blob: 34af217d58ab22c171b6b8bb83f8a9dda37f17fb [file] [log] [blame]
/*
* Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
* Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
* Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
* Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
* Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Linux for s390 port by D.J. Barrow
* <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#include "defs.h"
#include <signal.h>
#include <time.h>
#include <errno.h>
#ifndef HAVE_ANDROID_OS
#include <sys/user.h>
#endif
#include <sys/syscall.h>
#include <sys/param.h>
#ifdef HAVE_ANDROID_OS
#include "syscall-android.h"
#endif
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#ifndef PTRACE_PEEKUSR
# define PTRACE_PEEKUSR PTRACE_PEEKUSER
#endif
#elif defined(HAVE_LINUX_PTRACE_H)
#undef PTRACE_SYSCALL
# ifdef HAVE_STRUCT_IA64_FPREG
# define ia64_fpreg XXX_ia64_fpreg
# endif
# ifdef HAVE_STRUCT_PT_ALL_USER_REGS
# define pt_all_user_regs XXX_pt_all_user_regs
# endif
#include <linux/ptrace.h>
# undef ia64_fpreg
# undef pt_all_user_regs
#endif
#if defined (LINUX) && defined (SPARC64)
# undef PTRACE_GETREGS
# define PTRACE_GETREGS PTRACE_GETREGS64
# undef PTRACE_SETREGS
# define PTRACE_SETREGS PTRACE_SETREGS64
#endif /* LINUX && SPARC64 */
#if defined(LINUX) && defined(IA64)
# include <asm/ptrace_offsets.h>
# include <asm/rse.h>
#endif
#define NR_SYSCALL_BASE 0
#ifdef LINUX
#ifndef ERESTARTSYS
#define ERESTARTSYS 512
#endif
#ifndef ERESTARTNOINTR
#define ERESTARTNOINTR 513
#endif
#ifndef ERESTARTNOHAND
#define ERESTARTNOHAND 514 /* restart if no handler.. */
#endif
#ifndef ENOIOCTLCMD
#define ENOIOCTLCMD 515 /* No ioctl command */
#endif
#ifndef ERESTART_RESTARTBLOCK
#define ERESTART_RESTARTBLOCK 516 /* restart by calling sys_restart_syscall */
#endif
#ifndef NSIG
#define NSIG 32
#endif
#ifdef ARM
#undef NSIG
#define NSIG 32
#undef NR_SYSCALL_BASE
#define NR_SYSCALL_BASE __NR_SYSCALL_BASE
#endif
#endif /* LINUX */
#include "syscall.h"
/* Define these shorthand notations to simplify the syscallent files. */
#define TD TRACE_DESC
#define TF TRACE_FILE
#define TI TRACE_IPC
#define TN TRACE_NETWORK
#define TP TRACE_PROCESS
#define TS TRACE_SIGNAL
#define NF SYSCALL_NEVER_FAILS
static const struct sysent sysent0[] = {
#include "syscallent.h"
};
static const int nsyscalls0 = sizeof sysent0 / sizeof sysent0[0];
int qual_flags0[MAX_QUALS];
#if SUPPORTED_PERSONALITIES >= 2
static const struct sysent sysent1[] = {
#include "syscallent1.h"
};
static const int nsyscalls1 = sizeof sysent1 / sizeof sysent1[0];
int qual_flags1[MAX_QUALS];
#endif /* SUPPORTED_PERSONALITIES >= 2 */
#if SUPPORTED_PERSONALITIES >= 3
static const struct sysent sysent2[] = {
#include "syscallent2.h"
};
static const int nsyscalls2 = sizeof sysent2 / sizeof sysent2[0];
int qual_flags2[MAX_QUALS];
#endif /* SUPPORTED_PERSONALITIES >= 3 */
const struct sysent *sysent;
int *qual_flags;
int nsyscalls;
/* Now undef them since short defines cause wicked namespace pollution. */
#undef TD
#undef TF
#undef TI
#undef TN
#undef TP
#undef TS
#undef NF
static const char *const errnoent0[] = {
#include "errnoent.h"
};
static const int nerrnos0 = sizeof errnoent0 / sizeof errnoent0[0];
#if SUPPORTED_PERSONALITIES >= 2
static const char *const errnoent1[] = {
#include "errnoent1.h"
};
static const int nerrnos1 = sizeof errnoent1 / sizeof errnoent1[0];
#endif /* SUPPORTED_PERSONALITIES >= 2 */
#if SUPPORTED_PERSONALITIES >= 3
static const char *const errnoent2[] = {
#include "errnoent2.h"
};
static const int nerrnos2 = sizeof errnoent2 / sizeof errnoent2[0];
#endif /* SUPPORTED_PERSONALITIES >= 3 */
const char *const *errnoent;
int nerrnos;
int current_personality;
#ifndef PERSONALITY0_WORDSIZE
# define PERSONALITY0_WORDSIZE sizeof(long)
#endif
const int personality_wordsize[SUPPORTED_PERSONALITIES] = {
PERSONALITY0_WORDSIZE,
#if SUPPORTED_PERSONALITIES > 1
PERSONALITY1_WORDSIZE,
#endif
#if SUPPORTED_PERSONALITIES > 2
PERSONALITY2_WORDSIZE,
#endif
};;
int
set_personality(int personality)
{
switch (personality) {
case 0:
errnoent = errnoent0;
nerrnos = nerrnos0;
sysent = sysent0;
nsyscalls = nsyscalls0;
ioctlent = ioctlent0;
nioctlents = nioctlents0;
signalent = signalent0;
nsignals = nsignals0;
qual_flags = qual_flags0;
break;
#if SUPPORTED_PERSONALITIES >= 2
case 1:
errnoent = errnoent1;
nerrnos = nerrnos1;
sysent = sysent1;
nsyscalls = nsyscalls1;
ioctlent = ioctlent1;
nioctlents = nioctlents1;
signalent = signalent1;
nsignals = nsignals1;
qual_flags = qual_flags1;
break;
#endif /* SUPPORTED_PERSONALITIES >= 2 */
#if SUPPORTED_PERSONALITIES >= 3
case 2:
errnoent = errnoent2;
nerrnos = nerrnos2;
sysent = sysent2;
nsyscalls = nsyscalls2;
ioctlent = ioctlent2;
nioctlents = nioctlents2;
signalent = signalent2;
nsignals = nsignals2;
qual_flags = qual_flags2;
break;
#endif /* SUPPORTED_PERSONALITIES >= 3 */
default:
return -1;
}
current_personality = personality;
return 0;
}
static int qual_syscall(), qual_signal(), qual_fault(), qual_desc();
static const struct qual_options {
int bitflag;
const char *option_name;
int (*qualify)(const char *, int, int);
const char *argument_name;
} qual_options[] = {
{ QUAL_TRACE, "trace", qual_syscall, "system call" },
{ QUAL_TRACE, "t", qual_syscall, "system call" },
{ QUAL_ABBREV, "abbrev", qual_syscall, "system call" },
{ QUAL_ABBREV, "a", qual_syscall, "system call" },
{ QUAL_VERBOSE, "verbose", qual_syscall, "system call" },
{ QUAL_VERBOSE, "v", qual_syscall, "system call" },
{ QUAL_RAW, "raw", qual_syscall, "system call" },
{ QUAL_RAW, "x", qual_syscall, "system call" },
{ QUAL_SIGNAL, "signal", qual_signal, "signal" },
{ QUAL_SIGNAL, "signals", qual_signal, "signal" },
{ QUAL_SIGNAL, "s", qual_signal, "signal" },
{ QUAL_FAULT, "fault", qual_fault, "fault" },
{ QUAL_FAULT, "faults", qual_fault, "fault" },
{ QUAL_FAULT, "m", qual_fault, "fault" },
{ QUAL_READ, "read", qual_desc, "descriptor" },
{ QUAL_READ, "reads", qual_desc, "descriptor" },
{ QUAL_READ, "r", qual_desc, "descriptor" },
{ QUAL_WRITE, "write", qual_desc, "descriptor" },
{ QUAL_WRITE, "writes", qual_desc, "descriptor" },
{ QUAL_WRITE, "w", qual_desc, "descriptor" },
{ 0, NULL, NULL, NULL },
};
static void
qualify_one(int n, int bitflag, int not, int pers)
{
if (pers == 0 || pers < 0) {
if (not)
qual_flags0[n] &= ~bitflag;
else
qual_flags0[n] |= bitflag;
}
#if SUPPORTED_PERSONALITIES >= 2
if (pers == 1 || pers < 0) {
if (not)
qual_flags1[n] &= ~bitflag;
else
qual_flags1[n] |= bitflag;
}
#endif /* SUPPORTED_PERSONALITIES >= 2 */
#if SUPPORTED_PERSONALITIES >= 3
if (pers == 2 || pers < 0) {
if (not)
qual_flags2[n] &= ~bitflag;
else
qual_flags2[n] |= bitflag;
}
#endif /* SUPPORTED_PERSONALITIES >= 3 */
}
static int
qual_syscall(const char *s, int bitflag, int not)
{
int i;
int rc = -1;
if (isdigit((unsigned char)*s)) {
int i = atoi(s);
if (i < 0 || i >= MAX_QUALS)
return -1;
qualify_one(i, bitflag, not, -1);
return 0;
}
for (i = 0; i < nsyscalls0; i++)
if (strcmp(s, sysent0[i].sys_name) == 0) {
qualify_one(i, bitflag, not, 0);
rc = 0;
}
#if SUPPORTED_PERSONALITIES >= 2
for (i = 0; i < nsyscalls1; i++)
if (strcmp(s, sysent1[i].sys_name) == 0) {
qualify_one(i, bitflag, not, 1);
rc = 0;
}
#endif /* SUPPORTED_PERSONALITIES >= 2 */
#if SUPPORTED_PERSONALITIES >= 3
for (i = 0; i < nsyscalls2; i++)
if (strcmp(s, sysent2[i].sys_name) == 0) {
qualify_one(i, bitflag, not, 2);
rc = 0;
}
#endif /* SUPPORTED_PERSONALITIES >= 3 */
return rc;
}
static int
qual_signal(const char *s, int bitflag, int not)
{
int i;
char buf[32];
if (isdigit((unsigned char)*s)) {
int signo = atoi(s);
if (signo < 0 || signo >= MAX_QUALS)
return -1;
qualify_one(signo, bitflag, not, -1);
return 0;
}
if (strlen(s) >= sizeof buf)
return -1;
strcpy(buf, s);
s = buf;
if (strncasecmp(s, "SIG", 3) == 0)
s += 3;
for (i = 0; i <= NSIG; i++)
if (strcasecmp(s, signame(i) + 3) == 0) {
qualify_one(i, bitflag, not, -1);
return 0;
}
return -1;
}
static int
qual_fault(const char *s, int bitflag, int not)
{
return -1;
}
static int
qual_desc(const char *s, int bitflag, int not)
{
if (isdigit((unsigned char)*s)) {
int desc = atoi(s);
if (desc < 0 || desc >= MAX_QUALS)
return -1;
qualify_one(desc, bitflag, not, -1);
return 0;
}
return -1;
}
static int
lookup_class(const char *s)
{
if (strcmp(s, "file") == 0)
return TRACE_FILE;
if (strcmp(s, "ipc") == 0)
return TRACE_IPC;
if (strcmp(s, "network") == 0)
return TRACE_NETWORK;
if (strcmp(s, "process") == 0)
return TRACE_PROCESS;
if (strcmp(s, "signal") == 0)
return TRACE_SIGNAL;
if (strcmp(s, "desc") == 0)
return TRACE_DESC;
return -1;
}
void
qualify(const char *s)
{
const struct qual_options *opt;
int not;
char *copy;
const char *p;
int i, n;
opt = &qual_options[0];
for (i = 0; (p = qual_options[i].option_name); i++) {
n = strlen(p);
if (strncmp(s, p, n) == 0 && s[n] == '=') {
opt = &qual_options[i];
s += n + 1;
break;
}
}
not = 0;
if (*s == '!') {
not = 1;
s++;
}
if (strcmp(s, "none") == 0) {
not = 1 - not;
s = "all";
}
if (strcmp(s, "all") == 0) {
for (i = 0; i < MAX_QUALS; i++) {
qualify_one(i, opt->bitflag, not, -1);
}
return;
}
for (i = 0; i < MAX_QUALS; i++) {
qualify_one(i, opt->bitflag, !not, -1);
}
if (!(copy = strdup(s))) {
fprintf(stderr, "out of memory\n");
exit(1);
}
for (p = strtok(copy, ","); p; p = strtok(NULL, ",")) {
if (opt->bitflag == QUAL_TRACE && (n = lookup_class(p)) > 0) {
for (i = 0; i < nsyscalls0; i++)
if (sysent0[i].sys_flags & n)
qualify_one(i, opt->bitflag, not, 0);
#if SUPPORTED_PERSONALITIES >= 2
for (i = 0; i < nsyscalls1; i++)
if (sysent1[i].sys_flags & n)
qualify_one(i, opt->bitflag, not, 1);
#endif /* SUPPORTED_PERSONALITIES >= 2 */
#if SUPPORTED_PERSONALITIES >= 3
for (i = 0; i < nsyscalls2; i++)
if (sysent2[i].sys_flags & n)
qualify_one(i, opt->bitflag, not, 2);
#endif /* SUPPORTED_PERSONALITIES >= 3 */
continue;
}
if (opt->qualify(p, opt->bitflag, not)) {
fprintf(stderr, "strace: invalid %s `%s'\n",
opt->argument_name, p);
exit(1);
}
}
free(copy);
return;
}
static void
dumpio(struct tcb *tcp)
{
if (syserror(tcp))
return;
if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= MAX_QUALS)
return;
if (tcp->scno < 0 || tcp->scno >= nsyscalls)
return;
if (sysent[tcp->scno].sys_func == printargs)
return;
if (qual_flags[tcp->u_arg[0]] & QUAL_READ) {
if (sysent[tcp->scno].sys_func == sys_read ||
sysent[tcp->scno].sys_func == sys_pread ||
sysent[tcp->scno].sys_func == sys_pread64 ||
sysent[tcp->scno].sys_func == sys_recv ||
sysent[tcp->scno].sys_func == sys_recvfrom)
dumpstr(tcp, tcp->u_arg[1], tcp->u_rval);
else if (sysent[tcp->scno].sys_func == sys_readv)
dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
return;
}
if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE) {
if (sysent[tcp->scno].sys_func == sys_write ||
sysent[tcp->scno].sys_func == sys_pwrite ||
sysent[tcp->scno].sys_func == sys_pwrite64 ||
sysent[tcp->scno].sys_func == sys_send ||
sysent[tcp->scno].sys_func == sys_sendto)
dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]);
else if (sysent[tcp->scno].sys_func == sys_writev)
dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
return;
}
}
#ifndef FREEBSD
enum subcall_style { shift_style, deref_style, mask_style, door_style };
#else /* FREEBSD */
enum subcall_style { shift_style, deref_style, mask_style, door_style, table_style };
struct subcall {
int call;
int nsubcalls;
int subcalls[5];
};
static const struct subcall subcalls_table[] = {
{ SYS_shmsys, 5, { SYS_shmat, SYS_shmctl, SYS_shmdt, SYS_shmget, SYS_shmctl } },
#ifdef SYS_semconfig
{ SYS_semsys, 4, { SYS___semctl, SYS_semget, SYS_semop, SYS_semconfig } },
#else
{ SYS_semsys, 3, { SYS___semctl, SYS_semget, SYS_semop } },
#endif
{ SYS_msgsys, 4, { SYS_msgctl, SYS_msgget, SYS_msgsnd, SYS_msgrcv } },
};
#endif /* FREEBSD */
#if !(defined(LINUX) && ( defined(ALPHA) || defined(MIPS) || defined(__ARM_EABI__) ))
static void
decode_subcall(tcp, subcall, nsubcalls, style)
struct tcb *tcp;
int subcall;
int nsubcalls;
enum subcall_style style;
{
unsigned long addr, mask;
int i;
int size = personality_wordsize[current_personality];
switch (style) {
case shift_style:
if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= nsubcalls)
return;
tcp->scno = subcall + tcp->u_arg[0];
if (sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs--;
for (i = 0; i < tcp->u_nargs; i++)
tcp->u_arg[i] = tcp->u_arg[i + 1];
break;
case deref_style:
if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= nsubcalls)
return;
tcp->scno = subcall + tcp->u_arg[0];
addr = tcp->u_arg[1];
for (i = 0; i < sysent[tcp->scno].nargs; i++) {
if (size == sizeof(int)) {
unsigned int arg;
if (umove(tcp, addr, &arg) < 0)
arg = 0;
tcp->u_arg[i] = arg;
}
else if (size == sizeof(long)) {
unsigned long arg;
if (umove(tcp, addr, &arg) < 0)
arg = 0;
tcp->u_arg[i] = arg;
}
else
abort();
addr += size;
}
tcp->u_nargs = sysent[tcp->scno].nargs;
break;
case mask_style:
mask = (tcp->u_arg[0] >> 8) & 0xff;
for (i = 0; mask; i++)
mask >>= 1;
if (i >= nsubcalls)
return;
tcp->u_arg[0] &= 0xff;
tcp->scno = subcall + i;
if (sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
break;
case door_style:
/*
* Oh, yuck. The call code is the *sixth* argument.
* (don't you mean the *last* argument? - JH)
*/
if (tcp->u_arg[5] < 0 || tcp->u_arg[5] >= nsubcalls)
return;
tcp->scno = subcall + tcp->u_arg[5];
if (sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs--;
break;
#ifdef FREEBSD
case table_style:
for (i = 0; i < sizeof(subcalls_table) / sizeof(struct subcall); i++)
if (subcalls_table[i].call == tcp->scno) break;
if (i < sizeof(subcalls_table) / sizeof(struct subcall) &&
tcp->u_arg[0] >= 0 && tcp->u_arg[0] < subcalls_table[i].nsubcalls) {
tcp->scno = subcalls_table[i].subcalls[tcp->u_arg[0]];
for (i = 0; i < tcp->u_nargs; i++)
tcp->u_arg[i] = tcp->u_arg[i + 1];
}
break;
#endif /* FREEBSD */
}
}
#endif
struct tcb *tcp_last = NULL;
static int
internal_syscall(struct tcb *tcp)
{
/*
* We must always trace a few critical system calls in order to
* correctly support following forks in the presence of tracing
* qualifiers.
*/
int (*func)();
if (tcp->scno < 0 || tcp->scno >= nsyscalls)
return 0;
func = sysent[tcp->scno].sys_func;
if (sys_exit == func)
return internal_exit(tcp);
if ( sys_fork == func
#if defined(FREEBSD) || defined(LINUX) || defined(SUNOS4)
|| sys_vfork == func
#endif
#ifdef LINUX
|| sys_clone == func
#endif
#if UNIXWARE > 2
|| sys_rfork == func
#endif
)
return internal_fork(tcp);
if ( sys_execve == func
#if defined(SPARC) || defined(SPARC64) || defined(SUNOS4)
|| sys_execv == func
#endif
#if UNIXWARE > 2
|| sys_rexecve == func
#endif
)
return internal_exec(tcp);
if ( sys_waitpid == func
|| sys_wait4 == func
#if defined(SVR4) || defined(FREEBSD) || defined(SUNOS4)
|| sys_wait == func
#endif
#ifdef ALPHA
|| sys_osf_wait4 == func
#endif
)
return internal_wait(tcp, 2);
#if defined(LINUX) || defined(SVR4)
if (sys_waitid == func)
return internal_wait(tcp, 3);
#endif
return 0;
}
#ifdef LINUX
#if defined (I386)
static long eax;
#elif defined (IA64)
long r8, r10, psr;
long ia32 = 0;
#elif defined (POWERPC)
static long result,flags;
#elif defined (M68K)
static long d0;
#elif defined(BFIN)
static long r0;
#elif defined (ARM)
static struct pt_regs regs;
#elif defined (ALPHA)
static long r0;
static long a3;
#elif defined(AVR32)
static struct pt_regs regs;
#elif defined (SPARC) || defined (SPARC64)
static struct pt_regs regs;
static unsigned long trap;
#elif defined(LINUX_MIPSN32)
static long long a3;
static long long r2;
#elif defined(MIPS)
static long a3;
static long r2;
#elif defined(S390) || defined(S390X)
static long gpr2;
static long pc;
static long syscall_mode;
#elif defined(HPPA)
static long r28;
#elif defined(SH)
static long r0;
#elif defined(SH64)
static long r9;
#elif defined(X86_64)
static long rax;
#elif defined(CRISV10) || defined(CRISV32)
static long r10;
#elif defined(MICROBLAZE)
static long r3;
#endif
#endif /* LINUX */
#ifdef FREEBSD
struct reg regs;
#endif /* FREEBSD */
int
get_scno(struct tcb *tcp)
{
long scno = 0;
#ifdef LINUX
# if defined(S390) || defined(S390X)
if (tcp->flags & TCB_WAITEXECVE) {
/*
* When the execve system call completes successfully, the
* new process still has -ENOSYS (old style) or __NR_execve
* (new style) in gpr2. We cannot recover the scno again
* by disassembly, because the image that executed the
* syscall is gone now. Fortunately, we don't want it. We
* leave the flag set so that syscall_fixup can fake the
* result.
*/
if (tcp->flags & TCB_INSYSCALL)
return 1;
/*
* This is the SIGTRAP after execve. We cannot try to read
* the system call here either.
*/
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
if (upeek(tcp, PT_GPR2, &syscall_mode) < 0)
return -1;
if (syscall_mode != -ENOSYS) {
/*
* Since kernel version 2.5.44 the scno gets passed in gpr2.
*/
scno = syscall_mode;
} else {
/*
* Old style of "passing" the scno via the SVC instruction.
*/
long opcode, offset_reg, tmp;
void * svc_addr;
int gpr_offset[16] = {PT_GPR0, PT_GPR1, PT_ORIGGPR2, PT_GPR3,
PT_GPR4, PT_GPR5, PT_GPR6, PT_GPR7,
PT_GPR8, PT_GPR9, PT_GPR10, PT_GPR11,
PT_GPR12, PT_GPR13, PT_GPR14, PT_GPR15};
if (upeek(tcp, PT_PSWADDR, &pc) < 0)
return -1;
errno = 0;
opcode = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)(pc-sizeof(long)), 0);
if (errno) {
perror("peektext(pc-oneword)");
return -1;
}
/*
* We have to check if the SVC got executed directly or via an
* EXECUTE instruction. In case of EXECUTE it is necessary to do
* instruction decoding to derive the system call number.
* Unfortunately the opcode sizes of EXECUTE and SVC are differently,
* so that this doesn't work if a SVC opcode is part of an EXECUTE
* opcode. Since there is no way to find out the opcode size this
* is the best we can do...
*/
if ((opcode & 0xff00) == 0x0a00) {
/* SVC opcode */
scno = opcode & 0xff;
}
else {
/* SVC got executed by EXECUTE instruction */
/*
* Do instruction decoding of EXECUTE. If you really want to
* understand this, read the Principles of Operations.
*/
svc_addr = (void *) (opcode & 0xfff);
tmp = 0;
offset_reg = (opcode & 0x000f0000) >> 16;
if (offset_reg && (upeek(tcp, gpr_offset[offset_reg], &tmp) < 0))
return -1;
svc_addr += tmp;
tmp = 0;
offset_reg = (opcode & 0x0000f000) >> 12;
if (offset_reg && (upeek(tcp, gpr_offset[offset_reg], &tmp) < 0))
return -1;
svc_addr += tmp;
scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, svc_addr, 0);
if (errno)
return -1;
# if defined(S390X)
scno >>= 48;
# else
scno >>= 16;
# endif
tmp = 0;
offset_reg = (opcode & 0x00f00000) >> 20;
if (offset_reg && (upeek(tcp, gpr_offset[offset_reg], &tmp) < 0))
return -1;
scno = (scno | tmp) & 0xff;
}
}
# elif defined (POWERPC)
if (upeek(tcp, sizeof(unsigned long)*PT_R0, &scno) < 0)
return -1;
if (!(tcp->flags & TCB_INSYSCALL)) {
/* Check if we return from execve. */
if (scno == 0 && (tcp->flags & TCB_WAITEXECVE)) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
}
# ifdef POWERPC64
if (!(tcp->flags & TCB_INSYSCALL)) {
static int currpers = -1;
long val;
int pid = tcp->pid;
/* Check for 64/32 bit mode. */
if (upeek(tcp, sizeof (unsigned long)*PT_MSR, &val) < 0)
return -1;
/* SF is bit 0 of MSR */
if (val < 0)
currpers = 0;
else
currpers = 1;
if (currpers != current_personality) {
static const char *const names[] = {"64 bit", "32 bit"};
set_personality(currpers);
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
pid, names[current_personality]);
}
}
# endif
# elif defined(AVR32)
/*
* Read complete register set in one go.
*/
if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, &regs) < 0)
return -1;
/*
* We only need to grab the syscall number on syscall entry.
*/
if (!(tcp->flags & TCB_INSYSCALL)) {
scno = regs.r8;
/* Check if we return from execve. */
if (tcp->flags & TCB_WAITEXECVE) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
}
# elif defined(BFIN)
if (upeek(tcp, PT_ORIG_P0, &scno))
return -1;
# elif defined (I386)
if (upeek(tcp, 4*ORIG_EAX, &scno) < 0)
return -1;
# elif defined (X86_64)
if (upeek(tcp, 8*ORIG_RAX, &scno) < 0)
return -1;
if (!(tcp->flags & TCB_INSYSCALL)) {
static int currpers = -1;
long val;
int pid = tcp->pid;
/* Check CS register value. On x86-64 linux it is:
* 0x33 for long mode (64 bit)
* 0x23 for compatibility mode (32 bit)
* It takes only one ptrace and thus doesn't need
* to be cached.
*/
if (upeek(tcp, 8*CS, &val) < 0)
return -1;
switch (val) {
case 0x23: currpers = 1; break;
case 0x33: currpers = 0; break;
default:
fprintf(stderr, "Unknown value CS=0x%02X while "
"detecting personality of process "
"PID=%d\n", (int)val, pid);
currpers = current_personality;
break;
}
# if 0
/* This version analyzes the opcode of a syscall instruction.
* (int 0x80 on i386 vs. syscall on x86-64)
* It works, but is too complicated.
*/
unsigned long val, rip, i;
if (upeek(tcp, 8*RIP, &rip) < 0)
perror("upeek(RIP)");
/* sizeof(syscall) == sizeof(int 0x80) == 2 */
rip -= 2;
errno = 0;
call = ptrace(PTRACE_PEEKTEXT, pid, (char *)rip, (char *)0);
if (errno)
fprintf(stderr, "ptrace_peektext failed: %s\n",
strerror(errno));
switch (call & 0xffff) {
/* x86-64: syscall = 0x0f 0x05 */
case 0x050f: currpers = 0; break;
/* i386: int 0x80 = 0xcd 0x80 */
case 0x80cd: currpers = 1; break;
default:
currpers = current_personality;
fprintf(stderr,
"Unknown syscall opcode (0x%04X) while "
"detecting personality of process "
"PID=%d\n", (int)call, pid);
break;
}
# endif
if (currpers != current_personality) {
static const char *const names[] = {"64 bit", "32 bit"};
set_personality(currpers);
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
pid, names[current_personality]);
}
}
# elif defined(IA64)
# define IA64_PSR_IS ((long)1 << 34)
if (upeek (tcp, PT_CR_IPSR, &psr) >= 0)
ia32 = (psr & IA64_PSR_IS) != 0;
if (!(tcp->flags & TCB_INSYSCALL)) {
if (ia32) {
if (upeek(tcp, PT_R1, &scno) < 0) /* orig eax */
return -1;
} else {
if (upeek (tcp, PT_R15, &scno) < 0)
return -1;
}
/* Check if we return from execve. */
if (tcp->flags & TCB_WAITEXECVE) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
} else {
/* syscall in progress */
if (upeek (tcp, PT_R8, &r8) < 0)
return -1;
if (upeek (tcp, PT_R10, &r10) < 0)
return -1;
}
# elif defined (ARM)
/*
* Read complete register set in one go.
*/
if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (void *)&regs) == -1)
return -1;
/*
* We only need to grab the syscall number on syscall entry.
*/
if (regs.ARM_ip == 0) {
if (!(tcp->flags & TCB_INSYSCALL)) {
/* Check if we return from execve. */
if (tcp->flags & TCB_WAITEXECVE) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
}
/*
* Note: we only deal with only 32-bit CPUs here.
*/
if (regs.ARM_cpsr & 0x20) {
/*
* Get the Thumb-mode system call number
*/
scno = regs.ARM_r7;
} else {
/*
* Get the ARM-mode system call number
*/
errno = 0;
scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, (void *)(regs.ARM_pc - 4), NULL);
if (errno)
return -1;
if (scno == 0 && (tcp->flags & TCB_WAITEXECVE)) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
/* Handle the EABI syscall convention. We do not
bother converting structures between the two
ABIs, but basic functionality should work even
if strace and the traced program have different
ABIs. */
if (scno == 0xef000000) {
scno = regs.ARM_r7;
} else {
if ((scno & 0x0ff00000) != 0x0f900000) {
fprintf(stderr, "syscall: unknown syscall trap 0x%08lx\n",
scno);
return -1;
}
/*
* Fixup the syscall number
*/
scno &= 0x000fffff;
}
}
if (scno & 0x0f0000) {
/*
* Handle ARM specific syscall
*/
set_personality(1);
scno &= 0x0000ffff;
} else
set_personality(0);
if (tcp->flags & TCB_INSYSCALL) {
fprintf(stderr, "pid %d stray syscall entry\n", tcp->pid);
tcp->flags &= ~TCB_INSYSCALL;
}
} else {
if (!(tcp->flags & TCB_INSYSCALL)) {
fprintf(stderr, "pid %d stray syscall exit\n", tcp->pid);
tcp->flags |= TCB_INSYSCALL;
}
}
# elif defined (M68K)
if (upeek(tcp, 4*PT_ORIG_D0, &scno) < 0)
return -1;
# elif defined (LINUX_MIPSN32)
unsigned long long regs[38];
if (ptrace (PTRACE_GETREGS, tcp->pid, NULL, (long) &regs) < 0)
return -1;
a3 = regs[REG_A3];
r2 = regs[REG_V0];
if(!(tcp->flags & TCB_INSYSCALL)) {
scno = r2;
/* Check if we return from execve. */
if (scno == 0 && tcp->flags & TCB_WAITEXECVE) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
if (scno < 0 || scno > nsyscalls) {
if(a3 == 0 || a3 == -1) {
if(debug)
fprintf (stderr, "stray syscall exit: v0 = %ld\n", scno);
return 0;
}
}
}
# elif defined (MIPS)
if (upeek(tcp, REG_A3, &a3) < 0)
return -1;
if(!(tcp->flags & TCB_INSYSCALL)) {
if (upeek(tcp, REG_V0, &scno) < 0)
return -1;
/* Check if we return from execve. */
if (scno == 0 && tcp->flags & TCB_WAITEXECVE) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
if (scno < 0 || scno > nsyscalls) {
if(a3 == 0 || a3 == -1) {
if(debug)
fprintf (stderr, "stray syscall exit: v0 = %ld\n", scno);
return 0;
}
}
} else {
if (upeek(tcp, REG_V0, &r2) < 0)
return -1;
}
# elif defined (ALPHA)
if (upeek(tcp, REG_A3, &a3) < 0)
return -1;
if (!(tcp->flags & TCB_INSYSCALL)) {
if (upeek(tcp, REG_R0, &scno) < 0)
return -1;
/* Check if we return from execve. */
if (scno == 0 && tcp->flags & TCB_WAITEXECVE) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
/*
* Do some sanity checks to figure out if it's
* really a syscall entry
*/
if (scno < 0 || scno > nsyscalls) {
if (a3 == 0 || a3 == -1) {
if (debug)
fprintf (stderr, "stray syscall exit: r0 = %ld\n", scno);
return 0;
}
}
}
else {
if (upeek(tcp, REG_R0, &r0) < 0)
return -1;
}
# elif defined (SPARC) || defined (SPARC64)
/* Everything we need is in the current register set. */
if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)&regs, 0) < 0)
return -1;
/* If we are entering, then disassemble the syscall trap. */
if (!(tcp->flags & TCB_INSYSCALL)) {
/* Retrieve the syscall trap instruction. */
errno = 0;
# if defined(SPARC64)
trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)regs.tpc, 0);
trap >>= 32;
# else
trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)regs.pc, 0);
# endif
if (errno)
return -1;
/* Disassemble the trap to see what personality to use. */
switch (trap) {
case 0x91d02010:
/* Linux/SPARC syscall trap. */
set_personality(0);
break;
case 0x91d0206d:
/* Linux/SPARC64 syscall trap. */
set_personality(2);
break;
case 0x91d02000:
/* SunOS syscall trap. (pers 1) */
fprintf(stderr,"syscall: SunOS no support\n");
return -1;
case 0x91d02008:
/* Solaris 2.x syscall trap. (per 2) */
set_personality(1);
break;
case 0x91d02009:
/* NetBSD/FreeBSD syscall trap. */
fprintf(stderr,"syscall: NetBSD/FreeBSD not supported\n");
return -1;
case 0x91d02027:
/* Solaris 2.x gettimeofday */
set_personality(1);
break;
default:
/* Unknown syscall trap. */
if(tcp->flags & TCB_WAITEXECVE) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
# if defined (SPARC64)
fprintf(stderr,"syscall: unknown syscall trap %08lx %016lx\n", trap, regs.tpc);
# else
fprintf(stderr,"syscall: unknown syscall trap %08lx %08lx\n", trap, regs.pc);
# endif
return -1;
}
/* Extract the system call number from the registers. */
if (trap == 0x91d02027)
scno = 156;
else
scno = regs.u_regs[U_REG_G1];
if (scno == 0) {
scno = regs.u_regs[U_REG_O0];
memmove (&regs.u_regs[U_REG_O0], &regs.u_regs[U_REG_O1], 7*sizeof(regs.u_regs[0]));
}
}
# elif defined(HPPA)
if (upeek(tcp, PT_GR20, &scno) < 0)
return -1;
if (!(tcp->flags & TCB_INSYSCALL)) {
/* Check if we return from execve. */
if ((tcp->flags & TCB_WAITEXECVE)) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
}
# elif defined(SH)
/*
* In the new syscall ABI, the system call number is in R3.
*/
if (upeek(tcp, 4*(REG_REG0+3), &scno) < 0)
return -1;
if (scno < 0) {
/* Odd as it may seem, a glibc bug has been known to cause
glibc to issue bogus negative syscall numbers. So for
our purposes, make strace print what it *should* have been */
long correct_scno = (scno & 0xff);
if (debug)
fprintf(stderr,
"Detected glibc bug: bogus system call"
" number = %ld, correcting to %ld\n",
scno,
correct_scno);
scno = correct_scno;
}
if (!(tcp->flags & TCB_INSYSCALL)) {
/* Check if we return from execve. */
if (scno == 0 && tcp->flags & TCB_WAITEXECVE) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
}
# elif defined(SH64)
if (upeek(tcp, REG_SYSCALL, &scno) < 0)
return -1;
scno &= 0xFFFF;
if (!(tcp->flags & TCB_INSYSCALL)) {
/* Check if we return from execve. */
if (tcp->flags & TCB_WAITEXECVE) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
}
# elif defined(CRISV10) || defined(CRISV32)
if (upeek(tcp, 4*PT_R9, &scno) < 0)
return -1;
# elif defined(TILE)
if (upeek(tcp, PTREGS_OFFSET_REG(10), &scno) < 0)
return -1;
if (!(tcp->flags & TCB_INSYSCALL)) {
/* Check if we return from execve. */
if (tcp->flags & TCB_WAITEXECVE) {
tcp->flags &= ~TCB_WAITEXECVE;
return 0;
}
}
# elif defined(MICROBLAZE)
if (upeek(tcp, 0, &scno) < 0)
return -1;
# endif
#endif /* LINUX */
#ifdef SUNOS4
if (upeek(tcp, uoff(u_arg[7]), &scno) < 0)
return -1;
#elif defined(SH)
/* new syscall ABI returns result in R0 */
if (upeek(tcp, 4*REG_REG0, (long *)&r0) < 0)
return -1;
#elif defined(SH64)
/* ABI defines result returned in r9 */
if (upeek(tcp, REG_GENERAL(9), (long *)&r9) < 0)
return -1;
#endif
#ifdef USE_PROCFS
# ifdef HAVE_PR_SYSCALL
scno = tcp->status.PR_SYSCALL;
# else
# ifndef FREEBSD
scno = tcp->status.PR_WHAT;
# else
if (pread(tcp->pfd_reg, &regs, sizeof(regs), 0) < 0) {
perror("pread");
return -1;
}
switch (regs.r_eax) {
case SYS_syscall:
case SYS___syscall:
pread(tcp->pfd, &scno, sizeof(scno), regs.r_esp + sizeof(int));
break;
default:
scno = regs.r_eax;
break;
}
# endif /* FREEBSD */
# endif /* !HAVE_PR_SYSCALL */
#endif /* USE_PROCFS */
if (!(tcp->flags & TCB_INSYSCALL))
tcp->scno = scno;
return 1;
}
long
known_scno(struct tcb *tcp)
{
long scno = tcp->scno;
#if SUPPORTED_PERSONALITIES > 1
if (scno >= 0 && scno < nsyscalls && sysent[scno].native_scno != 0)
scno = sysent[scno].native_scno;
else
#endif
scno += NR_SYSCALL_BASE;
return scno;
}
/* Called in trace_syscall() at each syscall entry and exit.
* Returns:
* 0: "ignore this syscall", bail out of trace_syscall() silently.
* 1: ok, continue in trace_syscall().
* other: error, trace_syscall() should print error indicator
* ("????" etc) and bail out.
*/
static int
syscall_fixup(struct tcb *tcp)
{
#ifdef USE_PROCFS
int scno = known_scno(tcp);
if (!(tcp->flags & TCB_INSYSCALL)) {
if (tcp->status.PR_WHY != PR_SYSENTRY) {
if (
scno == SYS_fork
#ifdef SYS_vfork
|| scno == SYS_vfork
#endif /* SYS_vfork */
#ifdef SYS_fork1
|| scno == SYS_fork1
#endif /* SYS_fork1 */
#ifdef SYS_forkall
|| scno == SYS_forkall
#endif /* SYS_forkall */
#ifdef SYS_rfork1
|| scno == SYS_rfork1
#endif /* SYS_fork1 */
#ifdef SYS_rforkall
|| scno == SYS_rforkall
#endif /* SYS_rforkall */
) {
/* We are returning in the child, fake it. */
tcp->status.PR_WHY = PR_SYSENTRY;
trace_syscall(tcp);
tcp->status.PR_WHY = PR_SYSEXIT;
}
else {
fprintf(stderr, "syscall: missing entry\n");
tcp->flags |= TCB_INSYSCALL;
}
}
}
else {
if (tcp->status.PR_WHY != PR_SYSEXIT) {
fprintf(stderr, "syscall: missing exit\n");
tcp->flags &= ~TCB_INSYSCALL;
}
}
#endif /* USE_PROCFS */
#ifdef SUNOS4
if (!(tcp->flags & TCB_INSYSCALL)) {
if (scno == 0) {
fprintf(stderr, "syscall: missing entry\n");
tcp->flags |= TCB_INSYSCALL;
}
}
else {
if (scno != 0) {
if (debug) {
/*
* This happens when a signal handler
* for a signal which interrupted a
* a system call makes another system call.
*/
fprintf(stderr, "syscall: missing exit\n");
}
tcp->flags &= ~TCB_INSYSCALL;
}
}
#endif /* SUNOS4 */
#ifdef LINUX
#if defined (I386)
if (upeek(tcp, 4*EAX, &eax) < 0)
return -1;
if (eax != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) {
if (debug)
fprintf(stderr, "stray syscall exit: eax = %ld\n", eax);
return 0;
}
#elif defined (X86_64)
if (upeek(tcp, 8*RAX, &rax) < 0)
return -1;
if (current_personality == 1)
rax = (long int)(int)rax; /* sign extend from 32 bits */
if (rax != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) {
if (debug)
fprintf(stderr, "stray syscall exit: rax = %ld\n", rax);
return 0;
}
#elif defined (S390) || defined (S390X)
if (upeek(tcp, PT_GPR2, &gpr2) < 0)
return -1;
if (syscall_mode != -ENOSYS)
syscall_mode = tcp->scno;
if (gpr2 != syscall_mode && !(tcp->flags & TCB_INSYSCALL)) {
if (debug)
fprintf(stderr, "stray syscall exit: gpr2 = %ld\n", gpr2);
return 0;
}
else if (((tcp->flags & (TCB_INSYSCALL|TCB_WAITEXECVE))
== (TCB_INSYSCALL|TCB_WAITEXECVE))
&& (gpr2 == -ENOSYS || gpr2 == tcp->scno)) {
/*
* Fake a return value of zero. We leave the TCB_WAITEXECVE
* flag set for the post-execve SIGTRAP to see and reset.
*/
gpr2 = 0;
}
#elif defined (POWERPC)
# define SO_MASK 0x10000000
if (upeek(tcp, sizeof(unsigned long)*PT_CCR, &flags) < 0)
return -1;
if (upeek(tcp, sizeof(unsigned long)*PT_R3, &result) < 0)
return -1;
if (flags & SO_MASK)
result = -result;
#elif defined (M68K)
if (upeek(tcp, 4*PT_D0, &d0) < 0)
return -1;
if (d0 != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) {
if (debug)
fprintf(stderr, "stray syscall exit: d0 = %ld\n", d0);
return 0;
}
#elif defined (ARM)
/*
* Nothing required
*/
#elif defined(BFIN)
if (upeek(tcp, PT_R0, &r0) < 0)
return -1;
#elif defined (HPPA)
if (upeek(tcp, PT_GR28, &r28) < 0)
return -1;
#elif defined(IA64)
if (upeek(tcp, PT_R10, &r10) < 0)
return -1;
if (upeek(tcp, PT_R8, &r8) < 0)
return -1;
if (ia32 && r8 != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) {
if (debug)
fprintf(stderr, "stray syscall exit: r8 = %ld\n", r8);
return 0;
}
#elif defined(CRISV10) || defined(CRISV32)
if (upeek(tcp, 4*PT_R10, &r10) < 0)
return -1;
if (r10 != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) {
if (debug)
fprintf(stderr, "stray syscall exit: r10 = %ld\n", r10);
return 0;
}
#elif defined(MICROBLAZE)
if (upeek(tcp, 3 * 4, &r3) < 0)
return -1;
if (r3 != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) {
if (debug)
fprintf(stderr, "stray syscall exit: r3 = %ld\n", r3);
return 0;
}
#endif
#endif /* LINUX */
return 1;
}
#ifdef LINUX
/*
* Check the syscall return value register value for whether it is
* a negated errno code indicating an error, or a success return value.
*/
static inline int
is_negated_errno(unsigned long int val)
{
unsigned long int max = -(long int) nerrnos;
if (personality_wordsize[current_personality] < sizeof(val)) {
val = (unsigned int) val;
max = (unsigned int) max;
}
return val > max;
}
#endif
static int
get_error(struct tcb *tcp)
{
int u_error = 0;
#ifdef LINUX
int check_errno = 1;
if (tcp->scno >= 0 && tcp->scno < nsyscalls &&
sysent[tcp->scno].sys_flags & SYSCALL_NEVER_FAILS) {
check_errno = 0;
}
# if defined(S390) || defined(S390X)
if (check_errno && is_negated_errno(gpr2)) {
tcp->u_rval = -1;
u_error = -gpr2;
}
else {
tcp->u_rval = gpr2;
u_error = 0;
}
# elif defined(I386)
if (check_errno && is_negated_errno(eax)) {
tcp->u_rval = -1;
u_error = -eax;
}
else {
tcp->u_rval = eax;
u_error = 0;
}
# elif defined(X86_64)
if (check_errno && is_negated_errno(rax)) {
tcp->u_rval = -1;
u_error = -rax;
}
else {
tcp->u_rval = rax;
u_error = 0;
}
# elif defined(IA64)
if (ia32) {
int err;
err = (int)r8;
if (check_errno && is_negated_errno(err)) {
tcp->u_rval = -1;
u_error = -err;
}
else {
tcp->u_rval = err;
u_error = 0;
}
} else {
if (check_errno && r10) {
tcp->u_rval = -1;
u_error = r8;
} else {
tcp->u_rval = r8;
u_error = 0;
}
}
# elif defined(MIPS)
if (check_errno && a3) {
tcp->u_rval = -1;
u_error = r2;
} else {
tcp->u_rval = r2;
u_error = 0;
}
# elif defined(POWERPC)
if (check_errno && is_negated_errno(result)) {
tcp->u_rval = -1;
u_error = -result;
}
else {
tcp->u_rval = result;
u_error = 0;
}
# elif defined(M68K)
if (check_errno && is_negated_errno(d0)) {
tcp->u_rval = -1;
u_error = -d0;
}
else {
tcp->u_rval = d0;
u_error = 0;
}
# elif defined(ARM)
if (check_errno && is_negated_errno(regs.ARM_r0)) {
tcp->u_rval = -1;
u_error = -regs.ARM_r0;
}
else {
tcp->u_rval = regs.ARM_r0;
u_error = 0;
}
# elif defined(AVR32)
if (check_errno && regs.r12 && (unsigned) -regs.r12 < nerrnos) {
tcp->u_rval = -1;
u_error = -regs.r12;
}
else {
tcp->u_rval = regs.r12;
u_error = 0;
}
# elif defined(BFIN)
if (check_errno && is_negated_errno(r0)) {
tcp->u_rval = -1;
u_error = -r0;
} else {
tcp->u_rval = r0;
u_error = 0;
}
# elif defined(ALPHA)
if (check_errno && a3) {
tcp->u_rval = -1;
u_error = r0;
}
else {
tcp->u_rval = r0;
u_error = 0;
}
# elif defined(SPARC)
if (check_errno && regs.psr & PSR_C) {
tcp->u_rval = -1;
u_error = regs.u_regs[U_REG_O0];
}
else {
tcp->u_rval = regs.u_regs[U_REG_O0];
u_error = 0;
}
# elif defined(SPARC64)
if (check_errno && regs.tstate & 0x1100000000UL) {
tcp->u_rval = -1;
u_error = regs.u_regs[U_REG_O0];
}
else {
tcp->u_rval = regs.u_regs[U_REG_O0];
u_error = 0;
}
# elif defined(HPPA)
if (check_errno && is_negated_errno(r28)) {
tcp->u_rval = -1;
u_error = -r28;
}
else {
tcp->u_rval = r28;
u_error = 0;
}
# elif defined(SH)
/* interpret R0 as return value or error number */
if (check_errno && is_negated_errno(r0)) {
tcp->u_rval = -1;
u_error = -r0;
}
else {
tcp->u_rval = r0;
u_error = 0;
}
# elif defined(SH64)
/* interpret result as return value or error number */
if (check_errno && is_negated_errno(r9)) {
tcp->u_rval = -1;
u_error = -r9;
}
else {
tcp->u_rval = r9;
u_error = 0;
}
# elif defined(CRISV10) || defined(CRISV32)
if (check_errno && r10 && (unsigned) -r10 < nerrnos) {
tcp->u_rval = -1;
u_error = -r10;
}
else {
tcp->u_rval = r10;
u_error = 0;
}
# elif defined(TILE)
long rval;
/* interpret result as return value or error number */
if (upeek(tcp, PTREGS_OFFSET_REG(0), &rval) < 0)
return -1;
if (check_errno && rval < 0 && rval > -nerrnos) {
tcp->u_rval = -1;
u_error = -rval;
}
else {
tcp->u_rval = rval;
u_error = 0;
}
# elif defined(MICROBLAZE)
/* interpret result as return value or error number */
if (check_errno && is_negated_errno(r3)) {
tcp->u_rval = -1;
u_error = -r3;
}
else {
tcp->u_rval = r3;
u_error = 0;
}
# endif
#endif /* LINUX */
#ifdef SUNOS4
/* get error code from user struct */
if (upeek(tcp, uoff(u_error), &u_error) < 0)
return -1;
u_error >>= 24; /* u_error is a char */
/* get system call return value */
if (upeek(tcp, uoff(u_rval1), &tcp->u_rval) < 0)
return -1;
#endif /* SUNOS4 */
#ifdef SVR4
#ifdef SPARC
/* Judicious guessing goes a long way. */
if (tcp->status.pr_reg[R_PSR] & 0x100000) {
tcp->u_rval = -1;
u_error = tcp->status.pr_reg[R_O0];
}
else {
tcp->u_rval = tcp->status.pr_reg[R_O0];
u_error = 0;
}
#endif /* SPARC */
#ifdef I386
/* Wanna know how to kill an hour single-stepping? */
if (tcp->status.PR_REG[EFL] & 0x1) {
tcp->u_rval = -1;
u_error = tcp->status.PR_REG[EAX];
}
else {
tcp->u_rval = tcp->status.PR_REG[EAX];
#ifdef HAVE_LONG_LONG
tcp->u_lrval =
((unsigned long long) tcp->status.PR_REG[EDX] << 32) +
tcp->status.PR_REG[EAX];
#endif
u_error = 0;
}
#endif /* I386 */
#ifdef X86_64
/* Wanna know how to kill an hour single-stepping? */
if (tcp->status.PR_REG[EFLAGS] & 0x1) {
tcp->u_rval = -1;
u_error = tcp->status.PR_REG[RAX];
}
else {
tcp->u_rval = tcp->status.PR_REG[RAX];
u_error = 0;
}
#endif /* X86_64 */
#ifdef MIPS
if (tcp->status.pr_reg[CTX_A3]) {
tcp->u_rval = -1;
u_error = tcp->status.pr_reg[CTX_V0];
}
else {
tcp->u_rval = tcp->status.pr_reg[CTX_V0];
u_error = 0;
}
#endif /* MIPS */
#endif /* SVR4 */
#ifdef FREEBSD
if (regs.r_eflags & PSL_C) {
tcp->u_rval = -1;
u_error = regs.r_eax;
} else {
tcp->u_rval = regs.r_eax;
tcp->u_lrval =
((unsigned long long) regs.r_edx << 32) + regs.r_eax;
u_error = 0;
}
#endif /* FREEBSD */
tcp->u_error = u_error;
return 1;
}
int
force_result(tcp, error, rval)
struct tcb *tcp;
int error;
long rval;
{
#ifdef LINUX
# if defined(S390) || defined(S390X)
gpr2 = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)PT_GPR2, gpr2) < 0)
return -1;
# elif defined(I386)
eax = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(EAX * 4), eax) < 0)
return -1;
# elif defined(X86_64)
rax = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(RAX * 8), rax) < 0)
return -1;
# elif defined(IA64)
if (ia32) {
r8 = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R8), r8) < 0)
return -1;
}
else {
if (error) {
r8 = error;
r10 = -1;
}
else {
r8 = rval;
r10 = 0;
}
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R8), r8) < 0 ||
ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R10), r10) < 0)
return -1;
}
# elif defined(BFIN)
r0 = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)PT_R0, r0) < 0)
return -1;
# elif defined(MIPS)
if (error) {
r2 = error;
a3 = -1;
}
else {
r2 = rval;
a3 = 0;
}
/* PTRACE_POKEUSER is OK even for n32 since rval is only a long. */
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_A3), a3) < 0 ||
ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_V0), r2) < 0)
return -1;
# elif defined(POWERPC)
if (upeek(tcp, sizeof(unsigned long)*PT_CCR, &flags) < 0)
return -1;
if (error) {
flags |= SO_MASK;
result = error;
}
else {
flags &= ~SO_MASK;
result = rval;
}
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(sizeof(unsigned long)*PT_CCR), flags) < 0 ||
ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(sizeof(unsigned long)*PT_R3), result) < 0)
return -1;
# elif defined(M68K)
d0 = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*PT_D0), d0) < 0)
return -1;
# elif defined(ARM)
regs.ARM_r0 = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*0), regs.ARM_r0) < 0)
return -1;
# elif defined(AVR32)
regs.r12 = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)REG_R12, regs.r12) < 0)
return -1;
# elif defined(ALPHA)
if (error) {
a3 = -1;
r0 = error;
}
else {
a3 = 0;
r0 = rval;
}
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_A3), a3) < 0 ||
ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_R0), r0) < 0)
return -1;
# elif defined(SPARC)
if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)&regs, 0) < 0)
return -1;
if (error) {
regs.psr |= PSR_C;
regs.u_regs[U_REG_O0] = error;
}
else {
regs.psr &= ~PSR_C;
regs.u_regs[U_REG_O0] = rval;
}
if (ptrace(PTRACE_SETREGS, tcp->pid, (char *)&regs, 0) < 0)
return -1;
# elif defined(SPARC64)
if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)&regs, 0) < 0)
return -1;
if (error) {
regs.tstate |= 0x1100000000UL;
regs.u_regs[U_REG_O0] = error;
}
else {
regs.tstate &= ~0x1100000000UL;
regs.u_regs[U_REG_O0] = rval;
}
if (ptrace(PTRACE_SETREGS, tcp->pid, (char *)&regs, 0) < 0)
return -1;
# elif defined(HPPA)
r28 = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_GR28), r28) < 0)
return -1;
# elif defined(SH)
r0 = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*REG_REG0), r0) < 0)
return -1;
# elif defined(SH64)
r9 = error ? -error : rval;
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)REG_GENERAL(9), r9) < 0)
return -1;
# endif
#endif /* LINUX */
#ifdef SUNOS4
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)uoff(u_error),
error << 24) < 0 ||
ptrace(PTRACE_POKEUSER, tcp->pid, (char*)uoff(u_rval1), rval) < 0)
return -1;
#endif /* SUNOS4 */
#ifdef SVR4
/* XXX no clue */
return -1;
#endif /* SVR4 */
#ifdef FREEBSD
if (pread(tcp->pfd_reg, &regs, sizeof(regs), 0) < 0) {
perror("pread");
return -1;
}
if (error) {
regs.r_eflags |= PSL_C;
regs.r_eax = error;
}
else {
regs.r_eflags &= ~PSL_C;
regs.r_eax = rval;
}
if (pwrite(tcp->pfd_reg, &regs, sizeof(regs), 0) < 0) {
perror("pwrite");
return -1;
}
#endif /* FREEBSD */
/* All branches reach here on success (only). */
tcp->u_error = error;
tcp->u_rval = rval;
return 0;
}
static int
syscall_enter(struct tcb *tcp)
{
#ifdef LINUX
#if defined(S390) || defined(S390X)
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; i++) {
if (upeek(tcp,i==0 ? PT_ORIGGPR2:PT_GPR2+i*sizeof(long), &tcp->u_arg[i]) < 0)
return -1;
}
}
#elif defined (ALPHA)
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; i++) {
/* WTA: if scno is out-of-bounds this will bomb. Add range-check
* for scno somewhere above here!
*/
if (upeek(tcp, REG_A0+i, &tcp->u_arg[i]) < 0)
return -1;
}
}
#elif defined (IA64)
{
if (!ia32) {
unsigned long *out0, cfm, sof, sol, i;
long rbs_end;
/* be backwards compatible with kernel < 2.4.4... */
# ifndef PT_RBS_END
# define PT_RBS_END PT_AR_BSP
# endif
if (upeek(tcp, PT_RBS_END, &rbs_end) < 0)
return -1;
if (upeek(tcp, PT_CFM, (long *) &cfm) < 0)
return -1;
sof = (cfm >> 0) & 0x7f;
sol = (cfm >> 7) & 0x7f;
out0 = ia64_rse_skip_regs((unsigned long *) rbs_end, -sof + sol);
if (tcp->scno >= 0 && tcp->scno < nsyscalls
&& sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; ++i) {
if (umoven(tcp, (unsigned long) ia64_rse_skip_regs(out0, i),
sizeof(long), (char *) &tcp->u_arg[i]) < 0)
return -1;
}
} else {
int i;
if (/* EBX = out0 */
upeek(tcp, PT_R11, (long *) &tcp->u_arg[0]) < 0
/* ECX = out1 */
|| upeek(tcp, PT_R9, (long *) &tcp->u_arg[1]) < 0
/* EDX = out2 */
|| upeek(tcp, PT_R10, (long *) &tcp->u_arg[2]) < 0
/* ESI = out3 */
|| upeek(tcp, PT_R14, (long *) &tcp->u_arg[3]) < 0
/* EDI = out4 */
|| upeek(tcp, PT_R15, (long *) &tcp->u_arg[4]) < 0
/* EBP = out5 */
|| upeek(tcp, PT_R13, (long *) &tcp->u_arg[5]) < 0)
return -1;
for (i = 0; i < 6; ++i)
/* truncate away IVE sign-extension */
tcp->u_arg[i] &= 0xffffffff;
if (tcp->scno >= 0 && tcp->scno < nsyscalls
&& sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = 5;
}
}
#elif defined (LINUX_MIPSN32) || defined (LINUX_MIPSN64)
/* N32 and N64 both use up to six registers. */
{
unsigned long long regs[38];
int i, nargs;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
nargs = tcp->u_nargs = sysent[tcp->scno].nargs;
else
nargs = tcp->u_nargs = MAX_ARGS;
if (ptrace (PTRACE_GETREGS, tcp->pid, NULL, (long) &regs) < 0)
return -1;
for(i = 0; i < nargs; i++) {
tcp->u_arg[i] = regs[REG_A0 + i];
# if defined (LINUX_MIPSN32)
tcp->ext_arg[i] = regs[REG_A0 + i];
# endif
}
}
#elif defined (MIPS)
{
long sp;
int i, nargs;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
nargs = tcp->u_nargs = sysent[tcp->scno].nargs;
else
nargs = tcp->u_nargs = MAX_ARGS;
if(nargs > 4) {
if(upeek(tcp, REG_SP, &sp) < 0)
return -1;
for(i = 0; i < 4; i++) {
if (upeek(tcp, REG_A0 + i, &tcp->u_arg[i])<0)
return -1;
}
umoven(tcp, sp+16, (nargs-4) * sizeof(tcp->u_arg[0]),
(char *)(tcp->u_arg + 4));
} else {
for(i = 0; i < nargs; i++) {
if (upeek(tcp, REG_A0 + i, &tcp->u_arg[i]) < 0)
return -1;
}
}
}
#elif defined (POWERPC)
# ifndef PT_ORIG_R3
# define PT_ORIG_R3 34
# endif
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; i++) {
if (upeek(tcp, (i==0) ?
(sizeof(unsigned long)*PT_ORIG_R3) :
((i+PT_R3)*sizeof(unsigned long)),
&tcp->u_arg[i]) < 0)
return -1;
}
}
#elif defined (SPARC) || defined (SPARC64)
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; i++)
tcp->u_arg[i] = regs.u_regs[U_REG_O0 + i];
}
#elif defined (HPPA)
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; i++) {
if (upeek(tcp, PT_GR26-4*i, &tcp->u_arg[i]) < 0)
return -1;
}
}
#elif defined(ARM)
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; i++)
tcp->u_arg[i] = regs.uregs[i];
}
#elif defined(AVR32)
tcp->u_nargs = sysent[tcp->scno].nargs;
tcp->u_arg[0] = regs.r12;
tcp->u_arg[1] = regs.r11;
tcp->u_arg[2] = regs.r10;
tcp->u_arg[3] = regs.r9;
tcp->u_arg[4] = regs.r5;
tcp->u_arg[5] = regs.r3;
#elif defined(BFIN)
{
int i;
int argreg[] = {PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5};
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = sizeof(argreg) / sizeof(argreg[0]);
for (i = 0; i < tcp->u_nargs; ++i)
if (upeek(tcp, argreg[i], &tcp->u_arg[i]) < 0)
return -1;
}
#elif defined(SH)
{
int i;
static int syscall_regs[] = {
REG_REG0+4, REG_REG0+5, REG_REG0+6, REG_REG0+7,
REG_REG0, REG_REG0+1, REG_REG0+2
};
tcp->u_nargs = sysent[tcp->scno].nargs;
for (i = 0; i < tcp->u_nargs; i++) {
if (upeek(tcp, 4*syscall_regs[i], &tcp->u_arg[i]) < 0)
return -1;
}
}
#elif defined(SH64)
{
int i;
/* Registers used by SH5 Linux system calls for parameters */
static int syscall_regs[] = { 2, 3, 4, 5, 6, 7 };
/*
* TODO: should also check that the number of arguments encoded
* in the trap number matches the number strace expects.
*/
/*
assert(sysent[tcp->scno].nargs <
sizeof(syscall_regs)/sizeof(syscall_regs[0]));
*/
tcp->u_nargs = sysent[tcp->scno].nargs;
for (i = 0; i < tcp->u_nargs; i++) {
if (upeek(tcp, REG_GENERAL(syscall_regs[i]), &tcp->u_arg[i]) < 0)
return -1;
}
}
#elif defined(X86_64)
{
int i;
static int argreg[SUPPORTED_PERSONALITIES][MAX_ARGS] = {
{RDI,RSI,RDX,R10,R8,R9}, /* x86-64 ABI */
{RBX,RCX,RDX,RSI,RDI,RBP} /* i386 ABI */
};
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; i++) {
if (upeek(tcp, argreg[current_personality][i]*8, &tcp->u_arg[i]) < 0)
return -1;
}
}
#elif defined(MICROBLAZE)
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = 0;
for (i = 0; i < tcp->u_nargs; i++) {
if (upeek(tcp, (5 + i) * 4, &tcp->u_arg[i]) < 0)
return -1;
}
}
#elif defined(CRISV10) || defined(CRISV32)
{
int i;
static const int crisregs[] = {
4*PT_ORIG_R10, 4*PT_R11, 4*PT_R12,
4*PT_R13, 4*PT_MOF, 4*PT_SRP
};
if (tcp->scno >= 0 && tcp->scno < nsyscalls)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = 0;
for (i = 0; i < tcp->u_nargs; i++) {
if (upeek(tcp, crisregs[i], &tcp->u_arg[i]) < 0)
return -1;
}
}
#elif defined(TILE)
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; ++i) {
if (upeek(tcp, PTREGS_OFFSET_REG(i), &tcp->u_arg[i]) < 0)
return -1;
}
}
#elif defined (M68K)
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; i++) {
if (upeek(tcp, (i < 5 ? i : i + 2)*4, &tcp->u_arg[i]) < 0)
return -1;
}
}
#else /* Other architecture (like i386) (32bits specific) */
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; i++) {
if (upeek(tcp, i*4, &tcp->u_arg[i]) < 0)
return -1;
}
}
#endif
#endif /* LINUX */
#ifdef SUNOS4
{
int i;
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = MAX_ARGS;
for (i = 0; i < tcp->u_nargs; i++) {
struct user *u;
if (upeek(tcp, uoff(u_arg[0]) +
(i*sizeof(u->u_arg[0])), &tcp->u_arg[i]) < 0)
return -1;
}
}
#endif /* SUNOS4 */
#ifdef SVR4
#ifdef MIPS
/*
* SGI is broken: even though it has pr_sysarg, it doesn't
* set them on system call entry. Get a clue.
*/
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = tcp->status.pr_nsysarg;
if (tcp->u_nargs > 4) {
memcpy(tcp->u_arg, &tcp->status.pr_reg[CTX_A0],
4*sizeof(tcp->u_arg[0]));
umoven(tcp, tcp->status.pr_reg[CTX_SP] + 16,
(tcp->u_nargs - 4)*sizeof(tcp->u_arg[0]), (char *) (tcp->u_arg + 4));
}
else {
memcpy(tcp->u_arg, &tcp->status.pr_reg[CTX_A0],
tcp->u_nargs*sizeof(tcp->u_arg[0]));
}
#elif UNIXWARE >= 2
/*
* Like SGI, UnixWare doesn't set pr_sysarg until system call exit
*/
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = tcp->status.pr_lwp.pr_nsysarg;
umoven(tcp, tcp->status.PR_REG[UESP] + 4,
tcp->u_nargs*sizeof(tcp->u_arg[0]), (char *) tcp->u_arg);
#elif defined (HAVE_PR_SYSCALL)
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = tcp->status.pr_nsysarg;
{
int i;
for (i = 0; i < tcp->u_nargs; i++)
tcp->u_arg[i] = tcp->status.pr_sysarg[i];
}
#elif defined (I386)
if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = 5;
umoven(tcp, tcp->status.PR_REG[UESP] + 4,
tcp->u_nargs*sizeof(tcp->u_arg[0]), (char *) tcp->u_arg);
#else
I DONT KNOW WHAT TO DO
#endif /* !HAVE_PR_SYSCALL */
#endif /* SVR4 */
#ifdef FREEBSD
if (tcp->scno >= 0 && tcp->scno < nsyscalls &&
sysent[tcp->scno].nargs > tcp->status.val)
tcp->u_nargs = sysent[tcp->scno].nargs;
else
tcp->u_nargs = tcp->status.val;
if (tcp->u_nargs < 0)
tcp->u_nargs = 0;
if (tcp->u_nargs > MAX_ARGS)
tcp->u_nargs = MAX_ARGS;
switch(regs.r_eax) {
case SYS___syscall:
pread(tcp->pfd, &tcp->u_arg, tcp->u_nargs * sizeof(unsigned long),
regs.r_esp + sizeof(int) + sizeof(quad_t));
break;
case SYS_syscall:
pread(tcp->pfd, &tcp->u_arg, tcp->u_nargs * sizeof(unsigned long),
regs.r_esp + 2 * sizeof(int));
break;
default:
pread(tcp->pfd, &tcp->u_arg, tcp->u_nargs * sizeof(unsigned long),
regs.r_esp + sizeof(int));
break;
}
#endif /* FREEBSD */
return 1;
}
static int
trace_syscall_exiting(struct tcb *tcp)
{
int sys_res;
struct timeval tv;
int res, scno_good;
long u_error;
/* Measure the exit time as early as possible to avoid errors. */
if (dtime || cflag)
gettimeofday(&tv, NULL);
/* BTW, why we don't just memorize syscall no. on entry
* in tcp->something?
*/
scno_good = res = get_scno(tcp);
if (res == 0)
return res;
if (res == 1)
res = syscall_fixup(tcp);
if (res == 0)
return res;
if (res == 1)
res = get_error(tcp);
if (res == 0)
return res;
if (res == 1)
internal_syscall(tcp);
if (res == 1 && tcp->scno >= 0 && tcp->scno < nsyscalls &&
!(qual_flags[tcp->scno] & QUAL_TRACE)) {
tcp->flags &= ~TCB_INSYSCALL;
return 0;
}
if (tcp->flags & TCB_REPRINT) {
printleader(tcp);
tprintf("<... ");
if (scno_good != 1)
tprintf("????");
else if (tcp->scno >= nsyscalls || tcp->scno < 0)
tprintf("syscall_%lu", tcp->scno);
else
tprintf("%s", sysent[tcp->scno].sys_name);
tprintf(" resumed> ");
}
if (cflag) {
struct timeval t = tv;
int rc = count_syscall(tcp, &t);
if (cflag == CFLAG_ONLY_STATS)
{
tcp->flags &= ~TCB_INSYSCALL;
return rc;
}
}
if (res != 1) {
tprintf(") ");
tabto(acolumn);
tprintf("= ? <unavailable>");
printtrailer();
tcp->flags &= ~TCB_INSYSCALL;
return res;
}
if (tcp->scno >= nsyscalls || tcp->scno < 0
|| (qual_flags[tcp->scno] & QUAL_RAW))
sys_res = printargs(tcp);
else {
if (not_failing_only && tcp->u_error)
return 0; /* ignore failed syscalls */
sys_res = (*sysent[tcp->scno].sys_func)(tcp);
}
u_error = tcp->u_error;
tprintf(") ");
tabto(acolumn);
if (tcp->scno >= nsyscalls || tcp->scno < 0 ||
qual_flags[tcp->scno] & QUAL_RAW) {
if (u_error)
tprintf("= -1 (errno %ld)", u_error);
else
tprintf("= %#lx", tcp->u_rval);
}
else if (!(sys_res & RVAL_NONE) && u_error) {
switch (u_error) {
#ifdef LINUX
case ERESTARTSYS:
tprintf("= ? ERESTARTSYS (To be restarted)");
break;
case ERESTARTNOINTR:
tprintf("= ? ERESTARTNOINTR (To be restarted)");
break;
case ERESTARTNOHAND:
tprintf("= ? ERESTARTNOHAND (To be restarted)");
break;
case ERESTART_RESTARTBLOCK:
tprintf("= ? ERESTART_RESTARTBLOCK (To be restarted)");
break;
#endif /* LINUX */
default:
tprintf("= -1 ");
if (u_error < 0)
tprintf("E??? (errno %ld)", u_error);
else if (u_error < nerrnos)
tprintf("%s (%s)", errnoent[u_error],
strerror(u_error));
else
tprintf("ERRNO_%ld (%s)", u_error,
strerror(u_error));
break;
}
if ((sys_res & RVAL_STR) && tcp->auxstr)
tprintf(" (%s)", tcp->auxstr);
}
else {
if (sys_res & RVAL_NONE)
tprintf("= ?");
else {
switch (sys_res & RVAL_MASK) {
case RVAL_HEX:
tprintf("= %#lx", tcp->u_rval);
break;
case RVAL_OCTAL:
tprintf("= %#lo", tcp->u_rval);