(); |
| tail = $input; |
| while (!SCHEME_NULLP(tail)) { |
| head = scheme_car(tail); |
| tail = scheme_cdr(tail); |
| $1.push_back(*((T*)SWIG_MustGetPtr(head, |
| $descriptor(T *), |
| $argnum, 0))); |
| } |
| } else { |
| $1 = *(($&1_type) |
| SWIG_MustGetPtr($input,$&1_descriptor,$argnum, 0)); |
| } |
| } |
| %typemap(in) const vector<T>& (std::vector<T> temp), |
| const vector<T>* (std::vector<T> temp) { |
| if (SCHEME_VECTORP($input)) { |
| unsigned int size = SCHEME_VEC_SIZE($input); |
| temp = std::vector<T >(size); |
| $1 = &temp; |
| Scheme_Object** items = SCHEME_VEC_ELS($input); |
| for (unsigned int i=0; i<size; i++) { |
| temp[i] = *((T*) SWIG_MustGetPtr(items[i], |
| $descriptor(T *), |
| $argnum, 0)); |
| } |
| } else if (SCHEME_NULLP($input)) { |
| temp = std::vector<T >(); |
| $1 = &temp; |
| } else if (SCHEME_PAIRP($input)) { |
| temp = std::vector<T >(); |
| $1 = &temp; |
| Scheme_Object *head, *tail; |
| tail = $input; |
| while (!SCHEME_NULLP(tail)) { |
| head = scheme_car(tail); |
| tail = scheme_cdr(tail); |
| temp.push_back(*((T*) SWIG_MustGetPtr(head, |
| $descriptor(T *), |
| $argnum, 0))); |
| } |
| } else { |
| $1 = ($1_ltype) SWIG_MustGetPtr($input,$1_descriptor,$argnum, 0); |
| } |
| } |
| %typemap(out) vector<T> { |
| $result = scheme_make_vector($1.size(),scheme_undefined); |
| Scheme_Object** els = SCHEME_VEC_ELS($result); |
| for (unsigned int i=0; i<$1.size(); i++) { |
| T* x = new T((($1_type &)$1)[i]); |
| els[i] = SWIG_NewPointerObj(x,$descriptor(T *), 1); |
| } |
| } |
| %typecheck(SWIG_TYPECHECK_VECTOR) vector<T> { |
| /* native sequence? */ |
| if (SCHEME_VECTORP($input)) { |
| unsigned int size = SCHEME_VEC_SIZE($input); |
| if (size == 0) { |
| /* an empty sequence can be of any type */ |
| $1 = 1; |
| } else { |
| /* check the first element only */ |
| T* x; |
| Scheme_Object** items = SCHEME_VEC_ELS($input); |
| if (SWIG_ConvertPtr(items[0],(void**) &x, |
| $descriptor(T *), 0) != -1) |
| $1 = 1; |
| else |
| $1 = 0; |
| } |
| } else if (SCHEME_NULLP($input)) { |
| /* again, an empty sequence can be of any type */ |
| $1 = 1; |
| } else if (SCHEME_PAIRP($input)) { |
| /* check the first element only */ |
| T* x; |
| Scheme_Object *head = scheme_car($input); |
| if (SWIG_ConvertPtr(head,(void**) &x, |
| $descriptor(T *), 0) != -1) |
| $1 = 1; |
| else |
| $1 = 0; |
| } else { |
| /* wrapped vector? */ |
| std::vector<T >* v; |
| if (SWIG_ConvertPtr($input,(void **) &v, |
| $&1_descriptor, 0) != -1) |
| $1 = 1; |
| else |
| $1 = 0; |
| } |
| } |
| %typecheck(SWIG_TYPECHECK_VECTOR) const vector<T>&, |
| const vector<T>* { |
| /* native sequence? */ |
| if (SCHEME_VECTORP($input)) { |
| unsigned int size = SCHEME_VEC_SIZE($input); |
| if (size == 0) { |
| /* an empty sequence can be of any type */ |
| $1 = 1; |
| } else { |
| /* check the first element only */ |
| T* x; |
| Scheme_Object** items = SCHEME_VEC_ELS($input); |
| if (SWIG_ConvertPtr(items[0],(void**) &x, |
| $descriptor(T *), 0) != -1) |
| $1 = 1; |
| else |
| $1 = 0; |
| } |
| } else if (SCHEME_NULLP($input)) { |
| /* again, an empty sequence can be of any type */ |
| $1 = 1; |
| } else if (SCHEME_PAIRP($input)) { |
| /* check the first element only */ |
| T* x; |
| Scheme_Object *head = scheme_car($input); |
| if (SWIG_ConvertPtr(head,(void**) &x, |
| $descriptor(T *), 0) != -1) |
| $1 = 1; |
| else |
| $1 = 0; |
| } else { |
| /* wrapped vector? */ |
| std::vector<T >* v; |
| if (SWIG_ConvertPtr($input,(void **) &v, |
| $1_descriptor, 0) != -1) |
| $1 = 1; |
| else |
| $1 = 0; |
| } |
| } |
| public: |
| typedef size_t size_type; |
| typedef ptrdiff_t difference_type; |
| typedef T value_type; |
| typedef value_type* pointer; |
| typedef const value_type* const_pointer; |
| typedef value_type& reference; |
| typedef const value_type& const_reference; |
| |
| vector(unsigned int size = 0); |
| vector(unsigned int size, const T& value); |
| vector(const vector& other); |
| |
| %rename(length) size; |
| unsigned int size() const; |
| %rename("empty?") empty; |
| bool empty() const; |
| %rename("clear!") clear; |
| void clear(); |
| %rename("set!") set; |
| %rename("pop!") pop; |
| %rename("push!") push_back; |
| void push_back(const T& x); |
| %extend { |
| T pop() throw (std::out_of_range) { |
| if (self->size() == 0) |
| throw std::out_of_range("pop from empty vector"); |
| T x = self->back(); |
| self->pop_back(); |
| return x; |
| } |
| T& ref(int i) throw (std::out_of_range) { |
| int size = int(self->size()); |
| if (i>=0 && i<size) |
| return (*self)[i]; |
| else |
| throw std::out_of_range("vector index out of range"); |
| } |
| void set(int i, const T& x) throw (std::out_of_range) { |
| int size = int(self->size()); |
| if (i>=0 && i<size) |
| (*self)[i] = x; |
| else |
| throw std::out_of_range("vector index out of range"); |
| } |
| } |
| }; |
| |
| |
| // specializations for built-ins |
| |
| %define specialize_std_vector(T,CHECK,CONVERT_FROM,CONVERT_TO) |
| template<> class vector<T> { |
| %typemap(in) vector<T> { |
| if (SCHEME_VECTORP($input)) { |
| unsigned int size = SCHEME_VEC_SIZE($input); |
| $1 = std::vector<T >(size); |
| Scheme_Object** items = SCHEME_VEC_ELS($input); |
| for (unsigned int i=0; i<size; i++) { |
| Scheme_Object* o = items[i]; |
| if (CHECK(o)) |
| (($1_type &)$1)[i] = (T)(CONVERT_FROM(o)); |
| else |
| scheme_wrong_type(FUNC_NAME, "vector<" #T ">", |
| $argnum - 1, argc, argv); |
| } |
| } else if (SCHEME_NULLP($input)) { |
| $1 = std::vector<T >(); |
| } else if (SCHEME_PAIRP($input)) { |
| Scheme_Object *head, *tail; |
| $1 = std::vector<T >(); |
| tail = $input; |
| while (!SCHEME_NULLP(tail)) { |
| head = scheme_car(tail); |
| tail = scheme_cdr(tail); |
| if (CHECK(head)) |
| $1.push_back((T)(CONVERT_FROM(head))); |
| else |
| scheme_wrong_type(FUNC_NAME, "vector<" #T ">", |
| $argnum - 1, argc, argv); |
| } |
| } else { |
| $1 = *(($&1_type) |
| SWIG_MustGetPtr($input,$&1_descriptor,$argnum, 0)); |
| } |
| } |
| %typemap(in) const vector<T>& (std::vector<T> temp), |
| const vector<T>* (std::vector<T> temp) { |
| if (SCHEME_VECTORP($input)) { |
| unsigned int size = SCHEME_VEC_SIZE($input); |
| temp = std::vector<T >(size); |
| $1 = &temp; |
| Scheme_Object** items = SCHEME_VEC_ELS($input); |
| for (unsigned int i=0; i<size; i++) { |
| Scheme_Object* o = items[i]; |
| if (CHECK(o)) |
| temp[i] = (T)(CONVERT_FROM(o)); |
| else |
| scheme_wrong_type(FUNC_NAME, "vector<" #T ">", |
| $argnum - 1, argc, argv); |
| } |
| } else if (SCHEME_NULLP($input)) { |
| temp = std::vector<T >(); |
| $1 = &temp; |
| } else if (SCHEME_PAIRP($input)) { |
| temp = std::vector<T >(); |
| $1 = &temp; |
| Scheme_Object *head, *tail; |
| tail = $input; |
| while (!SCHEME_NULLP(tail)) { |
| head = scheme_car(tail); |
| tail = scheme_cdr(tail); |
| if (CHECK(head)) |
| temp.push_back((T)(CONVERT_FROM(head))); |
| else |
| scheme_wrong_type(FUNC_NAME, "vector<" #T ">", |
| $argnum - 1, argc, argv); |
| } |
| } else { |
| $1 = ($1_ltype) SWIG_MustGetPtr($input,$1_descriptor,$argnum - 1, 0); |
| } |
| } |
| %typemap(out) vector<T> { |
| $result = scheme_make_vector($1.size(),scheme_undefined); |
| Scheme_Object** els = SCHEME_VEC_ELS($result); |
| for (unsigned int i=0; i<$1.size(); i++) |
| els[i] = CONVERT_TO((($1_type &)$1)[i]); |
| } |
| %typecheck(SWIG_TYPECHECK_VECTOR) vector<T> { |
| /* native sequence? */ |
| if (SCHEME_VECTORP($input)) { |
| unsigned int size = SCHEME_VEC_SIZE($input); |
| if (size == 0) { |
| /* an empty sequence can be of any type */ |
| $1 = 1; |
| } else { |
| /* check the first element only */ |
| T* x; |
| Scheme_Object** items = SCHEME_VEC_ELS($input); |
| $1 = CHECK(items[0]) ? 1 : 0; |
| } |
| } else if (SCHEME_NULLP($input)) { |
| /* again, an empty sequence can be of any type */ |
| $1 = 1; |
| } else if (SCHEME_PAIRP($input)) { |
| /* check the first element only */ |
| T* x; |
| Scheme_Object *head = scheme_car($input); |
| $1 = CHECK(head) ? 1 : 0; |
| } else { |
| /* wrapped vector? */ |
| std::vector<T >* v; |
| $1 = (SWIG_ConvertPtr($input,(void **) &v, |
| $&1_descriptor, 0) != -1) ? 1 : 0; |
| } |
| } |
| %typecheck(SWIG_TYPECHECK_VECTOR) const vector<T>&, |
| const vector<T>* { |
| /* native sequence? */ |
| if (SCHEME_VECTORP($input)) { |
| unsigned int size = SCHEME_VEC_SIZE($input); |
| if (size == 0) { |
| /* an empty sequence can be of any type */ |
| $1 = 1; |
| } else { |
| /* check the first element only */ |
| T* x; |
| Scheme_Object** items = SCHEME_VEC_ELS($input); |
| $1 = CHECK(items[0]) ? 1 : 0; |
| } |
| } else if (SCHEME_NULLP($input)) { |
| /* again, an empty sequence can be of any type */ |
| $1 = 1; |
| } else if (SCHEME_PAIRP($input)) { |
| /* check the first element only */ |
| T* x; |
| Scheme_Object *head = scheme_car($input); |
| $1 = CHECK(head) ? 1 : 0; |
| } else { |
| /* wrapped vector? */ |
| std::vector<T >* v; |
| $1 = (SWIG_ConvertPtr($input,(void **) &v, |
| $1_descriptor, 0) != -1) ? 1 : 0; |
| } |
| } |
| public: |
| typedef size_t size_type; |
| typedef ptrdiff_t difference_type; |
| typedef T value_type; |
| typedef value_type* pointer; |
| typedef const value_type* const_pointer; |
| typedef value_type& reference; |
| typedef const value_type& const_reference; |
| |
| vector(unsigned int size = 0); |
| vector(unsigned int size, const T& value); |
| vector(const vector& other); |
| |
| %rename(length) size; |
| unsigned int size() const; |
| %rename("empty?") empty; |
| bool empty() const; |
| %rename("clear!") clear; |
| void clear(); |
| %rename("set!") set; |
| %rename("pop!") pop; |
| %rename("push!") push_back; |
| void push_back(T x); |
| %extend { |
| T pop() throw (std::out_of_range) { |
| if (self->size() == 0) |
| throw std::out_of_range("pop from empty vector"); |
| T x = self->back(); |
| self->pop_back(); |
| return x; |
| } |
| T ref(int i) throw (std::out_of_range) { |
| int size = int(self->size()); |
| if (i>=0 && i<size) |
| return (*self)[i]; |
| else |
| throw std::out_of_range("vector index out of range"); |
| } |
| void set(int i, T x) throw (std::out_of_range) { |
| int size = int(self->size()); |
| if (i>=0 && i<size) |
| (*self)[i] = x; |
| else |
| throw std::out_of_range("vector index out of range"); |
| } |
| } |
| }; |
| %enddef |
| |
| specialize_std_vector(bool,SCHEME_BOOLP,SCHEME_TRUEP,\ |
| swig_make_boolean); |
| specialize_std_vector(char,SCHEME_INTP,SCHEME_INT_VAL,\ |
| scheme_make_integer_value); |
| specialize_std_vector(int,SCHEME_INTP,SCHEME_INT_VAL,\ |
| scheme_make_integer_value); |
| specialize_std_vector(short,SCHEME_INTP,SCHEME_INT_VAL,\ |
| scheme_make_integer_value); |
| specialize_std_vector(long,SCHEME_INTP,SCHEME_INT_VAL,\ |
| scheme_make_integer_value); |
| specialize_std_vector(unsigned char,SCHEME_INTP,SCHEME_INT_VAL,\ |
| scheme_make_integer_value); |
| specialize_std_vector(unsigned int,SCHEME_INTP,SCHEME_INT_VAL,\ |
| scheme_make_integer_value); |
| specialize_std_vector(unsigned short,SCHEME_INTP,SCHEME_INT_VAL,\ |
| scheme_make_integer_value); |
| specialize_std_vector(unsigned long,SCHEME_INTP,SCHEME_INT_VAL,\ |
| scheme_make_integer_value); |
| specialize_std_vector(float,SCHEME_REALP,scheme_real_to_double,\ |
| scheme_make_double); |
| specialize_std_vector(double,SCHEME_REALP,scheme_real_to_double,\ |
| scheme_make_double); |
| specialize_std_vector(std::string,SCHEME_STRINGP,swig_scm_to_string,\ |
| swig_make_string); |
| |
| } |
| |