blob: 170fee7c8288de03d59812b5f0c9076d8a912b61 [file] [log] [blame]
/*
* Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
* Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
* Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
* Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
* Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Linux for s390 port by D.J. Barrow
* <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
* Copyright (c) 2001-2018 The strace developers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "defs.h"
#include "nsig.h"
#include "xstring.h"
/* The libc headers do not define this constant since it should only be
used by the implementation. So we define it here. */
#ifndef SA_RESTORER
# ifdef ASM_SA_RESTORER
# define SA_RESTORER ASM_SA_RESTORER
# endif
#endif
/*
* Some architectures define SA_RESTORER in their headers,
* but do not actually have sa_restorer.
*
* Some architectures, otherwise, do not define SA_RESTORER in their headers,
* but actually have sa_restorer.
*/
#ifdef HAVE_ARCH_SA_RESTORER
# define HAVE_SA_RESTORER HAVE_ARCH_SA_RESTORER
#else /* !HAVE_ARCH_SA_RESTORER */
# ifdef SA_RESTORER
# define HAVE_SA_RESTORER 1
# else
# define HAVE_SA_RESTORER 0
# endif
#endif /* HAVE_ARCH_SA_RESTORER */
#include "xlat/sa_handler_values.h"
#include "xlat/sigact_flags.h"
#include "xlat/sigprocmaskcmds.h"
/* Anonymous realtime signals. */
#ifndef ASM_SIGRTMIN
/* Linux kernel >= 3.18 defines SIGRTMIN to 32 on all architectures. */
# define ASM_SIGRTMIN 32
#endif
#ifndef ASM_SIGRTMAX
/* Under glibc 2.1, SIGRTMAX et al are functions, but __SIGRTMAX is a
constant. This is what we want. Otherwise, just use SIGRTMAX. */
# ifdef SIGRTMAX
# ifndef __SIGRTMAX
# define __SIGRTMAX SIGRTMAX
# endif
# endif
# ifdef __SIGRTMAX
# define ASM_SIGRTMAX __SIGRTMAX
# endif
#endif
/* Note on the size of sigset_t:
*
* In glibc, sigset_t is an array with space for 1024 bits (!),
* even though all arches supported by Linux have only 64 signals
* except MIPS, which has 128. IOW, it is 128 bytes long.
*
* In-kernel sigset_t is sized correctly (it is either 64 or 128 bit long).
* However, some old syscall return only 32 lower bits (one word).
* Example: sys_sigpending vs sys_rt_sigpending.
*
* Be aware of this fact when you try to
* memcpy(&tcp->u_arg[1], &something, sizeof(sigset_t))
* - sizeof(sigset_t) is much bigger than you think,
* it may overflow tcp->u_arg[] array, and it may try to copy more data
* than is really available in <something>.
* Similarly,
* umoven(tcp, addr, sizeof(sigset_t), &sigset)
* may be a bad idea: it'll try to read much more data than needed
* to fetch a sigset_t.
* Use NSIG_BYTES as a size instead.
*/
static const char *
get_sa_handler_str(kernel_ulong_t handler)
{
return xlookup(sa_handler_values, handler);
}
static void
print_sa_handler(kernel_ulong_t handler)
{
const char *sa_handler_str = get_sa_handler_str(handler);
if (sa_handler_str)
tprints(sa_handler_str);
else
printaddr(handler);
}
const char *
signame(const int sig)
{
static char buf[sizeof("SIGRT_%u") + sizeof(int)*3];
if (sig >= 0) {
const unsigned int s = sig;
if (s < nsignals)
return signalent[s];
#ifdef ASM_SIGRTMAX
if (s >= ASM_SIGRTMIN && s <= (unsigned int) ASM_SIGRTMAX) {
xsprintf(buf, "SIGRT_%u", s - ASM_SIGRTMIN);
return buf;
}
#endif
}
xsprintf(buf, "%d", sig);
return buf;
}
static unsigned int
popcount32(const uint32_t *a, unsigned int size)
{
unsigned int count = 0;
for (; size; ++a, --size) {
uint32_t x = *a;
#ifdef HAVE___BUILTIN_POPCOUNT
count += __builtin_popcount(x);
#else
for (; x; ++count)
x &= x - 1;
#endif
}
return count;
}
const char *
sprintsigmask_n(const char *prefix, const void *sig_mask, unsigned int bytes)
{
/*
* The maximum number of signal names to be printed
* is NSIG_BYTES * 8 * 2 / 3.
* Most of signal names have length 7,
* average length of signal names is less than 7.
* The length of prefix string does not exceed 16.
*/
static char outstr[128 + 8 * (NSIG_BYTES * 8 * 2 / 3)];
char *s;
const uint32_t *mask;
uint32_t inverted_mask[NSIG_BYTES / 4];
unsigned int size;
int i;
char sep;
s = stpcpy(outstr, prefix);
mask = sig_mask;
/* length of signal mask in 4-byte words */
size = (bytes >= NSIG_BYTES) ? NSIG_BYTES / 4 : (bytes + 3) / 4;
/* check whether 2/3 or more bits are set */
if (popcount32(mask, size) >= size * (4 * 8) * 2 / 3) {
/* show those signals that are NOT in the mask */
unsigned int j;
for (j = 0; j < size; ++j)
inverted_mask[j] = ~mask[j];
mask = inverted_mask;
*s++ = '~';
}
sep = '[';
for (i = 0; (i = next_set_bit(mask, i, size * (4 * 8))) >= 0; ) {
++i;
*s++ = sep;
if ((unsigned) i < nsignals) {
s = stpcpy(s, signalent[i] + 3);
}
#ifdef ASM_SIGRTMAX
else if (i >= ASM_SIGRTMIN && i <= ASM_SIGRTMAX) {
s = xappendstr(outstr, s, "RT_%u", i - ASM_SIGRTMIN);
}
#endif
else {
s = xappendstr(outstr, s, "%u", i);
}
sep = ' ';
}
if (sep == '[')
*s++ = sep;
*s++ = ']';
*s = '\0';
return outstr;
}
#define sprintsigmask_val(prefix, mask) \
sprintsigmask_n((prefix), &(mask), sizeof(mask))
#define tprintsigmask_val(prefix, mask) \
tprints(sprintsigmask_n((prefix), &(mask), sizeof(mask)))
static const char *
sprint_old_sigmask_val(const char *const prefix, const unsigned long mask)
{
#if defined(current_wordsize) || !defined(WORDS_BIGENDIAN)
return sprintsigmask_n(prefix, &mask, current_wordsize);
#else /* !current_wordsize && WORDS_BIGENDIAN */
if (current_wordsize == sizeof(mask)) {
return sprintsigmask_val(prefix, mask);
} else {
uint32_t mask32 = mask;
return sprintsigmask_val(prefix, mask32);
}
#endif
}
#define tprint_old_sigmask_val(prefix, mask) \
tprints(sprint_old_sigmask_val((prefix), (mask)))
void
printsignal(int nr)
{
tprints(signame(nr));
}
static void
print_sigset_addr_len_limit(struct tcb *const tcp, const kernel_ulong_t addr,
const kernel_ulong_t len, const unsigned int min_len)
{
/*
* Here len is usually equal to NSIG_BYTES or current_wordsize.
* But we code this defensively:
*/
if (len < min_len || len > NSIG_BYTES) {
printaddr(addr);
return;
}
int mask[NSIG_BYTES / sizeof(int)] = {};
if (umoven_or_printaddr(tcp, addr, len, mask))
return;
tprints(sprintsigmask_n("", mask, len));
}
void
print_sigset_addr_len(struct tcb *const tcp, const kernel_ulong_t addr,
const kernel_ulong_t len)
{
print_sigset_addr_len_limit(tcp, addr, len, current_wordsize);
}
void
print_sigset_addr(struct tcb *const tcp, const kernel_ulong_t addr)
{
print_sigset_addr_len_limit(tcp, addr, NSIG_BYTES, NSIG_BYTES);
}
SYS_FUNC(ssetmask)
{
if (entering(tcp)) {
tprint_old_sigmask_val("", (unsigned) tcp->u_arg[0]);
} else if (!syserror(tcp)) {
tcp->auxstr = sprint_old_sigmask_val("old mask ",
(unsigned) tcp->u_rval);
return RVAL_HEX | RVAL_STR;
}
return 0;
}
struct old_sigaction {
/* sa_handler may be a libc #define, need to use other name: */
#if defined MIPS
unsigned int sa_flags;
unsigned long sa_handler__;
unsigned long sa_mask;
#elif defined ALPHA
unsigned long sa_handler__;
unsigned long sa_mask;
unsigned int sa_flags;
#else
unsigned long sa_handler__;
unsigned long sa_mask;
unsigned long sa_flags;
unsigned long sa_restorer;
#endif
}
#ifdef ALPHA
ATTRIBUTE_PACKED
#endif
;
static void
decode_old_sigaction(struct tcb *const tcp, const kernel_ulong_t addr)
{
struct old_sigaction sa;
#ifndef current_wordsize
if (current_wordsize < sizeof(sa.sa_handler__)) {
struct old_sigaction32 {
uint32_t sa_handler__;
uint32_t sa_mask;
uint32_t sa_flags;
uint32_t sa_restorer;
} sa32;
if (umove_or_printaddr(tcp, addr, &sa32))
return;
memset(&sa, 0, sizeof(sa));
sa.sa_handler__ = sa32.sa_handler__;
sa.sa_flags = sa32.sa_flags;
sa.sa_restorer = sa32.sa_restorer;
sa.sa_mask = sa32.sa_mask;
} else
#endif
if (umove_or_printaddr(tcp, addr, &sa))
return;
tprints("{sa_handler=");
print_sa_handler(sa.sa_handler__);
tprints(", sa_mask=");
tprint_old_sigmask_val("", sa.sa_mask);
tprints(", sa_flags=");
printflags(sigact_flags, sa.sa_flags, "SA_???");
#if !(defined ALPHA || defined MIPS)
if (sa.sa_flags & 0x04000000U) {
tprints(", sa_restorer=");
printaddr(sa.sa_restorer);
}
#endif
tprints("}");
}
SYS_FUNC(sigaction)
{
if (entering(tcp)) {
int signo = tcp->u_arg[0];
#if defined SPARC || defined SPARC64
if (signo < 0) {
tprints("-");
signo = -signo;
}
#endif
printsignal(signo);
tprints(", ");
decode_old_sigaction(tcp, tcp->u_arg[1]);
tprints(", ");
} else
decode_old_sigaction(tcp, tcp->u_arg[2]);
return 0;
}
SYS_FUNC(signal)
{
if (entering(tcp)) {
printsignal(tcp->u_arg[0]);
tprints(", ");
print_sa_handler(tcp->u_arg[1]);
return 0;
} else if (!syserror(tcp)) {
tcp->auxstr = get_sa_handler_str(tcp->u_rval);
return RVAL_HEX | RVAL_STR;
}
return 0;
}
SYS_FUNC(sgetmask)
{
if (exiting(tcp) && !syserror(tcp)) {
tcp->auxstr = sprint_old_sigmask_val("mask ", tcp->u_rval);
return RVAL_HEX | RVAL_STR;
}
return 0;
}
SYS_FUNC(sigsuspend)
{
#ifdef MIPS
print_sigset_addr_len(tcp, tcp->u_arg[tcp->s_ent->nargs - 1],
current_wordsize);
#else
tprint_old_sigmask_val("", tcp->u_arg[tcp->s_ent->nargs - 1]);
#endif
return RVAL_DECODED;
}
#ifdef ALPHA
/*
* The OSF/1 sigprocmask is different: it doesn't pass in two pointers,
* but rather passes in the new bitmask as an argument and then returns
* the old bitmask. This "works" because we only have 64 signals to worry
* about. If you want more, use of the rt_sigprocmask syscall is required.
*
* Alpha:
* old = osf_sigprocmask(how, new);
* Everyone else:
* ret = sigprocmask(how, &new, &old, ...);
*/
SYS_FUNC(osf_sigprocmask)
{
if (entering(tcp)) {
printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???");
tprintsigmask_val(", ", tcp->u_arg[1]);
} else if (!syserror(tcp)) {
tcp->auxstr = sprintsigmask_val("old mask ", tcp->u_rval);
return RVAL_HEX | RVAL_STR;
}
return 0;
}
#else /* !ALPHA */
/* "Old" sigprocmask, which operates with word-sized signal masks */
SYS_FUNC(sigprocmask)
{
if (entering(tcp)) {
printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???");
tprints(", ");
print_sigset_addr_len(tcp, tcp->u_arg[1], current_wordsize);
tprints(", ");
} else {
print_sigset_addr_len(tcp, tcp->u_arg[2], current_wordsize);
}
return 0;
}
#endif /* !ALPHA */
SYS_FUNC(kill)
{
tprintf("%d, %s",
(int) tcp->u_arg[0],
signame(tcp->u_arg[1]));
return RVAL_DECODED;
}
SYS_FUNC(tgkill)
{
tprintf("%d, %d, %s",
(int) tcp->u_arg[0],
(int) tcp->u_arg[1],
signame(tcp->u_arg[2]));
return RVAL_DECODED;
}
SYS_FUNC(sigpending)
{
if (exiting(tcp))
print_sigset_addr_len(tcp, tcp->u_arg[0], current_wordsize);
return 0;
}
SYS_FUNC(rt_sigprocmask)
{
/* Note: arg[3] is the length of the sigset. Kernel requires NSIG_BYTES */
if (entering(tcp)) {
printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???");
tprints(", ");
print_sigset_addr_len(tcp, tcp->u_arg[1], tcp->u_arg[3]);
tprints(", ");
} else {
print_sigset_addr_len(tcp, tcp->u_arg[2], tcp->u_arg[3]);
tprintf(", %" PRI_klu, tcp->u_arg[3]);
}
return 0;
}
/* Structure describing the action to be taken when a signal arrives. */
struct new_sigaction {
/* sa_handler may be a libc #define, need to use other name: */
#ifdef MIPS
unsigned int sa_flags;
unsigned long sa_handler__;
#else
unsigned long sa_handler__;
unsigned long sa_flags;
#endif /* !MIPS */
#if HAVE_SA_RESTORER
unsigned long sa_restorer;
#endif
/* Kernel treats sa_mask as an array of longs. */
unsigned long sa_mask[NSIG / sizeof(long)];
};
/* Same for i386-on-x86_64 and similar cases */
struct new_sigaction32 {
uint32_t sa_handler__;
uint32_t sa_flags;
#if HAVE_SA_RESTORER
uint32_t sa_restorer;
#endif
uint32_t sa_mask[2 * (NSIG / sizeof(long))];
};
static void
decode_new_sigaction(struct tcb *const tcp, const kernel_ulong_t addr)
{
struct new_sigaction sa;
#ifndef current_wordsize
if (current_wordsize < sizeof(sa.sa_handler__)) {
struct new_sigaction32 sa32;
if (umove_or_printaddr(tcp, addr, &sa32))
return;
memset(&sa, 0, sizeof(sa));
sa.sa_handler__ = sa32.sa_handler__;
sa.sa_flags = sa32.sa_flags;
#if HAVE_SA_RESTORER && defined SA_RESTORER
sa.sa_restorer = sa32.sa_restorer;
#endif
/* Kernel treats sa_mask as an array of longs.
* For 32-bit process, "long" is uint32_t, thus, for example,
* 32th bit in sa_mask will end up as bit 0 in sa_mask[1].
* But for (64-bit) kernel, 32th bit in sa_mask is
* 32th bit in 0th (64-bit) long!
* For little-endian, it's the same.
* For big-endian, we swap 32-bit words.
*/
sa.sa_mask[0] = ULONG_LONG(sa32.sa_mask[0], sa32.sa_mask[1]);
} else
#endif
if (umove_or_printaddr(tcp, addr, &sa))
return;
tprints("{sa_handler=");
print_sa_handler(sa.sa_handler__);
tprints(", sa_mask=");
/*
* Sigset size is in tcp->u_arg[4] (SPARC)
* or in tcp->u_arg[3] (all other),
* but kernel won't handle sys_rt_sigaction
* with wrong sigset size (just returns EINVAL instead).
* We just fetch the right size, which is NSIG_BYTES.
*/
tprintsigmask_val("", sa.sa_mask);
tprints(", sa_flags=");
printflags(sigact_flags, sa.sa_flags, "SA_???");
#if HAVE_SA_RESTORER && defined SA_RESTORER
if (sa.sa_flags & SA_RESTORER) {
tprints(", sa_restorer=");
printaddr(sa.sa_restorer);
}
#endif
tprints("}");
}
SYS_FUNC(rt_sigaction)
{
if (entering(tcp)) {
printsignal(tcp->u_arg[0]);
tprints(", ");
decode_new_sigaction(tcp, tcp->u_arg[1]);
tprints(", ");
} else {
decode_new_sigaction(tcp, tcp->u_arg[2]);
#if defined(SPARC) || defined(SPARC64)
tprintf(", %#" PRI_klx ", %" PRI_klu, tcp->u_arg[3], tcp->u_arg[4]);
#elif defined(ALPHA)
tprintf(", %" PRI_klu ", %#" PRI_klx, tcp->u_arg[3], tcp->u_arg[4]);
#else
tprintf(", %" PRI_klu, tcp->u_arg[3]);
#endif
}
return 0;
}
SYS_FUNC(rt_sigpending)
{
if (exiting(tcp)) {
/*
* One of the few syscalls where sigset size (arg[1])
* is allowed to be <= NSIG_BYTES, not strictly ==.
* This allows non-rt sigpending() syscall
* to reuse rt_sigpending() code in kernel.
*/
print_sigset_addr_len_limit(tcp, tcp->u_arg[0],
tcp->u_arg[1], 1);
tprintf(", %" PRI_klu, tcp->u_arg[1]);
}
return 0;
}
SYS_FUNC(rt_sigsuspend)
{
/* NB: kernel requires arg[1] == NSIG_BYTES */
print_sigset_addr_len(tcp, tcp->u_arg[0], tcp->u_arg[1]);
tprintf(", %" PRI_klu, tcp->u_arg[1]);
return RVAL_DECODED;
}
static void
print_sigqueueinfo(struct tcb *const tcp, const int sig,
const kernel_ulong_t addr)
{
printsignal(sig);
tprints(", ");
printsiginfo_at(tcp, addr);
}
SYS_FUNC(rt_sigqueueinfo)
{
tprintf("%d, ", (int) tcp->u_arg[0]);
print_sigqueueinfo(tcp, tcp->u_arg[1], tcp->u_arg[2]);
return RVAL_DECODED;
}
SYS_FUNC(rt_tgsigqueueinfo)
{
tprintf("%d, %d, ", (int) tcp->u_arg[0], (int) tcp->u_arg[1]);
print_sigqueueinfo(tcp, tcp->u_arg[2], tcp->u_arg[3]);
return RVAL_DECODED;
}
SYS_FUNC(rt_sigtimedwait)
{
/* NB: kernel requires arg[3] == NSIG_BYTES */
if (entering(tcp)) {
print_sigset_addr_len(tcp, tcp->u_arg[0], tcp->u_arg[3]);
tprints(", ");
if (!(tcp->u_arg[1] && verbose(tcp))) {
/*
* This is the only "return" parameter,
* if we are not going to fetch it on exit,
* decode all parameters on entry.
*/
printaddr(tcp->u_arg[1]);
tprints(", ");
print_timespec(tcp, tcp->u_arg[2]);
tprintf(", %" PRI_klu, tcp->u_arg[3]);
} else {
char *sts = xstrdup(sprint_timespec(tcp, tcp->u_arg[2]));
set_tcb_priv_data(tcp, sts, free);
}
} else {
if (tcp->u_arg[1] && verbose(tcp)) {
printsiginfo_at(tcp, tcp->u_arg[1]);
tprints(", ");
tprints(get_tcb_priv_data(tcp));
tprintf(", %" PRI_klu, tcp->u_arg[3]);
}
if (!syserror(tcp) && tcp->u_rval) {
tcp->auxstr = signame(tcp->u_rval);
return RVAL_STR;
}
}
return 0;
}
SYS_FUNC(restart_syscall)
{
tprintf("<... resuming interrupted %s ...>",
tcp->s_prev_ent ? tcp->s_prev_ent->sys_name : "system call");
return RVAL_DECODED;
}