blob: 035f57bfa8d766a11a1479712051b9d3d0435d59 [file] [log] [blame]
/*
* Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
* Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
* Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
* Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
* Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Linux for s390 port by D.J. Barrow
* <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
* Copyright (c) 1999-2018 The strace developers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "defs.h"
#include <limits.h>
#include <fcntl.h>
#include <stdarg.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#ifdef HAVE_SYS_XATTR_H
# include <sys/xattr.h>
#endif
#include <sys/uio.h>
#include "largefile_wrappers.h"
#include "xlat.h"
#include "xstring.h"
int
ts_nz(const struct timespec *a)
{
return a->tv_sec || a->tv_nsec;
}
int
ts_cmp(const struct timespec *a, const struct timespec *b)
{
if (a->tv_sec < b->tv_sec
|| (a->tv_sec == b->tv_sec && a->tv_nsec < b->tv_nsec))
return -1;
if (a->tv_sec > b->tv_sec
|| (a->tv_sec == b->tv_sec && a->tv_nsec > b->tv_nsec))
return 1;
return 0;
}
double
ts_float(const struct timespec *tv)
{
return tv->tv_sec + tv->tv_nsec/1000000000.0;
}
void
ts_add(struct timespec *tv, const struct timespec *a, const struct timespec *b)
{
tv->tv_sec = a->tv_sec + b->tv_sec;
tv->tv_nsec = a->tv_nsec + b->tv_nsec;
if (tv->tv_nsec >= 1000000000) {
tv->tv_sec++;
tv->tv_nsec -= 1000000000;
}
}
void
ts_sub(struct timespec *tv, const struct timespec *a, const struct timespec *b)
{
tv->tv_sec = a->tv_sec - b->tv_sec;
tv->tv_nsec = a->tv_nsec - b->tv_nsec;
if (tv->tv_nsec < 0) {
tv->tv_sec--;
tv->tv_nsec += 1000000000;
}
}
void
ts_div(struct timespec *tv, const struct timespec *a, int n)
{
long long nsec = (a->tv_sec % n * 1000000000LL + a->tv_nsec + n / 2) / n;
tv->tv_sec = a->tv_sec / n + nsec / 1000000000;
tv->tv_nsec = nsec % 1000000000;
}
void
ts_mul(struct timespec *tv, const struct timespec *a, int n)
{
long long nsec = a->tv_nsec * n;
tv->tv_sec = a->tv_sec * n + nsec / 1000000000;
tv->tv_nsec = nsec % 1000000000;
}
#if !defined HAVE_STPCPY
char *
stpcpy(char *dst, const char *src)
{
while ((*dst = *src++) != '\0')
dst++;
return dst;
}
#endif
/* Find a next bit which is set.
* Starts testing at cur_bit.
* Returns -1 if no more bits are set.
*
* We never touch bytes we don't need to.
* On big-endian, array is assumed to consist of
* current_wordsize wide words: for example, is current_wordsize is 4,
* the bytes are walked in 3,2,1,0, 7,6,5,4, 11,10,9,8 ... sequence.
* On little-endian machines, word size is immaterial.
*/
int
next_set_bit(const void *bit_array, unsigned cur_bit, unsigned size_bits)
{
const unsigned endian = 1;
int little_endian = *(char *) (void *) &endian;
const uint8_t *array = bit_array;
unsigned pos = cur_bit / 8;
unsigned pos_xor_mask = little_endian ? 0 : current_wordsize-1;
for (;;) {
uint8_t bitmask;
uint8_t cur_byte;
if (cur_bit >= size_bits)
return -1;
cur_byte = array[pos ^ pos_xor_mask];
if (cur_byte == 0) {
cur_bit = (cur_bit + 8) & (-8);
pos++;
continue;
}
bitmask = 1 << (cur_bit & 7);
for (;;) {
if (cur_byte & bitmask)
return cur_bit;
cur_bit++;
if (cur_bit >= size_bits)
return -1;
bitmask <<= 1;
/* This check *can't be* optimized out: */
if (bitmask == 0)
break;
}
pos++;
}
}
/*
* Fetch 64bit argument at position arg_no and
* return the index of the next argument.
*/
int
getllval(struct tcb *tcp, unsigned long long *val, int arg_no)
{
#if SIZEOF_KERNEL_LONG_T > 4
# ifndef current_klongsize
if (current_klongsize < SIZEOF_KERNEL_LONG_T) {
# if defined(AARCH64) || defined(POWERPC64)
/* Align arg_no to the next even number. */
arg_no = (arg_no + 1) & 0xe;
# endif /* AARCH64 || POWERPC64 */
*val = ULONG_LONG(tcp->u_arg[arg_no], tcp->u_arg[arg_no + 1]);
arg_no += 2;
} else
# endif /* !current_klongsize */
{
*val = tcp->u_arg[arg_no];
arg_no++;
}
#else /* SIZEOF_KERNEL_LONG_T == 4 */
# if defined __ARM_EABI__ \
|| defined LINUX_MIPSO32 \
|| defined POWERPC \
|| defined XTENSA
/* Align arg_no to the next even number. */
arg_no = (arg_no + 1) & 0xe;
# elif defined SH
/*
* The SH4 ABI does allow long longs in odd-numbered registers, but
* does not allow them to be split between registers and memory - and
* there are only four argument registers for normal functions. As a
* result, pread, for example, takes an extra padding argument before
* the offset. This was changed late in the 2.4 series (around 2.4.20).
*/
if (arg_no == 3)
arg_no++;
# endif /* __ARM_EABI__ || LINUX_MIPSO32 || POWERPC || XTENSA || SH */
*val = ULONG_LONG(tcp->u_arg[arg_no], tcp->u_arg[arg_no + 1]);
arg_no += 2;
#endif
return arg_no;
}
/*
* Print 64bit argument at position arg_no and
* return the index of the next argument.
*/
int
printllval(struct tcb *tcp, const char *format, int arg_no)
{
unsigned long long val = 0;
arg_no = getllval(tcp, &val, arg_no);
tprintf(format, val);
return arg_no;
}
void
printaddr64(const uint64_t addr)
{
if (!addr)
tprints("NULL");
else
tprintf("%#" PRIx64, addr);
}
#define DEF_PRINTNUM(name, type) \
bool \
printnum_ ## name(struct tcb *const tcp, const kernel_ulong_t addr, \
const char *const fmt) \
{ \
type num; \
if (umove_or_printaddr(tcp, addr, &num)) \
return false; \
tprints("["); \
tprintf(fmt, num); \
tprints("]"); \
return true; \
}
#define DEF_PRINTNUM_ADDR(name, type) \
bool \
printnum_addr_ ## name(struct tcb *tcp, const kernel_ulong_t addr) \
{ \
type num; \
if (umove_or_printaddr(tcp, addr, &num)) \
return false; \
tprints("["); \
printaddr64(num); \
tprints("]"); \
return true; \
}
#define DEF_PRINTPAIR(name, type) \
bool \
printpair_ ## name(struct tcb *const tcp, const kernel_ulong_t addr, \
const char *const fmt) \
{ \
type pair[2]; \
if (umove_or_printaddr(tcp, addr, &pair)) \
return false; \
tprints("["); \
tprintf(fmt, pair[0]); \
tprints(", "); \
tprintf(fmt, pair[1]); \
tprints("]"); \
return true; \
}
DEF_PRINTNUM(int, int)
DEF_PRINTNUM_ADDR(int, unsigned int)
DEF_PRINTPAIR(int, int)
DEF_PRINTNUM(short, short)
DEF_PRINTNUM(int64, uint64_t)
DEF_PRINTNUM_ADDR(int64, uint64_t)
DEF_PRINTPAIR(int64, uint64_t)
#ifndef current_wordsize
bool
printnum_long_int(struct tcb *const tcp, const kernel_ulong_t addr,
const char *const fmt_long, const char *const fmt_int)
{
if (current_wordsize > sizeof(int)) {
return printnum_int64(tcp, addr, fmt_long);
} else {
return printnum_int(tcp, addr, fmt_int);
}
}
bool
printnum_addr_long_int(struct tcb *tcp, const kernel_ulong_t addr)
{
if (current_wordsize > sizeof(int)) {
return printnum_addr_int64(tcp, addr);
} else {
return printnum_addr_int(tcp, addr);
}
}
#endif /* !current_wordsize */
#ifndef current_klongsize
bool
printnum_addr_klong_int(struct tcb *tcp, const kernel_ulong_t addr)
{
if (current_klongsize > sizeof(int)) {
return printnum_addr_int64(tcp, addr);
} else {
return printnum_addr_int(tcp, addr);
}
}
#endif /* !current_klongsize */
/**
* Prints time to a (static internal) buffer and returns pointer to it.
* Returns NULL if the provided time specification is not correct.
*
* @param sec Seconds since epoch.
* @param part_sec Amount of second parts since the start of a second.
* @param max_part_sec Maximum value of a valid part_sec.
* @param width 1 + floor(log10(max_part_sec)).
* @return Pointer to a statically allocated string on success,
* NULL on error.
*/
static const char *
sprinttime_ex(const long long sec, const unsigned long long part_sec,
const unsigned int max_part_sec, const int width)
{
static char buf[sizeof(int) * 3 * 6 + sizeof(part_sec) * 3
+ sizeof("+0000")];
if ((sec == 0 && part_sec == 0) || part_sec > max_part_sec)
return NULL;
time_t t = (time_t) sec;
struct tm *tmp = (sec == t) ? localtime(&t) : NULL;
if (!tmp)
return NULL;
size_t pos = strftime(buf, sizeof(buf), "%FT%T", tmp);
if (!pos)
return NULL;
if (part_sec > 0)
pos += xsnprintf(buf + pos, sizeof(buf) - pos, ".%0*llu",
width, part_sec);
return strftime(buf + pos, sizeof(buf) - pos, "%z", tmp) ? buf : NULL;
}
const char *
sprinttime(long long sec)
{
return sprinttime_ex(sec, 0, 0, 0);
}
const char *
sprinttime_usec(long long sec, unsigned long long usec)
{
return sprinttime_ex(sec, usec, 999999, 6);
}
const char *
sprinttime_nsec(long long sec, unsigned long long nsec)
{
return sprinttime_ex(sec, nsec, 999999999, 9);
}
enum sock_proto
getfdproto(struct tcb *tcp, int fd)
{
#ifdef HAVE_SYS_XATTR_H
size_t bufsize = 256;
char buf[bufsize];
ssize_t r;
char path[sizeof("/proc/%u/fd/%u") + 2 * sizeof(int)*3];
if (fd < 0)
return SOCK_PROTO_UNKNOWN;
xsprintf(path, "/proc/%u/fd/%u", tcp->pid, fd);
r = getxattr(path, "system.sockprotoname", buf, bufsize - 1);
if (r <= 0)
return SOCK_PROTO_UNKNOWN;
else {
/*
* This is a protection for the case when the kernel
* side does not append a null byte to the buffer.
*/
buf[r] = '\0';
return get_proto_by_name(buf);
}
#else
return SOCK_PROTO_UNKNOWN;
#endif
}
unsigned long
getfdinode(struct tcb *tcp, int fd)
{
char path[PATH_MAX + 1];
if (getfdpath(tcp, fd, path, sizeof(path)) >= 0) {
const char *str = STR_STRIP_PREFIX(path, "socket:[");
if (str != path) {
const size_t str_len = strlen(str);
if (str_len && str[str_len - 1] == ']')
return strtoul(str, NULL, 10);
}
}
return 0;
}
static bool
printsocket(struct tcb *tcp, int fd, const char *path)
{
const char *str = STR_STRIP_PREFIX(path, "socket:[");
size_t len;
unsigned long inode;
return (str != path)
&& (len = strlen(str))
&& (str[len - 1] == ']')
&& (inode = strtoul(str, NULL, 10))
&& print_sockaddr_by_inode(tcp, fd, inode);
}
static bool
printdev(struct tcb *tcp, int fd, const char *path)
{
struct_stat st;
if (path[0] != '/')
return false;
if (stat_file(path, &st)) {
debug_func_perror_msg("stat(\"%s\")", path);
return false;
}
switch (st.st_mode & S_IFMT) {
case S_IFBLK:
case S_IFCHR:
print_quoted_string_ex(path, strlen(path),
QUOTE_OMIT_LEADING_TRAILING_QUOTES,
"<>");
tprintf("<%s %u:%u>",
S_ISBLK(st.st_mode)? "block" : "char",
major(st.st_rdev), minor(st.st_rdev));
return true;
}
return false;
}
void
printfd(struct tcb *tcp, int fd)
{
char path[PATH_MAX + 1];
if (show_fd_path && getfdpath(tcp, fd, path, sizeof(path)) >= 0) {
tprintf("%d<", fd);
if (show_fd_path <= 1
|| (!printsocket(tcp, fd, path)
&& !printdev(tcp, fd, path))) {
print_quoted_string_ex(path, strlen(path),
QUOTE_OMIT_LEADING_TRAILING_QUOTES, "<>");
}
tprints(">");
} else
tprintf("%d", fd);
}
/*
* Quote string `instr' of length `size'
* Write up to (3 + `size' * 4) bytes to `outstr' buffer.
*
* `escape_chars' specifies characters (in addition to characters with
* codes 0..31, 127..255, single and double quotes) that should be escaped.
*
* If QUOTE_0_TERMINATED `style' flag is set,
* treat `instr' as a NUL-terminated string,
* checking up to (`size' + 1) bytes of `instr'.
*
* If QUOTE_OMIT_LEADING_TRAILING_QUOTES `style' flag is set,
* do not add leading and trailing quoting symbols.
*
* Returns 0 if QUOTE_0_TERMINATED is set and NUL was seen, 1 otherwise.
* Note that if QUOTE_0_TERMINATED is not set, always returns 1.
*/
int
string_quote(const char *instr, char *outstr, const unsigned int size,
const unsigned int style, const char *escape_chars)
{
const unsigned char *ustr = (const unsigned char *) instr;
char *s = outstr;
unsigned int i;
int usehex, c, eol;
bool escape;
if (style & QUOTE_0_TERMINATED)
eol = '\0';
else
eol = 0x100; /* this can never match a char */
usehex = 0;
if ((xflag > 1) || (style & QUOTE_FORCE_HEX)) {
usehex = 1;
} else if (xflag) {
/* Check for presence of symbol which require
to hex-quote the whole string. */
for (i = 0; i < size; ++i) {
c = ustr[i];
/* Check for NUL-terminated string. */
if (c == eol)
break;
/* Force hex unless c is printable or whitespace */
if (c > 0x7e) {
usehex = 1;
break;
}
/* In ASCII isspace is only these chars: "\t\n\v\f\r".
* They happen to have ASCII codes 9,10,11,12,13.
*/
if (c < ' ' && (unsigned)(c - 9) >= 5) {
usehex = 1;
break;
}
}
}
if (style & QUOTE_EMIT_COMMENT)
s = stpcpy(s, " /* ");
if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES))
*s++ = '\"';
if (usehex) {
/* Hex-quote the whole string. */
for (i = 0; i < size; ++i) {
c = ustr[i];
/* Check for NUL-terminated string. */
if (c == eol)
goto asciz_ended;
*s++ = '\\';
*s++ = 'x';
*s++ = "0123456789abcdef"[c >> 4];
*s++ = "0123456789abcdef"[c & 0xf];
}
goto string_ended;
}
for (i = 0; i < size; ++i) {
c = ustr[i];
/* Check for NUL-terminated string. */
if (c == eol)
goto asciz_ended;
if ((i == (size - 1)) &&
(style & QUOTE_OMIT_TRAILING_0) && (c == '\0'))
goto asciz_ended;
switch (c) {
case '\"': case '\\':
*s++ = '\\';
*s++ = c;
break;
case '\f':
*s++ = '\\';
*s++ = 'f';
break;
case '\n':
*s++ = '\\';
*s++ = 'n';
break;
case '\r':
*s++ = '\\';
*s++ = 'r';
break;
case '\t':
*s++ = '\\';
*s++ = 't';
break;
case '\v':
*s++ = '\\';
*s++ = 'v';
break;
default:
escape = (c < ' ') || (c > 0x7e);
if (!escape && escape_chars)
escape = !!strchr(escape_chars, c);
if (!escape) {
*s++ = c;
} else {
/* Print \octal */
*s++ = '\\';
if (i + 1 < size
&& ustr[i + 1] >= '0'
&& ustr[i + 1] <= '7'
) {
/* Print \ooo */
*s++ = '0' + (c >> 6);
*s++ = '0' + ((c >> 3) & 0x7);
} else {
/* Print \[[o]o]o */
if ((c >> 3) != 0) {
if ((c >> 6) != 0)
*s++ = '0' + (c >> 6);
*s++ = '0' + ((c >> 3) & 0x7);
}
}
*s++ = '0' + (c & 0x7);
}
}
}
string_ended:
if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES))
*s++ = '\"';
if (style & QUOTE_EMIT_COMMENT)
s = stpcpy(s, " */");
*s = '\0';
/* Return zero if we printed entire ASCIZ string (didn't truncate it) */
if (style & QUOTE_0_TERMINATED && ustr[i] == '\0') {
/* We didn't see NUL yet (otherwise we'd jump to 'asciz_ended')
* but next char is NUL.
*/
return 0;
}
return 1;
asciz_ended:
if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES))
*s++ = '\"';
if (style & QUOTE_EMIT_COMMENT)
s = stpcpy(s, " */");
*s = '\0';
/* Return zero: we printed entire ASCIZ string (didn't truncate it) */
return 0;
}
#ifndef ALLOCA_CUTOFF
# define ALLOCA_CUTOFF 4032
#endif
#define use_alloca(n) ((n) <= ALLOCA_CUTOFF)
/*
* Quote string `str' of length `size' and print the result.
*
* If QUOTE_0_TERMINATED `style' flag is set,
* treat `str' as a NUL-terminated string and
* quote at most (`size' - 1) bytes.
*
* If QUOTE_OMIT_LEADING_TRAILING_QUOTES `style' flag is set,
* do not add leading and trailing quoting symbols.
*
* Returns 0 if QUOTE_0_TERMINATED is set and NUL was seen, 1 otherwise.
* Note that if QUOTE_0_TERMINATED is not set, always returns 1.
*/
int
print_quoted_string_ex(const char *str, unsigned int size,
const unsigned int style, const char *escape_chars)
{
char *buf;
char *outstr;
unsigned int alloc_size;
int rc;
if (size && style & QUOTE_0_TERMINATED)
--size;
alloc_size = 4 * size;
if (alloc_size / 4 != size) {
error_func_msg("requested %u bytes exceeds %u bytes limit",
size, -1U / 4);
tprints("???");
return -1;
}
alloc_size += 1 + (style & QUOTE_OMIT_LEADING_TRAILING_QUOTES ? 0 : 2) +
(style & QUOTE_EMIT_COMMENT ? 7 : 0);
if (use_alloca(alloc_size)) {
outstr = alloca(alloc_size);
buf = NULL;
} else {
outstr = buf = malloc(alloc_size);
if (!buf) {
error_func_msg("memory exhausted when tried to allocate"
" %u bytes", alloc_size);
tprints("???");
return -1;
}
}
rc = string_quote(str, outstr, size, style, escape_chars);
tprints(outstr);
free(buf);
return rc;
}
inline int
print_quoted_string(const char *str, unsigned int size,
const unsigned int style)
{
return print_quoted_string_ex(str, size, style, NULL);
}
/*
* Quote a NUL-terminated string `str' of length up to `size' - 1
* and print the result.
*
* Returns 0 if NUL was seen, 1 otherwise.
*/
int
print_quoted_cstring(const char *str, unsigned int size)
{
int unterminated =
print_quoted_string(str, size, QUOTE_0_TERMINATED);
if (unterminated)
tprints("...");
return unterminated;
}
/*
* Print path string specified by address `addr' and length `n'.
* If path length exceeds `n', append `...' to the output.
*
* Returns the result of umovenstr.
*/
int
printpathn(struct tcb *const tcp, const kernel_ulong_t addr, unsigned int n)
{
char path[PATH_MAX];
int nul_seen;
if (!addr) {
tprints("NULL");
return -1;
}
/* Cap path length to the path buffer size */
if (n > sizeof(path) - 1)
n = sizeof(path) - 1;
/* Fetch one byte more to find out whether path length > n. */
nul_seen = umovestr(tcp, addr, n + 1, path);
if (nul_seen < 0)
printaddr(addr);
else {
path[n++] = !nul_seen;
print_quoted_cstring(path, n);
}
return nul_seen;
}
int
printpath(struct tcb *const tcp, const kernel_ulong_t addr)
{
/* Size must correspond to char path[] size in printpathn */
return printpathn(tcp, addr, PATH_MAX - 1);
}
/*
* Print string specified by address `addr' and length `len'.
* If `user_style' has QUOTE_0_TERMINATED bit set, treat the string
* as a NUL-terminated string.
* Pass `user_style' on to `string_quote'.
* Append `...' to the output if either the string length exceeds `max_strlen',
* or QUOTE_0_TERMINATED bit is set and the string length exceeds `len'.
*
* Returns the result of umovenstr if style has QUOTE_0_TERMINATED,
* or the result of umoven otherwise.
*/
int
printstr_ex(struct tcb *const tcp, const kernel_ulong_t addr,
const kernel_ulong_t len, const unsigned int user_style)
{
static char *str;
static char *outstr;
unsigned int size;
unsigned int style = user_style;
int rc;
int ellipsis;
if (!addr) {
tprints("NULL");
return -1;
}
/* Allocate static buffers if they are not allocated yet. */
if (!str) {
const unsigned int outstr_size =
4 * max_strlen + /* for quotes and NUL */ 3;
/*
* We can assume that outstr_size / 4 == max_strlen
* since we have a guarantee that max_strlen <= -1U / 4.
*/
str = xmalloc(max_strlen + 1);
outstr = xmalloc(outstr_size);
}
/* Fetch one byte more because string_quote may look one byte ahead. */
size = max_strlen + 1;
if (size > len)
size = len;
if (style & QUOTE_0_TERMINATED)
rc = umovestr(tcp, addr, size, str);
else
rc = umoven(tcp, addr, size, str);
if (rc < 0) {
printaddr(addr);
return rc;
}
if (size > max_strlen)
size = max_strlen;
else
str[size] = '\xff';
/* If string_quote didn't see NUL and (it was supposed to be ASCIZ str
* or we were requested to print more than -s NUM chars)...
*/
ellipsis = string_quote(str, outstr, size, style, NULL)
&& len
&& ((style & QUOTE_0_TERMINATED)
|| len > max_strlen);
tprints(outstr);
if (ellipsis)
tprints("...");
return rc;
}
void
dumpiov_upto(struct tcb *const tcp, const int len, const kernel_ulong_t addr,
kernel_ulong_t data_size)
{
#if ANY_WORDSIZE_LESS_THAN_KERNEL_LONG
union {
struct { uint32_t base; uint32_t len; } *iov32;
struct { uint64_t base; uint64_t len; } *iov64;
} iovu;
#define iov iovu.iov64
#define sizeof_iov \
(current_wordsize == 4 ? (unsigned int) sizeof(*iovu.iov32) \
: (unsigned int) sizeof(*iovu.iov64))
#define iov_iov_base(i) \
(current_wordsize == 4 ? (uint64_t) iovu.iov32[i].base : iovu.iov64[i].base)
#define iov_iov_len(i) \
(current_wordsize == 4 ? (uint64_t) iovu.iov32[i].len : iovu.iov64[i].len)
#else
struct iovec *iov;
#define sizeof_iov ((unsigned int) sizeof(*iov))
#define iov_iov_base(i) ptr_to_kulong(iov[i].iov_base)
#define iov_iov_len(i) iov[i].iov_len
#endif
int i;
unsigned int size = sizeof_iov * len;
if (size / sizeof_iov != (unsigned int) len) {
error_func_msg("requested %u iovec elements exceeds"
" %u iovec limit", len, -1U / sizeof_iov);
return;
}
iov = malloc(size);
if (!iov) {
error_func_msg("memory exhausted when tried to allocate"
" %u bytes", size);
return;
}
if (umoven(tcp, addr, size, iov) >= 0) {
for (i = 0; i < len; i++) {
kernel_ulong_t iov_len = iov_iov_len(i);
if (iov_len > data_size)
iov_len = data_size;
if (!iov_len)
break;
data_size -= iov_len;
/* include the buffer number to make it easy to
* match up the trace with the source */
tprintf(" * %" PRI_klu " bytes in buffer %d\n", iov_len, i);
dumpstr(tcp, iov_iov_base(i), iov_len);
}
}
free(iov);
#undef sizeof_iov
#undef iov_iov_base
#undef iov_iov_len
#undef iov
}
void
dumpstr(struct tcb *const tcp, const kernel_ulong_t addr, const int len)
{
static int strsize = -1;
static unsigned char *str;
char outbuf[
(
(sizeof(
"xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx "
"1234567890123456") + /*in case I'm off by few:*/ 4)
/*align to 8 to make memset easier:*/ + 7) & -8
];
const unsigned char *src;
int i;
if ((len < 0) || (len > INT_MAX - 16))
return;
memset(outbuf, ' ', sizeof(outbuf));
if (strsize < len + 16) {
free(str);
str = malloc(len + 16);
if (!str) {
strsize = -1;
error_func_msg("memory exhausted when tried to allocate"
" %zu bytes", (size_t) (len + 16));
return;
}
strsize = len + 16;
}
if (umoven(tcp, addr, len, str) < 0)
return;
/* Space-pad to 16 bytes */
i = len;
while (i & 0xf)
str[i++] = ' ';
i = 0;
src = str;
while (i < len) {
char *dst = outbuf;
/* Hex dump */
do {
if (i < len) {
*dst++ = "0123456789abcdef"[*src >> 4];
*dst++ = "0123456789abcdef"[*src & 0xf];
} else {
*dst++ = ' ';
*dst++ = ' ';
}
dst++; /* space is there by memset */
i++;
if ((i & 7) == 0)
dst++; /* space is there by memset */
src++;
} while (i & 0xf);
/* ASCII dump */
i -= 16;
src -= 16;
do {
if (*src >= ' ' && *src < 0x7f)
*dst++ = *src;
else
*dst++ = '.';
src++;
} while (++i & 0xf);
*dst = '\0';
tprintf(" | %05x %s |\n", i - 16, outbuf);
}
}
bool
tfetch_mem64(struct tcb *const tcp, const uint64_t addr,
const unsigned int len, void *const our_addr)
{
return addr && verbose(tcp) &&
(entering(tcp) || !syserror(tcp)) &&
!umoven(tcp, addr, len, our_addr);
}
bool
tfetch_mem64_ignore_syserror(struct tcb *const tcp, const uint64_t addr,
const unsigned int len, void *const our_addr)
{
return addr && verbose(tcp) &&
!umoven(tcp, addr, len, our_addr);
}
int
umoven_or_printaddr64(struct tcb *const tcp, const uint64_t addr,
const unsigned int len, void *const our_addr)
{
if (tfetch_mem64(tcp, addr, len, our_addr))
return 0;
printaddr64(addr);
return -1;
}
int
umoven_or_printaddr64_ignore_syserror(struct tcb *const tcp,
const uint64_t addr,
const unsigned int len,
void *const our_addr)
{
if (tfetch_mem64_ignore_syserror(tcp, addr, len, our_addr))
return 0;
printaddr64(addr);
return -1;
}
bool
print_int32_array_member(struct tcb *tcp, void *elem_buf, size_t elem_size,
void *data)
{
tprintf("%" PRId32, *(int32_t *) elem_buf);
return true;
}
bool
print_uint32_array_member(struct tcb *tcp, void *elem_buf, size_t elem_size,
void *data)
{
tprintf("%" PRIu32, *(uint32_t *) elem_buf);
return true;
}
bool
print_uint64_array_member(struct tcb *tcp, void *elem_buf, size_t elem_size,
void *data)
{
tprintf("%" PRIu64, *(uint64_t *) elem_buf);
return true;
}
/*
* Iteratively fetch and print up to nmemb elements of elem_size size
* from the array that starts at tracee's address start_addr.
*
* Array elements are being fetched to the address specified by elem_buf.
*
* The fetcher callback function specified by tfetch_mem_func should follow
* the same semantics as tfetch_mem function.
*
* The printer callback function specified by print_func is expected
* to print something; if it returns false, no more iterations will be made.
*
* The pointer specified by opaque_data is passed to each invocation
* of print_func callback function.
*
* This function prints:
* - "NULL", if start_addr is NULL;
* - "[]", if nmemb is 0;
* - start_addr, if nmemb * elem_size overflows or wraps around;
* - start_addr, if the first tfetch_mem_func invocation returned false;
* - elements of the array, delimited by ", ", with the array itself
* enclosed with [] brackets.
*
* If abbrev(tcp) is true, then
* - the maximum number of elements printed equals to max_strlen;
* - "..." is printed instead of max_strlen+1 element
* and no more iterations will be made.
*
* This function returns true only if tfetch_mem_func has returned true
* at least once.
*/
bool
print_array_ex(struct tcb *const tcp,
const kernel_ulong_t start_addr,
const size_t nmemb,
void *const elem_buf,
const size_t elem_size,
tfetch_mem_fn tfetch_mem_func,
print_fn print_func,
void *const opaque_data,
unsigned int flags,
const struct xlat *index_xlat,
size_t index_xlat_size,
const char *index_dflt)
{
if (!start_addr) {
tprints("NULL");
return false;
}
if (!nmemb) {
tprints("[]");
return false;
}
const size_t size = nmemb * elem_size;
const kernel_ulong_t end_addr = start_addr + size;
if (end_addr <= start_addr || size / elem_size != nmemb) {
printaddr(start_addr);
return false;
}
const kernel_ulong_t abbrev_end =
(abbrev(tcp) && max_strlen < nmemb) ?
start_addr + elem_size * max_strlen : end_addr;
kernel_ulong_t cur;
kernel_ulong_t idx = 0;
enum xlat_style xlat_style = flags & XLAT_STYLE_MASK;
for (cur = start_addr; cur < end_addr; cur += elem_size, idx++) {
if (cur != start_addr)
tprints(", ");
if (!tfetch_mem_func(tcp, cur, elem_size, elem_buf)) {
if (cur == start_addr)
printaddr(cur);
else {
tprints("...");
printaddr_comment(cur);
}
break;
}
if (cur == start_addr)
tprints("[");
if (cur >= abbrev_end) {
tprints("...");
cur = end_addr;
break;
}
if (flags & PAF_PRINT_INDICES) {
tprints("[");
if (!index_xlat) {
print_xlat_ex(idx, NULL, xlat_style);
} else if (flags & PAF_INDEX_XLAT_VALUE_INDEXED) {
printxval_indexn_ex(index_xlat,
index_xlat_size, idx,
index_dflt, xlat_style);
} else {
printxvals_ex(idx, index_dflt, xlat_style,
(flags & PAF_INDEX_XLAT_SORTED)
&& idx ? NULL : index_xlat,
NULL);
}
tprints("] = ");
}
if (!print_func(tcp, elem_buf, elem_size, opaque_data)) {
cur = end_addr;
break;
}
}
if (cur != start_addr)
tprints("]");
return cur >= end_addr;
}
int
printargs(struct tcb *tcp)
{
const int n = tcp->s_ent->nargs;
int i;
for (i = 0; i < n; ++i)
tprintf("%s%#" PRI_klx, i ? ", " : "", tcp->u_arg[i]);
return RVAL_DECODED;
}
int
printargs_u(struct tcb *tcp)
{
const int n = tcp->s_ent->nargs;
int i;
for (i = 0; i < n; ++i)
tprintf("%s%u", i ? ", " : "",
(unsigned int) tcp->u_arg[i]);
return RVAL_DECODED;
}
int
printargs_d(struct tcb *tcp)
{
const int n = tcp->s_ent->nargs;
int i;
for (i = 0; i < n; ++i)
tprintf("%s%d", i ? ", " : "",
(int) tcp->u_arg[i]);
return RVAL_DECODED;
}
/* Print abnormal high bits of a kernel_ulong_t value. */
void
print_abnormal_hi(const kernel_ulong_t val)
{
if (current_klongsize > 4) {
const unsigned int hi = (unsigned int) ((uint64_t) val >> 32);
if (hi)
tprintf("%#x<<32|", hi);
}
}
#if defined _LARGEFILE64_SOURCE && defined HAVE_OPEN64
# define open_file open64
#else
# define open_file open
#endif
int
read_int_from_file(struct tcb *tcp, const char *const fname, int *const pvalue)
{
const int fd = open_file(fname, O_RDONLY);
if (fd < 0)
return -1;
long lval;
char buf[sizeof(lval) * 3];
int n = read(fd, buf, sizeof(buf) - 1);
int saved_errno = errno;
close(fd);
if (n < 0) {
errno = saved_errno;
return -1;
}
buf[n] = '\0';
char *endptr = 0;
errno = 0;
lval = strtol(buf, &endptr, 10);
if (!endptr || (*endptr && '\n' != *endptr)
#if INT_MAX < LONG_MAX
|| lval > INT_MAX || lval < INT_MIN
#endif
|| ERANGE == errno) {
if (!errno)
errno = EINVAL;
return -1;
}
*pvalue = (int) lval;
return 0;
}