blob: 30b0e9afd9f75ae0a7f0815b582ecdb53f622750 [file] [log] [blame]
/* DO NOT EDIT!
** This file is automatically generated by the script in the canonical
** SQLite source tree at tool/mkshellc.tcl. That script combines source
** code from various constituent source files of SQLite into this single
** "shell.c" file used to implement the SQLite command-line shell.
**
** Most of the code found below comes from the "src/shell.c.in" file in
** the canonical SQLite source tree. That main file contains "INCLUDE"
** lines that specify other files in the canonical source tree that are
** inserted to getnerate this complete program source file.
**
** The code from multiple files is combined into this single "shell.c"
** source file to help make the command-line program easier to compile.
**
** To modify this program, get a copy of the canonical SQLite source tree,
** edit the src/shell.c.in" and/or some of the other files that are included
** by "src/shell.c.in", then rerun the tool/mkshellc.tcl script.
*/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code to implement the "sqlite" command line
** utility for accessing SQLite databases.
*/
#if (defined(_WIN32) || defined(WIN32)) && !defined(_CRT_SECURE_NO_WARNINGS)
/* This needs to come before any includes for MSVC compiler */
#define _CRT_SECURE_NO_WARNINGS
#endif
typedef unsigned int u32;
typedef unsigned short int u16;
/*
** Optionally #include a user-defined header, whereby compilation options
** may be set prior to where they take effect, but after platform setup.
** If SQLITE_CUSTOM_INCLUDE=? is defined, its value names the #include
** file. Note that this macro has a like effect on sqlite3.c compilation.
*/
# define SHELL_STRINGIFY_(f) #f
# define SHELL_STRINGIFY(f) SHELL_STRINGIFY_(f)
#ifdef SQLITE_CUSTOM_INCLUDE
# include SHELL_STRINGIFY(SQLITE_CUSTOM_INCLUDE)
#endif
/*
** Determine if we are dealing with WinRT, which provides only a subset of
** the full Win32 API.
*/
#if !defined(SQLITE_OS_WINRT)
# define SQLITE_OS_WINRT 0
#endif
/*
** If SQLITE_SHELL_FIDDLE is defined then the shell is modified
** somewhat for use as a WASM module in a web browser. This flag
** should only be used when building the "fiddle" web application, as
** the browser-mode build has much different user input requirements
** and this build mode rewires the user input subsystem to account for
** that.
*/
/*
** Warning pragmas copied from msvc.h in the core.
*/
#if defined(_MSC_VER)
#pragma warning(disable : 4054)
#pragma warning(disable : 4055)
#pragma warning(disable : 4100)
#pragma warning(disable : 4127)
#pragma warning(disable : 4130)
#pragma warning(disable : 4152)
#pragma warning(disable : 4189)
#pragma warning(disable : 4206)
#pragma warning(disable : 4210)
#pragma warning(disable : 4232)
#pragma warning(disable : 4244)
#pragma warning(disable : 4305)
#pragma warning(disable : 4306)
#pragma warning(disable : 4702)
#pragma warning(disable : 4706)
#endif /* defined(_MSC_VER) */
/*
** No support for loadable extensions in VxWorks.
*/
#if (defined(__RTP__) || defined(_WRS_KERNEL)) && !SQLITE_OMIT_LOAD_EXTENSION
# define SQLITE_OMIT_LOAD_EXTENSION 1
#endif
/*
** Enable large-file support for fopen() and friends on unix.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE 1
# ifndef _FILE_OFFSET_BITS
# define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif
#if defined(SQLITE_SHELL_FIDDLE) && !defined(_POSIX_SOURCE)
/*
** emcc requires _POSIX_SOURCE (or one of several similar defines)
** to expose strdup().
*/
# define _POSIX_SOURCE
#endif
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include "sqlite3.h"
typedef sqlite3_int64 i64;
typedef sqlite3_uint64 u64;
typedef unsigned char u8;
#if SQLITE_USER_AUTHENTICATION
# include "sqlite3userauth.h"
#endif
#include <ctype.h>
#include <stdarg.h>
// Begin Android Add
#ifndef NO_ANDROID_FUNCS
#include <sqlite3_android.h>
#endif
// End Android Add
#if !defined(_WIN32) && !defined(WIN32)
# include <signal.h>
# if !defined(__RTP__) && !defined(_WRS_KERNEL) && !defined(SQLITE_WASI)
# include <pwd.h>
# endif
#endif
#if (!defined(_WIN32) && !defined(WIN32)) || defined(__MINGW32__)
# include <unistd.h>
# include <dirent.h>
# define GETPID getpid
# if defined(__MINGW32__)
# define DIRENT dirent
# ifndef S_ISLNK
# define S_ISLNK(mode) (0)
# endif
# endif
#else
# define GETPID (int)GetCurrentProcessId
#endif
#include <sys/types.h>
#include <sys/stat.h>
#if HAVE_READLINE
# include <readline/readline.h>
# include <readline/history.h>
#endif
#if HAVE_EDITLINE
# include <editline/readline.h>
#endif
#if HAVE_EDITLINE || HAVE_READLINE
# define shell_add_history(X) add_history(X)
# define shell_read_history(X) read_history(X)
# define shell_write_history(X) write_history(X)
# define shell_stifle_history(X) stifle_history(X)
# define shell_readline(X) readline(X)
#elif HAVE_LINENOISE
# include "linenoise.h"
# define shell_add_history(X) linenoiseHistoryAdd(X)
# define shell_read_history(X) linenoiseHistoryLoad(X)
# define shell_write_history(X) linenoiseHistorySave(X)
# define shell_stifle_history(X) linenoiseHistorySetMaxLen(X)
# define shell_readline(X) linenoise(X)
#else
# define shell_read_history(X)
# define shell_write_history(X)
# define shell_stifle_history(X)
# define SHELL_USE_LOCAL_GETLINE 1
#endif
#ifndef deliberate_fall_through
/* Quiet some compilers about some of our intentional code. */
# if defined(GCC_VERSION) && GCC_VERSION>=7000000
# define deliberate_fall_through __attribute__((fallthrough));
# else
# define deliberate_fall_through
# endif
#endif
#if defined(_WIN32) || defined(WIN32)
# if SQLITE_OS_WINRT
# define SQLITE_OMIT_POPEN 1
# else
# include <io.h>
# include <fcntl.h>
# define isatty(h) _isatty(h)
# ifndef access
# define access(f,m) _access((f),(m))
# endif
# ifndef unlink
# define unlink _unlink
# endif
# ifndef strdup
# define strdup _strdup
# endif
# undef popen
# define popen _popen
# undef pclose
# define pclose _pclose
# endif
#else
/* Make sure isatty() has a prototype. */
extern int isatty(int);
# if !defined(__RTP__) && !defined(_WRS_KERNEL) && !defined(SQLITE_WASI)
/* popen and pclose are not C89 functions and so are
** sometimes omitted from the <stdio.h> header */
extern FILE *popen(const char*,const char*);
extern int pclose(FILE*);
# else
# define SQLITE_OMIT_POPEN 1
# endif
#endif
#if defined(_WIN32_WCE)
/* Windows CE (arm-wince-mingw32ce-gcc) does not provide isatty()
* thus we always assume that we have a console. That can be
* overridden with the -batch command line option.
*/
#define isatty(x) 1
#endif
/* ctype macros that work with signed characters */
#define IsSpace(X) isspace((unsigned char)X)
#define IsDigit(X) isdigit((unsigned char)X)
#define ToLower(X) (char)tolower((unsigned char)X)
#if defined(_WIN32) || defined(WIN32)
#if SQLITE_OS_WINRT
#include <intrin.h>
#endif
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
/* string conversion routines only needed on Win32 */
extern char *sqlite3_win32_unicode_to_utf8(LPCWSTR);
extern char *sqlite3_win32_mbcs_to_utf8_v2(const char *, int);
extern char *sqlite3_win32_utf8_to_mbcs_v2(const char *, int);
extern LPWSTR sqlite3_win32_utf8_to_unicode(const char *zText);
#endif
/* On Windows, we normally run with output mode of TEXT so that \n characters
** are automatically translated into \r\n. However, this behavior needs
** to be disabled in some cases (ex: when generating CSV output and when
** rendering quoted strings that contain \n characters). The following
** routines take care of that.
*/
#if (defined(_WIN32) || defined(WIN32)) && !SQLITE_OS_WINRT
static void setBinaryMode(FILE *file, int isOutput){
if( isOutput ) fflush(file);
_setmode(_fileno(file), _O_BINARY);
}
static void setTextMode(FILE *file, int isOutput){
if( isOutput ) fflush(file);
_setmode(_fileno(file), _O_TEXT);
}
#else
# define setBinaryMode(X,Y)
# define setTextMode(X,Y)
#endif
/* True if the timer is enabled */
static int enableTimer = 0;
/* A version of strcmp() that works with NULL values */
static int cli_strcmp(const char *a, const char *b){
if( a==0 ) a = "";
if( b==0 ) b = "";
return strcmp(a,b);
}
static int cli_strncmp(const char *a, const char *b, size_t n){
if( a==0 ) a = "";
if( b==0 ) b = "";
return strncmp(a,b,n);
}
/* Return the current wall-clock time */
static sqlite3_int64 timeOfDay(void){
static sqlite3_vfs *clockVfs = 0;
sqlite3_int64 t;
if( clockVfs==0 ) clockVfs = sqlite3_vfs_find(0);
if( clockVfs==0 ) return 0; /* Never actually happens */
if( clockVfs->iVersion>=2 && clockVfs->xCurrentTimeInt64!=0 ){
clockVfs->xCurrentTimeInt64(clockVfs, &t);
}else{
double r;
clockVfs->xCurrentTime(clockVfs, &r);
t = (sqlite3_int64)(r*86400000.0);
}
return t;
}
#if !defined(_WIN32) && !defined(WIN32) && !defined(__minux)
#include <sys/time.h>
#include <sys/resource.h>
/* VxWorks does not support getrusage() as far as we can determine */
#if defined(_WRS_KERNEL) || defined(__RTP__)
struct rusage {
struct timeval ru_utime; /* user CPU time used */
struct timeval ru_stime; /* system CPU time used */
};
#define getrusage(A,B) memset(B,0,sizeof(*B))
#endif
/* Saved resource information for the beginning of an operation */
static struct rusage sBegin; /* CPU time at start */
static sqlite3_int64 iBegin; /* Wall-clock time at start */
/*
** Begin timing an operation
*/
static void beginTimer(void){
if( enableTimer ){
getrusage(RUSAGE_SELF, &sBegin);
iBegin = timeOfDay();
}
}
/* Return the difference of two time_structs in seconds */
static double timeDiff(struct timeval *pStart, struct timeval *pEnd){
return (pEnd->tv_usec - pStart->tv_usec)*0.000001 +
(double)(pEnd->tv_sec - pStart->tv_sec);
}
/*
** Print the timing results.
*/
static void endTimer(void){
if( enableTimer ){
sqlite3_int64 iEnd = timeOfDay();
struct rusage sEnd;
getrusage(RUSAGE_SELF, &sEnd);
printf("Run Time: real %.3f user %f sys %f\n",
(iEnd - iBegin)*0.001,
timeDiff(&sBegin.ru_utime, &sEnd.ru_utime),
timeDiff(&sBegin.ru_stime, &sEnd.ru_stime));
}
}
#define BEGIN_TIMER beginTimer()
#define END_TIMER endTimer()
#define HAS_TIMER 1
#elif (defined(_WIN32) || defined(WIN32))
/* Saved resource information for the beginning of an operation */
static HANDLE hProcess;
static FILETIME ftKernelBegin;
static FILETIME ftUserBegin;
static sqlite3_int64 ftWallBegin;
typedef BOOL (WINAPI *GETPROCTIMES)(HANDLE, LPFILETIME, LPFILETIME,
LPFILETIME, LPFILETIME);
static GETPROCTIMES getProcessTimesAddr = NULL;
/*
** Check to see if we have timer support. Return 1 if necessary
** support found (or found previously).
*/
static int hasTimer(void){
if( getProcessTimesAddr ){
return 1;
} else {
#if !SQLITE_OS_WINRT
/* GetProcessTimes() isn't supported in WIN95 and some other Windows
** versions. See if the version we are running on has it, and if it
** does, save off a pointer to it and the current process handle.
*/
hProcess = GetCurrentProcess();
if( hProcess ){
HINSTANCE hinstLib = LoadLibrary(TEXT("Kernel32.dll"));
if( NULL != hinstLib ){
getProcessTimesAddr =
(GETPROCTIMES) GetProcAddress(hinstLib, "GetProcessTimes");
if( NULL != getProcessTimesAddr ){
return 1;
}
FreeLibrary(hinstLib);
}
}
#endif
}
return 0;
}
/*
** Begin timing an operation
*/
static void beginTimer(void){
if( enableTimer && getProcessTimesAddr ){
FILETIME ftCreation, ftExit;
getProcessTimesAddr(hProcess,&ftCreation,&ftExit,
&ftKernelBegin,&ftUserBegin);
ftWallBegin = timeOfDay();
}
}
/* Return the difference of two FILETIME structs in seconds */
static double timeDiff(FILETIME *pStart, FILETIME *pEnd){
sqlite_int64 i64Start = *((sqlite_int64 *) pStart);
sqlite_int64 i64End = *((sqlite_int64 *) pEnd);
return (double) ((i64End - i64Start) / 10000000.0);
}
/*
** Print the timing results.
*/
static void endTimer(void){
if( enableTimer && getProcessTimesAddr){
FILETIME ftCreation, ftExit, ftKernelEnd, ftUserEnd;
sqlite3_int64 ftWallEnd = timeOfDay();
getProcessTimesAddr(hProcess,&ftCreation,&ftExit,&ftKernelEnd,&ftUserEnd);
printf("Run Time: real %.3f user %f sys %f\n",
(ftWallEnd - ftWallBegin)*0.001,
timeDiff(&ftUserBegin, &ftUserEnd),
timeDiff(&ftKernelBegin, &ftKernelEnd));
}
}
#define BEGIN_TIMER beginTimer()
#define END_TIMER endTimer()
#define HAS_TIMER hasTimer()
#else
#define BEGIN_TIMER
#define END_TIMER
#define HAS_TIMER 0
#endif
/*
** Used to prevent warnings about unused parameters
*/
#define UNUSED_PARAMETER(x) (void)(x)
/*
** Number of elements in an array
*/
#define ArraySize(X) (int)(sizeof(X)/sizeof(X[0]))
/*
** If the following flag is set, then command execution stops
** at an error if we are not interactive.
*/
static int bail_on_error = 0;
/*
** Treat stdin as an interactive input if the following variable
** is true. Otherwise, assume stdin is connected to a file or pipe.
*/
static int stdin_is_interactive = 1;
#if (defined(_WIN32) || defined(WIN32)) && SHELL_USE_LOCAL_GETLINE \
&& !defined(SHELL_OMIT_WIN_UTF8)
# define SHELL_WIN_UTF8_OPT 1
#else
# define SHELL_WIN_UTF8_OPT 0
#endif
#if SHELL_WIN_UTF8_OPT
/*
** Setup console for UTF-8 input/output when following variable true.
*/
static int console_utf8 = 0;
#endif
/*
** On Windows systems we have to know if standard output is a console
** in order to translate UTF-8 into MBCS. The following variable is
** true if translation is required.
*/
static int stdout_is_console = 1;
/*
** The following is the open SQLite database. We make a pointer
** to this database a static variable so that it can be accessed
** by the SIGINT handler to interrupt database processing.
*/
static sqlite3 *globalDb = 0;
/*
** True if an interrupt (Control-C) has been received.
*/
static volatile int seenInterrupt = 0;
/*
** This is the name of our program. It is set in main(), used
** in a number of other places, mostly for error messages.
*/
static char *Argv0;
/*
** Prompt strings. Initialized in main. Settable with
** .prompt main continue
*/
#define PROMPT_LEN_MAX 20
/* First line prompt. default: "sqlite> " */
static char mainPrompt[PROMPT_LEN_MAX];
/* Continuation prompt. default: " ...> " */
static char continuePrompt[PROMPT_LEN_MAX];
/* This is variant of the standard-library strncpy() routine with the
** one change that the destination string is always zero-terminated, even
** if there is no zero-terminator in the first n-1 characters of the source
** string.
*/
static char *shell_strncpy(char *dest, const char *src, size_t n){
size_t i;
for(i=0; i<n-1 && src[i]!=0; i++) dest[i] = src[i];
dest[i] = 0;
return dest;
}
/*
** Optionally disable dynamic continuation prompt.
** Unless disabled, the continuation prompt shows open SQL lexemes if any,
** or open parentheses level if non-zero, or continuation prompt as set.
** This facility interacts with the scanner and process_input() where the
** below 5 macros are used.
*/
#ifdef SQLITE_OMIT_DYNAPROMPT
# define CONTINUATION_PROMPT continuePrompt
# define CONTINUE_PROMPT_RESET
# define CONTINUE_PROMPT_AWAITS(p,s)
# define CONTINUE_PROMPT_AWAITC(p,c)
# define CONTINUE_PAREN_INCR(p,n)
# define CONTINUE_PROMPT_PSTATE 0
typedef void *t_NoDynaPrompt;
# define SCAN_TRACKER_REFTYPE t_NoDynaPrompt
#else
# define CONTINUATION_PROMPT dynamicContinuePrompt()
# define CONTINUE_PROMPT_RESET \
do {setLexemeOpen(&dynPrompt,0,0); trackParenLevel(&dynPrompt,0);} while(0)
# define CONTINUE_PROMPT_AWAITS(p,s) \
if(p && stdin_is_interactive) setLexemeOpen(p, s, 0)
# define CONTINUE_PROMPT_AWAITC(p,c) \
if(p && stdin_is_interactive) setLexemeOpen(p, 0, c)
# define CONTINUE_PAREN_INCR(p,n) \
if(p && stdin_is_interactive) (trackParenLevel(p,n))
# define CONTINUE_PROMPT_PSTATE (&dynPrompt)
typedef struct DynaPrompt *t_DynaPromptRef;
# define SCAN_TRACKER_REFTYPE t_DynaPromptRef
static struct DynaPrompt {
char dynamicPrompt[PROMPT_LEN_MAX];
char acAwait[2];
int inParenLevel;
char *zScannerAwaits;
} dynPrompt = { {0}, {0}, 0, 0 };
/* Record parenthesis nesting level change, or force level to 0. */
static void trackParenLevel(struct DynaPrompt *p, int ni){
p->inParenLevel += ni;
if( ni==0 ) p->inParenLevel = 0;
p->zScannerAwaits = 0;
}
/* Record that a lexeme is opened, or closed with args==0. */
static void setLexemeOpen(struct DynaPrompt *p, char *s, char c){
if( s!=0 || c==0 ){
p->zScannerAwaits = s;
p->acAwait[0] = 0;
}else{
p->acAwait[0] = c;
p->zScannerAwaits = p->acAwait;
}
}
/* Upon demand, derive the continuation prompt to display. */
static char *dynamicContinuePrompt(void){
if( continuePrompt[0]==0
|| (dynPrompt.zScannerAwaits==0 && dynPrompt.inParenLevel == 0) ){
return continuePrompt;
}else{
if( dynPrompt.zScannerAwaits ){
size_t ncp = strlen(continuePrompt);
size_t ndp = strlen(dynPrompt.zScannerAwaits);
if( ndp > ncp-3 ) return continuePrompt;
strcpy(dynPrompt.dynamicPrompt, dynPrompt.zScannerAwaits);
while( ndp<3 ) dynPrompt.dynamicPrompt[ndp++] = ' ';
shell_strncpy(dynPrompt.dynamicPrompt+3, continuePrompt+3,
PROMPT_LEN_MAX-4);
}else{
if( dynPrompt.inParenLevel>9 ){
shell_strncpy(dynPrompt.dynamicPrompt, "(..", 4);
}else if( dynPrompt.inParenLevel<0 ){
shell_strncpy(dynPrompt.dynamicPrompt, ")x!", 4);
}else{
shell_strncpy(dynPrompt.dynamicPrompt, "(x.", 4);
dynPrompt.dynamicPrompt[2] = (char)('0'+dynPrompt.inParenLevel);
}
shell_strncpy(dynPrompt.dynamicPrompt+3, continuePrompt+3, PROMPT_LEN_MAX-4);
}
}
return dynPrompt.dynamicPrompt;
}
#endif /* !defined(SQLITE_OMIT_DYNAPROMPT) */
#if SHELL_WIN_UTF8_OPT
/* Following struct is used for -utf8 operation. */
static struct ConsoleState {
int stdinEof; /* EOF has been seen on console input */
int infsMode; /* Input file stream mode upon shell start */
UINT inCodePage; /* Input code page upon shell start */
UINT outCodePage; /* Output code page upon shell start */
HANDLE hConsoleIn; /* Console input handle */
DWORD consoleMode; /* Console mode upon shell start */
} conState = { 0, 0, 0, 0, INVALID_HANDLE_VALUE, 0 };
#ifndef _O_U16TEXT /* For build environments lacking this constant: */
# define _O_U16TEXT 0x20000
#endif
/*
** Prepare console, (if known to be a WIN32 console), for UTF-8
** input (from either typing or suitable paste operations) and for
** UTF-8 rendering. This may "fail" with a message to stderr, where
** the preparation is not done and common "code page" issues occur.
*/
static void console_prepare(void){
HANDLE hCI = GetStdHandle(STD_INPUT_HANDLE);
DWORD consoleMode = 0;
if( isatty(0) && GetFileType(hCI)==FILE_TYPE_CHAR
&& GetConsoleMode( hCI, &consoleMode) ){
if( !IsValidCodePage(CP_UTF8) ){
fprintf(stderr, "Cannot use UTF-8 code page.\n");
console_utf8 = 0;
return;
}
conState.hConsoleIn = hCI;
conState.consoleMode = consoleMode;
conState.inCodePage = GetConsoleCP();
conState.outCodePage = GetConsoleOutputCP();
SetConsoleCP(CP_UTF8);
SetConsoleOutputCP(CP_UTF8);
consoleMode |= ENABLE_LINE_INPUT | ENABLE_PROCESSED_INPUT;
SetConsoleMode(conState.hConsoleIn, consoleMode);
conState.infsMode = _setmode(_fileno(stdin), _O_U16TEXT);
console_utf8 = 1;
}else{
console_utf8 = 0;
}
}
/*
** Undo the effects of console_prepare(), if any.
*/
static void SQLITE_CDECL console_restore(void){
if( console_utf8 && conState.inCodePage!=0
&& conState.hConsoleIn!=INVALID_HANDLE_VALUE ){
_setmode(_fileno(stdin), conState.infsMode);
SetConsoleCP(conState.inCodePage);
SetConsoleOutputCP(conState.outCodePage);
SetConsoleMode(conState.hConsoleIn, conState.consoleMode);
/* Avoid multiple calls. */
conState.hConsoleIn = INVALID_HANDLE_VALUE;
conState.consoleMode = 0;
console_utf8 = 0;
}
}
/*
** Collect input like fgets(...) with special provisions for input
** from the Windows console to get around its strange coding issues.
** Defers to plain fgets() when input is not interactive or when the
** startup option, -utf8, has not been provided or taken effect.
*/
static char* utf8_fgets(char *buf, int ncmax, FILE *fin){
if( fin==0 ) fin = stdin;
if( fin==stdin && stdin_is_interactive && console_utf8 ){
# define SQLITE_IALIM 150
wchar_t wbuf[SQLITE_IALIM];
int lend = 0;
int noc = 0;
if( ncmax==0 || conState.stdinEof ) return 0;
buf[0] = 0;
while( noc<ncmax-7-1 && !lend ){
/* There is room for at least 2 more characters and a 0-terminator. */
int na = (ncmax > SQLITE_IALIM*4+1 + noc)
? SQLITE_IALIM : (ncmax-1 - noc)/4;
# undef SQLITE_IALIM
DWORD nbr = 0;
BOOL bRC = ReadConsoleW(conState.hConsoleIn, wbuf, na, &nbr, 0);
if( !bRC || (noc==0 && nbr==0) ) return 0;
if( nbr > 0 ){
int nmb = WideCharToMultiByte(CP_UTF8,WC_COMPOSITECHECK|WC_DEFAULTCHAR,
wbuf,nbr,0,0,0,0);
if( nmb !=0 && noc+nmb <= ncmax ){
int iseg = noc;
nmb = WideCharToMultiByte(CP_UTF8,WC_COMPOSITECHECK|WC_DEFAULTCHAR,
wbuf,nbr,buf+noc,nmb,0,0);
noc += nmb;
/* Fixup line-ends as coded by Windows for CR (or "Enter".)*/
if( noc > 0 ){
if( buf[noc-1]=='\n' ){
lend = 1;
if( noc > 1 && buf[noc-2]=='\r' ){
buf[noc-2] = '\n';
--noc;
}
}
}
/* Check for ^Z (anywhere in line) too. */
while( iseg < noc ){
if( buf[iseg]==0x1a ){
conState.stdinEof = 1;
noc = iseg; /* Chop ^Z and anything following. */
break;
}
++iseg;
}
}else break; /* Drop apparent garbage in. (Could assert.) */
}else break;
}
/* If got nothing, (after ^Z chop), must be at end-of-file. */
if( noc == 0 ) return 0;
buf[noc] = 0;
return buf;
}else{
return fgets(buf, ncmax, fin);
}
}
# define fgets(b,n,f) utf8_fgets(b,n,f)
#endif /* SHELL_WIN_UTF8_OPT */
/*
** Render output like fprintf(). Except, if the output is going to the
** console and if this is running on a Windows machine, and if the -utf8
** option is unavailable or (available and inactive), translate the
** output from UTF-8 into MBCS for output through 8-bit stdout stream.
** (With -utf8 active, no translation is needed and must not be done.)
*/
#if defined(_WIN32) || defined(WIN32)
void utf8_printf(FILE *out, const char *zFormat, ...){
va_list ap;
va_start(ap, zFormat);
if( stdout_is_console && (out==stdout || out==stderr)
# if SHELL_WIN_UTF8_OPT
&& !console_utf8
# endif
){
char *z1 = sqlite3_vmprintf(zFormat, ap);
char *z2 = sqlite3_win32_utf8_to_mbcs_v2(z1, 0);
sqlite3_free(z1);
fputs(z2, out);
sqlite3_free(z2);
}else{
vfprintf(out, zFormat, ap);
}
va_end(ap);
}
#elif !defined(utf8_printf)
# define utf8_printf fprintf
#endif
/*
** Render output like fprintf(). This should not be used on anything that
** includes string formatting (e.g. "%s").
*/
#if !defined(raw_printf)
# define raw_printf fprintf
#endif
/* Indicate out-of-memory and exit. */
static void shell_out_of_memory(void){
raw_printf(stderr,"Error: out of memory\n");
exit(1);
}
/* Check a pointer to see if it is NULL. If it is NULL, exit with an
** out-of-memory error.
*/
static void shell_check_oom(const void *p){
if( p==0 ) shell_out_of_memory();
}
/*
** Write I/O traces to the following stream.
*/
#ifdef SQLITE_ENABLE_IOTRACE
static FILE *iotrace = 0;
#endif
/*
** This routine works like printf in that its first argument is a
** format string and subsequent arguments are values to be substituted
** in place of % fields. The result of formatting this string
** is written to iotrace.
*/
#ifdef SQLITE_ENABLE_IOTRACE
static void SQLITE_CDECL iotracePrintf(const char *zFormat, ...){
va_list ap;
char *z;
if( iotrace==0 ) return;
va_start(ap, zFormat);
z = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
utf8_printf(iotrace, "%s", z);
sqlite3_free(z);
}
#endif
/*
** Output string zUtf to stream pOut as w characters. If w is negative,
** then right-justify the text. W is the width in UTF-8 characters, not
** in bytes. This is different from the %*.*s specification in printf
** since with %*.*s the width is measured in bytes, not characters.
*/
static void utf8_width_print(FILE *pOut, int w, const char *zUtf){
int i;
int n;
int aw = w<0 ? -w : w;
if( zUtf==0 ) zUtf = "";
for(i=n=0; zUtf[i]; i++){
if( (zUtf[i]&0xc0)!=0x80 ){
n++;
if( n==aw ){
do{ i++; }while( (zUtf[i]&0xc0)==0x80 );
break;
}
}
}
if( n>=aw ){
utf8_printf(pOut, "%.*s", i, zUtf);
}else if( w<0 ){
utf8_printf(pOut, "%*s%s", aw-n, "", zUtf);
}else{
utf8_printf(pOut, "%s%*s", zUtf, aw-n, "");
}
}
/*
** Determines if a string is a number of not.
*/
static int isNumber(const char *z, int *realnum){
if( *z=='-' || *z=='+' ) z++;
if( !IsDigit(*z) ){
return 0;
}
z++;
if( realnum ) *realnum = 0;
while( IsDigit(*z) ){ z++; }
if( *z=='.' ){
z++;
if( !IsDigit(*z) ) return 0;
while( IsDigit(*z) ){ z++; }
if( realnum ) *realnum = 1;
}
if( *z=='e' || *z=='E' ){
z++;
if( *z=='+' || *z=='-' ) z++;
if( !IsDigit(*z) ) return 0;
while( IsDigit(*z) ){ z++; }
if( realnum ) *realnum = 1;
}
return *z==0;
}
/*
** Compute a string length that is limited to what can be stored in
** lower 30 bits of a 32-bit signed integer.
*/
static int strlen30(const char *z){
const char *z2 = z;
while( *z2 ){ z2++; }
return 0x3fffffff & (int)(z2 - z);
}
/*
** Return the length of a string in characters. Multibyte UTF8 characters
** count as a single character.
*/
static int strlenChar(const char *z){
int n = 0;
while( *z ){
if( (0xc0&*(z++))!=0x80 ) n++;
}
return n;
}
/*
** Return open FILE * if zFile exists, can be opened for read
** and is an ordinary file or a character stream source.
** Otherwise return 0.
*/
static FILE * openChrSource(const char *zFile){
#ifdef _WIN32
struct _stat x = {0};
# define STAT_CHR_SRC(mode) ((mode & (_S_IFCHR|_S_IFIFO|_S_IFREG))!=0)
/* On Windows, open first, then check the stream nature. This order
** is necessary because _stat() and sibs, when checking a named pipe,
** effectively break the pipe as its supplier sees it. */
FILE *rv = fopen(zFile, "rb");
if( rv==0 ) return 0;
if( _fstat(_fileno(rv), &x) != 0
|| !STAT_CHR_SRC(x.st_mode)){
fclose(rv);
rv = 0;
}
return rv;
#else
struct stat x = {0};
int rc = stat(zFile, &x);
# define STAT_CHR_SRC(mode) (S_ISREG(mode)||S_ISFIFO(mode)||S_ISCHR(mode))
if( rc!=0 ) return 0;
if( STAT_CHR_SRC(x.st_mode) ){
return fopen(zFile, "rb");
}else{
return 0;
}
#endif
#undef STAT_CHR_SRC
}
/*
** This routine reads a line of text from FILE in, stores
** the text in memory obtained from malloc() and returns a pointer
** to the text. NULL is returned at end of file, or if malloc()
** fails.
**
** If zLine is not NULL then it is a malloced buffer returned from
** a previous call to this routine that may be reused.
*/
static char *local_getline(char *zLine, FILE *in){
int nLine = zLine==0 ? 0 : 100;
int n = 0;
while( 1 ){
if( n+100>nLine ){
nLine = nLine*2 + 100;
zLine = realloc(zLine, nLine);
shell_check_oom(zLine);
}
if( fgets(&zLine[n], nLine - n, in)==0 ){
if( n==0 ){
free(zLine);
return 0;
}
zLine[n] = 0;
break;
}
while( zLine[n] ) n++;
if( n>0 && zLine[n-1]=='\n' ){
n--;
if( n>0 && zLine[n-1]=='\r' ) n--;
zLine[n] = 0;
break;
}
}
#if defined(_WIN32) || defined(WIN32)
/* For interactive input on Windows systems, without -utf8,
** translate the multi-byte characterset characters into UTF-8.
** This is the translation that predates the -utf8 option. */
if( stdin_is_interactive && in==stdin
# if SHELL_WIN_UTF8_OPT
&& !console_utf8
# endif /* SHELL_WIN_UTF8_OPT */
){
char *zTrans = sqlite3_win32_mbcs_to_utf8_v2(zLine, 0);
if( zTrans ){
i64 nTrans = strlen(zTrans)+1;
if( nTrans>nLine ){
zLine = realloc(zLine, nTrans);
shell_check_oom(zLine);
}
memcpy(zLine, zTrans, nTrans);
sqlite3_free(zTrans);
}
}
#endif /* defined(_WIN32) || defined(WIN32) */
return zLine;
}
/*
** Retrieve a single line of input text.
**
** If in==0 then read from standard input and prompt before each line.
** If isContinuation is true, then a continuation prompt is appropriate.
** If isContinuation is zero, then the main prompt should be used.
**
** If zPrior is not NULL then it is a buffer from a prior call to this
** routine that can be reused.
**
** The result is stored in space obtained from malloc() and must either
** be freed by the caller or else passed back into this routine via the
** zPrior argument for reuse.
*/
#ifndef SQLITE_SHELL_FIDDLE
static char *one_input_line(FILE *in, char *zPrior, int isContinuation){
char *zPrompt;
char *zResult;
if( in!=0 ){
zResult = local_getline(zPrior, in);
}else{
zPrompt = isContinuation ? CONTINUATION_PROMPT : mainPrompt;
#if SHELL_USE_LOCAL_GETLINE
printf("%s", zPrompt);
fflush(stdout);
do{
zResult = local_getline(zPrior, stdin);
zPrior = 0;
/* ^C trap creates a false EOF, so let "interrupt" thread catch up. */
if( zResult==0 ) sqlite3_sleep(50);
}while( zResult==0 && seenInterrupt>0 );
#else
free(zPrior);
zResult = shell_readline(zPrompt);
while( zResult==0 ){
/* ^C trap creates a false EOF, so let "interrupt" thread catch up. */
sqlite3_sleep(50);
if( seenInterrupt==0 ) break;
zResult = shell_readline("");
}
if( zResult && *zResult ) shell_add_history(zResult);
#endif
}
return zResult;
}
#endif /* !SQLITE_SHELL_FIDDLE */
/*
** Return the value of a hexadecimal digit. Return -1 if the input
** is not a hex digit.
*/
static int hexDigitValue(char c){
if( c>='0' && c<='9' ) return c - '0';
if( c>='a' && c<='f' ) return c - 'a' + 10;
if( c>='A' && c<='F' ) return c - 'A' + 10;
return -1;
}
/*
** Interpret zArg as an integer value, possibly with suffixes.
*/
static sqlite3_int64 integerValue(const char *zArg){
sqlite3_int64 v = 0;
static const struct { char *zSuffix; int iMult; } aMult[] = {
{ "KiB", 1024 },
{ "MiB", 1024*1024 },
{ "GiB", 1024*1024*1024 },
{ "KB", 1000 },
{ "MB", 1000000 },
{ "GB", 1000000000 },
{ "K", 1000 },
{ "M", 1000000 },
{ "G", 1000000000 },
};
int i;
int isNeg = 0;
if( zArg[0]=='-' ){
isNeg = 1;
zArg++;
}else if( zArg[0]=='+' ){
zArg++;
}
if( zArg[0]=='0' && zArg[1]=='x' ){
int x;
zArg += 2;
while( (x = hexDigitValue(zArg[0]))>=0 ){
v = (v<<4) + x;
zArg++;
}
}else{
while( IsDigit(zArg[0]) ){
v = v*10 + zArg[0] - '0';
zArg++;
}
}
for(i=0; i<ArraySize(aMult); i++){
if( sqlite3_stricmp(aMult[i].zSuffix, zArg)==0 ){
v *= aMult[i].iMult;
break;
}
}
return isNeg? -v : v;
}
/*
** A variable length string to which one can append text.
*/
typedef struct ShellText ShellText;
struct ShellText {
char *z;
int n;
int nAlloc;
};
/*
** Initialize and destroy a ShellText object
*/
static void initText(ShellText *p){
memset(p, 0, sizeof(*p));
}
static void freeText(ShellText *p){
free(p->z);
initText(p);
}
/* zIn is either a pointer to a NULL-terminated string in memory obtained
** from malloc(), or a NULL pointer. The string pointed to by zAppend is
** added to zIn, and the result returned in memory obtained from malloc().
** zIn, if it was not NULL, is freed.
**
** If the third argument, quote, is not '\0', then it is used as a
** quote character for zAppend.
*/
static void appendText(ShellText *p, const char *zAppend, char quote){
i64 len;
i64 i;
i64 nAppend = strlen30(zAppend);
len = nAppend+p->n+1;
if( quote ){
len += 2;
for(i=0; i<nAppend; i++){
if( zAppend[i]==quote ) len++;
}
}
if( p->z==0 || p->n+len>=p->nAlloc ){
p->nAlloc = p->nAlloc*2 + len + 20;
p->z = realloc(p->z, p->nAlloc);
shell_check_oom(p->z);
}
if( quote ){
char *zCsr = p->z+p->n;
*zCsr++ = quote;
for(i=0; i<nAppend; i++){
*zCsr++ = zAppend[i];
if( zAppend[i]==quote ) *zCsr++ = quote;
}
*zCsr++ = quote;
p->n = (int)(zCsr - p->z);
*zCsr = '\0';
}else{
memcpy(p->z+p->n, zAppend, nAppend);
p->n += nAppend;
p->z[p->n] = '\0';
}
}
/*
** Attempt to determine if identifier zName needs to be quoted, either
** because it contains non-alphanumeric characters, or because it is an
** SQLite keyword. Be conservative in this estimate: When in doubt assume
** that quoting is required.
**
** Return '"' if quoting is required. Return 0 if no quoting is required.
*/
static char quoteChar(const char *zName){
int i;
if( zName==0 ) return '"';
if( !isalpha((unsigned char)zName[0]) && zName[0]!='_' ) return '"';
for(i=0; zName[i]; i++){
if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ) return '"';
}
return sqlite3_keyword_check(zName, i) ? '"' : 0;
}
/*
** Construct a fake object name and column list to describe the structure
** of the view, virtual table, or table valued function zSchema.zName.
*/
static char *shellFakeSchema(
sqlite3 *db, /* The database connection containing the vtab */
const char *zSchema, /* Schema of the database holding the vtab */
const char *zName /* The name of the virtual table */
){
sqlite3_stmt *pStmt = 0;
char *zSql;
ShellText s;
char cQuote;
char *zDiv = "(";
int nRow = 0;
zSql = sqlite3_mprintf("PRAGMA \"%w\".table_info=%Q;",
zSchema ? zSchema : "main", zName);
shell_check_oom(zSql);
sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
initText(&s);
if( zSchema ){
cQuote = quoteChar(zSchema);
if( cQuote && sqlite3_stricmp(zSchema,"temp")==0 ) cQuote = 0;
appendText(&s, zSchema, cQuote);
appendText(&s, ".", 0);
}
cQuote = quoteChar(zName);
appendText(&s, zName, cQuote);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
const char *zCol = (const char*)sqlite3_column_text(pStmt, 1);
nRow++;
appendText(&s, zDiv, 0);
zDiv = ",";
if( zCol==0 ) zCol = "";
cQuote = quoteChar(zCol);
appendText(&s, zCol, cQuote);
}
appendText(&s, ")", 0);
sqlite3_finalize(pStmt);
if( nRow==0 ){
freeText(&s);
s.z = 0;
}
return s.z;
}
/*
** SQL function: shell_module_schema(X)
**
** Return a fake schema for the table-valued function or eponymous virtual
** table X.
*/
static void shellModuleSchema(
sqlite3_context *pCtx,
int nVal,
sqlite3_value **apVal
){
const char *zName;
char *zFake;
UNUSED_PARAMETER(nVal);
zName = (const char*)sqlite3_value_text(apVal[0]);
zFake = zName? shellFakeSchema(sqlite3_context_db_handle(pCtx), 0, zName) : 0;
if( zFake ){
sqlite3_result_text(pCtx, sqlite3_mprintf("/* %s */", zFake),
-1, sqlite3_free);
free(zFake);
}
}
/*
** SQL function: shell_add_schema(S,X)
**
** Add the schema name X to the CREATE statement in S and return the result.
** Examples:
**
** CREATE TABLE t1(x) -> CREATE TABLE xyz.t1(x);
**
** Also works on
**
** CREATE INDEX
** CREATE UNIQUE INDEX
** CREATE VIEW
** CREATE TRIGGER
** CREATE VIRTUAL TABLE
**
** This UDF is used by the .schema command to insert the schema name of
** attached databases into the middle of the sqlite_schema.sql field.
*/
static void shellAddSchemaName(
sqlite3_context *pCtx,
int nVal,
sqlite3_value **apVal
){
static const char *aPrefix[] = {
"TABLE",
"INDEX",
"UNIQUE INDEX",
"VIEW",
"TRIGGER",
"VIRTUAL TABLE"
};
int i = 0;
const char *zIn = (const char*)sqlite3_value_text(apVal[0]);
const char *zSchema = (const char*)sqlite3_value_text(apVal[1]);
const char *zName = (const char*)sqlite3_value_text(apVal[2]);
sqlite3 *db = sqlite3_context_db_handle(pCtx);
UNUSED_PARAMETER(nVal);
if( zIn!=0 && cli_strncmp(zIn, "CREATE ", 7)==0 ){
for(i=0; i<ArraySize(aPrefix); i++){
int n = strlen30(aPrefix[i]);
if( cli_strncmp(zIn+7, aPrefix[i], n)==0 && zIn[n+7]==' ' ){
char *z = 0;
char *zFake = 0;
if( zSchema ){
char cQuote = quoteChar(zSchema);
if( cQuote && sqlite3_stricmp(zSchema,"temp")!=0 ){
z = sqlite3_mprintf("%.*s \"%w\".%s", n+7, zIn, zSchema, zIn+n+8);
}else{
z = sqlite3_mprintf("%.*s %s.%s", n+7, zIn, zSchema, zIn+n+8);
}
}
if( zName
&& aPrefix[i][0]=='V'
&& (zFake = shellFakeSchema(db, zSchema, zName))!=0
){
if( z==0 ){
z = sqlite3_mprintf("%s\n/* %s */", zIn, zFake);
}else{
z = sqlite3_mprintf("%z\n/* %s */", z, zFake);
}
free(zFake);
}
if( z ){
sqlite3_result_text(pCtx, z, -1, sqlite3_free);
return;
}
}
}
}
sqlite3_result_value(pCtx, apVal[0]);
}
/*
** The source code for several run-time loadable extensions is inserted
** below by the ../tool/mkshellc.tcl script. Before processing that included
** code, we need to override some macros to make the included program code
** work here in the middle of this regular program.
*/
#define SQLITE_EXTENSION_INIT1
#define SQLITE_EXTENSION_INIT2(X) (void)(X)
#if defined(_WIN32) && defined(_MSC_VER)
/************************* Begin test_windirent.h ******************/
/*
** 2015 November 30
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains declarations for most of the opendir() family of
** POSIX functions on Win32 using the MSVCRT.
*/
#if defined(_WIN32) && defined(_MSC_VER) && !defined(SQLITE_WINDIRENT_H)
#define SQLITE_WINDIRENT_H
/*
** We need several data types from the Windows SDK header.
*/
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include "windows.h"
/*
** We need several support functions from the SQLite core.
*/
/* #include "sqlite3.h" */
/*
** We need several things from the ANSI and MSVCRT headers.
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <io.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
/*
** We may need several defines that should have been in "sys/stat.h".
*/
#ifndef S_ISREG
#define S_ISREG(mode) (((mode) & S_IFMT) == S_IFREG)
#endif
#ifndef S_ISDIR
#define S_ISDIR(mode) (((mode) & S_IFMT) == S_IFDIR)
#endif
#ifndef S_ISLNK
#define S_ISLNK(mode) (0)
#endif
/*
** We may need to provide the "mode_t" type.
*/
#ifndef MODE_T_DEFINED
#define MODE_T_DEFINED
typedef unsigned short mode_t;
#endif
/*
** We may need to provide the "ino_t" type.
*/
#ifndef INO_T_DEFINED
#define INO_T_DEFINED
typedef unsigned short ino_t;
#endif
/*
** We need to define "NAME_MAX" if it was not present in "limits.h".
*/
#ifndef NAME_MAX
# ifdef FILENAME_MAX
# define NAME_MAX (FILENAME_MAX)
# else
# define NAME_MAX (260)
# endif
#endif
/*
** We need to define "NULL_INTPTR_T" and "BAD_INTPTR_T".
*/
#ifndef NULL_INTPTR_T
# define NULL_INTPTR_T ((intptr_t)(0))
#endif
#ifndef BAD_INTPTR_T
# define BAD_INTPTR_T ((intptr_t)(-1))
#endif
/*
** We need to provide the necessary structures and related types.
*/
#ifndef DIRENT_DEFINED
#define DIRENT_DEFINED
typedef struct DIRENT DIRENT;
typedef DIRENT *LPDIRENT;
struct DIRENT {
ino_t d_ino; /* Sequence number, do not use. */
unsigned d_attributes; /* Win32 file attributes. */
char d_name[NAME_MAX + 1]; /* Name within the directory. */
};
#endif
#ifndef DIR_DEFINED
#define DIR_DEFINED
typedef struct DIR DIR;
typedef DIR *LPDIR;
struct DIR {
intptr_t d_handle; /* Value returned by "_findfirst". */
DIRENT d_first; /* DIRENT constructed based on "_findfirst". */
DIRENT d_next; /* DIRENT constructed based on "_findnext". */
};
#endif
/*
** Provide a macro, for use by the implementation, to determine if a
** particular directory entry should be skipped over when searching for
** the next directory entry that should be returned by the readdir() or
** readdir_r() functions.
*/
#ifndef is_filtered
# define is_filtered(a) ((((a).attrib)&_A_HIDDEN) || (((a).attrib)&_A_SYSTEM))
#endif
/*
** Provide the function prototype for the POSIX compatiable getenv()
** function. This function is not thread-safe.
*/
extern const char *windirent_getenv(const char *name);
/*
** Finally, we can provide the function prototypes for the opendir(),
** readdir(), readdir_r(), and closedir() POSIX functions.
*/
extern LPDIR opendir(const char *dirname);
extern LPDIRENT readdir(LPDIR dirp);
extern INT readdir_r(LPDIR dirp, LPDIRENT entry, LPDIRENT *result);
extern INT closedir(LPDIR dirp);
#endif /* defined(WIN32) && defined(_MSC_VER) */
/************************* End test_windirent.h ********************/
/************************* Begin test_windirent.c ******************/
/*
** 2015 November 30
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code to implement most of the opendir() family of
** POSIX functions on Win32 using the MSVCRT.
*/
#if defined(_WIN32) && defined(_MSC_VER)
/* #include "test_windirent.h" */
/*
** Implementation of the POSIX getenv() function using the Win32 API.
** This function is not thread-safe.
*/
const char *windirent_getenv(
const char *name
){
static char value[32768]; /* Maximum length, per MSDN */
DWORD dwSize = sizeof(value) / sizeof(char); /* Size in chars */
DWORD dwRet; /* Value returned by GetEnvironmentVariableA() */
memset(value, 0, sizeof(value));
dwRet = GetEnvironmentVariableA(name, value, dwSize);
if( dwRet==0 || dwRet>dwSize ){
/*
** The function call to GetEnvironmentVariableA() failed -OR-
** the buffer is not large enough. Either way, return NULL.
*/
return 0;
}else{
/*
** The function call to GetEnvironmentVariableA() succeeded
** -AND- the buffer contains the entire value.
*/
return value;
}
}
/*
** Implementation of the POSIX opendir() function using the MSVCRT.
*/
LPDIR opendir(
const char *dirname
){
struct _finddata_t data;
LPDIR dirp = (LPDIR)sqlite3_malloc(sizeof(DIR));
SIZE_T namesize = sizeof(data.name) / sizeof(data.name[0]);
if( dirp==NULL ) return NULL;
memset(dirp, 0, sizeof(DIR));
/* TODO: Remove this if Unix-style root paths are not used. */
if( sqlite3_stricmp(dirname, "/")==0 ){
dirname = windirent_getenv("SystemDrive");
}
memset(&data, 0, sizeof(struct _finddata_t));
_snprintf(data.name, namesize, "%s\\*", dirname);
dirp->d_handle = _findfirst(data.name, &data);
if( dirp->d_handle==BAD_INTPTR_T ){
closedir(dirp);
return NULL;
}
/* TODO: Remove this block to allow hidden and/or system files. */
if( is_filtered(data) ){
next:
memset(&data, 0, sizeof(struct _finddata_t));
if( _findnext(dirp->d_handle, &data)==-1 ){
closedir(dirp);
return NULL;
}
/* TODO: Remove this block to allow hidden and/or system files. */
if( is_filtered(data) ) goto next;
}
dirp->d_first.d_attributes = data.attrib;
strncpy(dirp->d_first.d_name, data.name, NAME_MAX);
dirp->d_first.d_name[NAME_MAX] = '\0';
return dirp;
}
/*
** Implementation of the POSIX readdir() function using the MSVCRT.
*/
LPDIRENT readdir(
LPDIR dirp
){
struct _finddata_t data;
if( dirp==NULL ) return NULL;
if( dirp->d_first.d_ino==0 ){
dirp->d_first.d_ino++;
dirp->d_next.d_ino++;
return &dirp->d_first;
}
next:
memset(&data, 0, sizeof(struct _finddata_t));
if( _findnext(dirp->d_handle, &data)==-1 ) return NULL;
/* TODO: Remove this block to allow hidden and/or system files. */
if( is_filtered(data) ) goto next;
dirp->d_next.d_ino++;
dirp->d_next.d_attributes = data.attrib;
strncpy(dirp->d_next.d_name, data.name, NAME_MAX);
dirp->d_next.d_name[NAME_MAX] = '\0';
return &dirp->d_next;
}
/*
** Implementation of the POSIX readdir_r() function using the MSVCRT.
*/
INT readdir_r(
LPDIR dirp,
LPDIRENT entry,
LPDIRENT *result
){
struct _finddata_t data;
if( dirp==NULL ) return EBADF;
if( dirp->d_first.d_ino==0 ){
dirp->d_first.d_ino++;
dirp->d_next.d_ino++;
entry->d_ino = dirp->d_first.d_ino;
entry->d_attributes = dirp->d_first.d_attributes;
strncpy(entry->d_name, dirp->d_first.d_name, NAME_MAX);
entry->d_name[NAME_MAX] = '\0';
*result = entry;
return 0;
}
next:
memset(&data, 0, sizeof(struct _finddata_t));
if( _findnext(dirp->d_handle, &data)==-1 ){
*result = NULL;
return ENOENT;
}
/* TODO: Remove this block to allow hidden and/or system files. */
if( is_filtered(data) ) goto next;
entry->d_ino = (ino_t)-1; /* not available */
entry->d_attributes = data.attrib;
strncpy(entry->d_name, data.name, NAME_MAX);
entry->d_name[NAME_MAX] = '\0';
*result = entry;
return 0;
}
/*
** Implementation of the POSIX closedir() function using the MSVCRT.
*/
INT closedir(
LPDIR dirp
){
INT result = 0;
if( dirp==NULL ) return EINVAL;
if( dirp->d_handle!=NULL_INTPTR_T && dirp->d_handle!=BAD_INTPTR_T ){
result = _findclose(dirp->d_handle);
}
sqlite3_free(dirp);
return result;
}
#endif /* defined(WIN32) && defined(_MSC_VER) */
/************************* End test_windirent.c ********************/
#define dirent DIRENT
#endif
/************************* Begin ../ext/misc/memtrace.c ******************/
/*
** 2019-01-21
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements an extension that uses the SQLITE_CONFIG_MALLOC
** mechanism to add a tracing layer on top of SQLite. If this extension
** is registered prior to sqlite3_initialize(), it will cause all memory
** allocation activities to be logged on standard output, or to some other
** FILE specified by the initializer.
**
** This file needs to be compiled into the application that uses it.
**
** This extension is used to implement the --memtrace option of the
** command-line shell.
*/
#include <assert.h>
#include <string.h>
#include <stdio.h>
/* The original memory allocation routines */
static sqlite3_mem_methods memtraceBase;
static FILE *memtraceOut;
/* Methods that trace memory allocations */
static void *memtraceMalloc(int n){
if( memtraceOut ){
fprintf(memtraceOut, "MEMTRACE: allocate %d bytes\n",
memtraceBase.xRoundup(n));
}
return memtraceBase.xMalloc(n);
}
static void memtraceFree(void *p){
if( p==0 ) return;
if( memtraceOut ){
fprintf(memtraceOut, "MEMTRACE: free %d bytes\n", memtraceBase.xSize(p));
}
memtraceBase.xFree(p);
}
static void *memtraceRealloc(void *p, int n){
if( p==0 ) return memtraceMalloc(n);
if( n==0 ){
memtraceFree(p);
return 0;
}
if( memtraceOut ){
fprintf(memtraceOut, "MEMTRACE: resize %d -> %d bytes\n",
memtraceBase.xSize(p), memtraceBase.xRoundup(n));
}
return memtraceBase.xRealloc(p, n);
}
static int memtraceSize(void *p){
return memtraceBase.xSize(p);
}
static int memtraceRoundup(int n){
return memtraceBase.xRoundup(n);
}
static int memtraceInit(void *p){
return memtraceBase.xInit(p);
}
static void memtraceShutdown(void *p){
memtraceBase.xShutdown(p);
}
/* The substitute memory allocator */
static sqlite3_mem_methods ersaztMethods = {
memtraceMalloc,
memtraceFree,
memtraceRealloc,
memtraceSize,
memtraceRoundup,
memtraceInit,
memtraceShutdown,
0
};
/* Begin tracing memory allocations to out. */
int sqlite3MemTraceActivate(FILE *out){
int rc = SQLITE_OK;
if( memtraceBase.xMalloc==0 ){
rc = sqlite3_config(SQLITE_CONFIG_GETMALLOC, &memtraceBase);
if( rc==SQLITE_OK ){
rc = sqlite3_config(SQLITE_CONFIG_MALLOC, &ersaztMethods);
}
}
memtraceOut = out;
return rc;
}
/* Deactivate memory tracing */
int sqlite3MemTraceDeactivate(void){
int rc = SQLITE_OK;
if( memtraceBase.xMalloc!=0 ){
rc = sqlite3_config(SQLITE_CONFIG_MALLOC, &memtraceBase);
if( rc==SQLITE_OK ){
memset(&memtraceBase, 0, sizeof(memtraceBase));
}
}
memtraceOut = 0;
return rc;
}
/************************* End ../ext/misc/memtrace.c ********************/
/************************* Begin ../ext/misc/shathree.c ******************/
/*
** 2017-03-08
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements functions that compute SHA3 hashes
** in the way described by the (U.S.) NIST FIPS 202 SHA-3 Standard.
** Two SQL functions are implemented:
**
** sha3(X,SIZE)
** sha3_query(Y,SIZE)
**
** The sha3(X) function computes the SHA3 hash of the input X, or NULL if
** X is NULL.
**
** The sha3_query(Y) function evaluates all queries in the SQL statements of Y
** and returns a hash of their results.
**
** The SIZE argument is optional. If omitted, the SHA3-256 hash algorithm
** is used. If SIZE is included it must be one of the integers 224, 256,
** 384, or 512, to determine SHA3 hash variant that is computed.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <stdarg.h>
#ifndef SQLITE_AMALGAMATION
/* typedef sqlite3_uint64 u64; */
#endif /* SQLITE_AMALGAMATION */
/******************************************************************************
** The Hash Engine
*/
/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros. If that is unsuccessful, or if
** -DSHA3_BYTEORDER=0 is set, then byte-order is determined
** at run-time.
*/
#ifndef SHA3_BYTEORDER
# if defined(i386) || defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
defined(__arm__)
# define SHA3_BYTEORDER 1234
# elif defined(sparc) || defined(__ppc__)
# define SHA3_BYTEORDER 4321
# else
# define SHA3_BYTEORDER 0
# endif
#endif
/*
** State structure for a SHA3 hash in progress
*/
typedef struct SHA3Context SHA3Context;
struct SHA3Context {
union {
u64 s[25]; /* Keccak state. 5x5 lines of 64 bits each */
unsigned char x[1600]; /* ... or 1600 bytes */
} u;
unsigned nRate; /* Bytes of input accepted per Keccak iteration */
unsigned nLoaded; /* Input bytes loaded into u.x[] so far this cycle */
unsigned ixMask; /* Insert next input into u.x[nLoaded^ixMask]. */
};
/*
** A single step of the Keccak mixing function for a 1600-bit state
*/
static void KeccakF1600Step(SHA3Context *p){
int i;
u64 b0, b1, b2, b3, b4;
u64 c0, c1, c2, c3, c4;
u64 d0, d1, d2, d3, d4;
static const u64 RC[] = {
0x0000000000000001ULL, 0x0000000000008082ULL,
0x800000000000808aULL, 0x8000000080008000ULL,
0x000000000000808bULL, 0x0000000080000001ULL,
0x8000000080008081ULL, 0x8000000000008009ULL,
0x000000000000008aULL, 0x0000000000000088ULL,
0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL,
0x8000000000008089ULL, 0x8000000000008003ULL,
0x8000000000008002ULL, 0x8000000000000080ULL,
0x000000000000800aULL, 0x800000008000000aULL,
0x8000000080008081ULL, 0x8000000000008080ULL,
0x0000000080000001ULL, 0x8000000080008008ULL
};
# define a00 (p->u.s[0])
# define a01 (p->u.s[1])
# define a02 (p->u.s[2])
# define a03 (p->u.s[3])
# define a04 (p->u.s[4])
# define a10 (p->u.s[5])
# define a11 (p->u.s[6])
# define a12 (p->u.s[7])
# define a13 (p->u.s[8])
# define a14 (p->u.s[9])
# define a20 (p->u.s[10])
# define a21 (p->u.s[11])
# define a22 (p->u.s[12])
# define a23 (p->u.s[13])
# define a24 (p->u.s[14])
# define a30 (p->u.s[15])
# define a31 (p->u.s[16])
# define a32 (p->u.s[17])
# define a33 (p->u.s[18])
# define a34 (p->u.s[19])
# define a40 (p->u.s[20])
# define a41 (p->u.s[21])
# define a42 (p->u.s[22])
# define a43 (p->u.s[23])
# define a44 (p->u.s[24])
# define ROL64(a,x) ((a<<x)|(a>>(64-x)))
for(i=0; i<24; i+=4){
c0 = a00^a10^a20^a30^a40;
c1 = a01^a11^a21^a31^a41;
c2 = a02^a12^a22^a32^a42;
c3 = a03^a13^a23^a33^a43;
c4 = a04^a14^a24^a34^a44;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a11^d1), 44);
b2 = ROL64((a22^d2), 43);
b3 = ROL64((a33^d3), 21);
b4 = ROL64((a44^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i];
a11 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
b2 = ROL64((a20^d0), 3);
b3 = ROL64((a31^d1), 45);
b4 = ROL64((a42^d2), 61);
b0 = ROL64((a03^d3), 28);
b1 = ROL64((a14^d4), 20);
a20 = b0 ^((~b1)& b2 );
a31 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a40^d0), 18);
b0 = ROL64((a01^d1), 1);
b1 = ROL64((a12^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a34^d4), 8);
a40 = b0 ^((~b1)& b2 );
a01 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
b1 = ROL64((a10^d0), 36);
b2 = ROL64((a21^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a43^d3), 56);
b0 = ROL64((a04^d4), 27);
a10 = b0 ^((~b1)& b2 );
a21 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
b3 = ROL64((a30^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a02^d2), 62);
b1 = ROL64((a13^d3), 55);
b2 = ROL64((a24^d4), 39);
a30 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
c0 = a00^a20^a40^a10^a30;
c1 = a11^a31^a01^a21^a41;
c2 = a22^a42^a12^a32^a02;
c3 = a33^a03^a23^a43^a13;
c4 = a44^a14^a34^a04^a24;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a31^d1), 44);
b2 = ROL64((a12^d2), 43);
b3 = ROL64((a43^d3), 21);
b4 = ROL64((a24^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i+1];
a31 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
b2 = ROL64((a40^d0), 3);
b3 = ROL64((a21^d1), 45);
b4 = ROL64((a02^d2), 61);
b0 = ROL64((a33^d3), 28);
b1 = ROL64((a14^d4), 20);
a40 = b0 ^((~b1)& b2 );
a21 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a30^d0), 18);
b0 = ROL64((a11^d1), 1);
b1 = ROL64((a42^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a04^d4), 8);
a30 = b0 ^((~b1)& b2 );
a11 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
b1 = ROL64((a20^d0), 36);
b2 = ROL64((a01^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a13^d3), 56);
b0 = ROL64((a44^d4), 27);
a20 = b0 ^((~b1)& b2 );
a01 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
b3 = ROL64((a10^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a22^d2), 62);
b1 = ROL64((a03^d3), 55);
b2 = ROL64((a34^d4), 39);
a10 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
c0 = a00^a40^a30^a20^a10;
c1 = a31^a21^a11^a01^a41;
c2 = a12^a02^a42^a32^a22;
c3 = a43^a33^a23^a13^a03;
c4 = a24^a14^a04^a44^a34;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a21^d1), 44);
b2 = ROL64((a42^d2), 43);
b3 = ROL64((a13^d3), 21);
b4 = ROL64((a34^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i+2];
a21 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
b2 = ROL64((a30^d0), 3);
b3 = ROL64((a01^d1), 45);
b4 = ROL64((a22^d2), 61);
b0 = ROL64((a43^d3), 28);
b1 = ROL64((a14^d4), 20);
a30 = b0 ^((~b1)& b2 );
a01 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a10^d0), 18);
b0 = ROL64((a31^d1), 1);
b1 = ROL64((a02^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a44^d4), 8);
a10 = b0 ^((~b1)& b2 );
a31 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
b1 = ROL64((a40^d0), 36);
b2 = ROL64((a11^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a03^d3), 56);
b0 = ROL64((a24^d4), 27);
a40 = b0 ^((~b1)& b2 );
a11 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
b3 = ROL64((a20^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a12^d2), 62);
b1 = ROL64((a33^d3), 55);
b2 = ROL64((a04^d4), 39);
a20 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
c0 = a00^a30^a10^a40^a20;
c1 = a21^a01^a31^a11^a41;
c2 = a42^a22^a02^a32^a12;
c3 = a13^a43^a23^a03^a33;
c4 = a34^a14^a44^a24^a04;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a01^d1), 44);
b2 = ROL64((a02^d2), 43);
b3 = ROL64((a03^d3), 21);
b4 = ROL64((a04^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i+3];
a01 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
b2 = ROL64((a10^d0), 3);
b3 = ROL64((a11^d1), 45);
b4 = ROL64((a12^d2), 61);
b0 = ROL64((a13^d3), 28);
b1 = ROL64((a14^d4), 20);
a10 = b0 ^((~b1)& b2 );
a11 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a20^d0), 18);
b0 = ROL64((a21^d1), 1);
b1 = ROL64((a22^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a24^d4), 8);
a20 = b0 ^((~b1)& b2 );
a21 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
b1 = ROL64((a30^d0), 36);
b2 = ROL64((a31^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a33^d3), 56);
b0 = ROL64((a34^d4), 27);
a30 = b0 ^((~b1)& b2 );
a31 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
b3 = ROL64((a40^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a42^d2), 62);
b1 = ROL64((a43^d3), 55);
b2 = ROL64((a44^d4), 39);
a40 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
}
}
/*
** Initialize a new hash. iSize determines the size of the hash
** in bits and should be one of 224, 256, 384, or 512. Or iSize
** can be zero to use the default hash size of 256 bits.
*/
static void SHA3Init(SHA3Context *p, int iSize){
memset(p, 0, sizeof(*p));
if( iSize>=128 && iSize<=512 ){
p->nRate = (1600 - ((iSize + 31)&~31)*2)/8;
}else{
p->nRate = (1600 - 2*256)/8;
}
#if SHA3_BYTEORDER==1234
/* Known to be little-endian at compile-time. No-op */
#elif SHA3_BYTEORDER==4321
p->ixMask = 7; /* Big-endian */
#else
{
static unsigned int one = 1;
if( 1==*(unsigned char*)&one ){
/* Little endian. No byte swapping. */
p->ixMask = 0;
}else{
/* Big endian. Byte swap. */
p->ixMask = 7;
}
}
#endif
}
/*
** Make consecutive calls to the SHA3Update function to add new content
** to the hash
*/
static void SHA3Update(
SHA3Context *p,
const unsigned char *aData,
unsigned int nData
){
unsigned int i = 0;
if( aData==0 ) return;
#if SHA3_BYTEORDER==1234
if( (p->nLoaded % 8)==0 && ((aData - (const unsigned char*)0)&7)==0 ){
for(; i+7<nData; i+=8){
p->u.s[p->nLoaded/8] ^= *(u64*)&aData[i];
p->nLoaded += 8;
if( p->nLoaded>=p->nRate ){
KeccakF1600Step(p);
p->nLoaded = 0;
}
}
}
#endif
for(; i<nData; i++){
#if SHA3_BYTEORDER==1234
p->u.x[p->nLoaded] ^= aData[i];
#elif SHA3_BYTEORDER==4321
p->u.x[p->nLoaded^0x07] ^= aData[i];
#else
p->u.x[p->nLoaded^p->ixMask] ^= aData[i];
#endif
p->nLoaded++;
if( p->nLoaded==p->nRate ){
KeccakF1600Step(p);
p->nLoaded = 0;
}
}
}
/*
** After all content has been added, invoke SHA3Final() to compute
** the final hash. The function returns a pointer to the binary
** hash value.
*/
static unsigned char *SHA3Final(SHA3Context *p){
unsigned int i;
if( p->nLoaded==p->nRate-1 ){
const unsigned char c1 = 0x86;
SHA3Update(p, &c1, 1);
}else{
const unsigned char c2 = 0x06;
const unsigned char c3 = 0x80;
SHA3Update(p, &c2, 1);
p->nLoaded = p->nRate - 1;
SHA3Update(p, &c3, 1);
}
for(i=0; i<p->nRate; i++){
p->u.x[i+p->nRate] = p->u.x[i^p->ixMask];
}
return &p->u.x[p->nRate];
}
/* End of the hashing logic
*****************************************************************************/
/*
** Implementation of the sha3(X,SIZE) function.
**
** Return a BLOB which is the SIZE-bit SHA3 hash of X. The default
** size is 256. If X is a BLOB, it is hashed as is.
** For all other non-NULL types of input, X is converted into a UTF-8 string
** and the string is hashed without the trailing 0x00 terminator. The hash
** of a NULL value is NULL.
*/
static void sha3Func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
SHA3Context cx;
int eType = sqlite3_value_type(argv[0]);
int nByte = sqlite3_value_bytes(argv[0]);
int iSize;
if( argc==1 ){
iSize = 256;
}else{
iSize = sqlite3_value_int(argv[1]);
if( iSize!=224 && iSize!=256 && iSize!=384 && iSize!=512 ){
sqlite3_result_error(context, "SHA3 size should be one of: 224 256 "
"384 512", -1);
return;
}
}
if( eType==SQLITE_NULL ) return;
SHA3Init(&cx, iSize);
if( eType==SQLITE_BLOB ){
SHA3Update(&cx, sqlite3_value_blob(argv[0]), nByte);
}else{
SHA3Update(&cx, sqlite3_value_text(argv[0]), nByte);
}
sqlite3_result_blob(context, SHA3Final(&cx), iSize/8, SQLITE_TRANSIENT);
}
/* Compute a string using sqlite3_vsnprintf() with a maximum length
** of 50 bytes and add it to the hash.
*/
static void sha3_step_vformat(
SHA3Context *p, /* Add content to this context */
const char *zFormat,
...
){
va_list ap;
int n;
char zBuf[50];
va_start(ap, zFormat);
sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap);
va_end(ap);
n = (int)strlen(zBuf);
SHA3Update(p, (unsigned char*)zBuf, n);
}
/*
** Implementation of the sha3_query(SQL,SIZE) function.
**
** This function compiles and runs the SQL statement(s) given in the
** argument. The results are hashed using a SIZE-bit SHA3. The default
** size is 256.
**
** The format of the byte stream that is hashed is summarized as follows:
**
** S<n>:<sql>
** R
** N
** I<int>
** F<ieee-float>
** B<size>:<bytes>
** T<size>:<text>
**
** <sql> is the original SQL text for each statement run and <n> is
** the size of that text. The SQL text is UTF-8. A single R character
** occurs before the start of each row. N means a NULL value.
** I mean an 8-byte little-endian integer <int>. F is a floating point
** number with an 8-byte little-endian IEEE floating point value <ieee-float>.
** B means blobs of <size> bytes. T means text rendered as <size>
** bytes of UTF-8. The <n> and <size> values are expressed as an ASCII
** text integers.
**
** For each SQL statement in the X input, there is one S segment. Each
** S segment is followed by zero or more R segments, one for each row in the
** result set. After each R, there are one or more N, I, F, B, or T segments,
** one for each column in the result set. Segments are concatentated directly
** with no delimiters of any kind.
*/
static void sha3QueryFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
sqlite3 *db = sqlite3_context_db_handle(context);
const char *zSql = (const char*)sqlite3_value_text(argv[0]);
sqlite3_stmt *pStmt = 0;
int nCol; /* Number of columns in the result set */
int i; /* Loop counter */
int rc;
int n;
const char *z;
SHA3Context cx;
int iSize;
if( argc==1 ){
iSize = 256;
}else{
iSize = sqlite3_value_int(argv[1]);
if( iSize!=224 && iSize!=256 && iSize!=384 && iSize!=512 ){
sqlite3_result_error(context, "SHA3 size should be one of: 224 256 "
"384 512", -1);
return;
}
}
if( zSql==0 ) return;
SHA3Init(&cx, iSize);
while( zSql[0] ){
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql);
if( rc ){
char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s",
zSql, sqlite3_errmsg(db));
sqlite3_finalize(pStmt);
sqlite3_result_error(context, zMsg, -1);
sqlite3_free(zMsg);
return;
}
if( !sqlite3_stmt_readonly(pStmt) ){
char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt));
sqlite3_finalize(pStmt);
sqlite3_result_error(context, zMsg, -1);
sqlite3_free(zMsg);
return;
}
nCol = sqlite3_column_count(pStmt);
z = sqlite3_sql(pStmt);
if( z ){
n = (int)strlen(z);
sha3_step_vformat(&cx,"S%d:",n);
SHA3Update(&cx,(unsigned char*)z,n);
}
/* Compute a hash over the result of the query */
while( SQLITE_ROW==sqlite3_step(pStmt) ){
SHA3Update(&cx,(const unsigned char*)"R",1);
for(i=0; i<nCol; i++){
switch( sqlite3_column_type(pStmt,i) ){
case SQLITE_NULL: {
SHA3Update(&cx, (const unsigned char*)"N",1);
break;
}
case SQLITE_INTEGER: {
sqlite3_uint64 u;
int j;
unsigned char x[9];
sqlite3_int64 v = sqlite3_column_int64(pStmt,i);
memcpy(&u, &v, 8);
for(j=8; j>=1; j--){
x[j] = u & 0xff;
u >>= 8;
}
x[0] = 'I';
SHA3Update(&cx, x, 9);
break;
}
case SQLITE_FLOAT: {
sqlite3_uint64 u;
int j;
unsigned char x[9];
double r = sqlite3_column_double(pStmt,i);
memcpy(&u, &r, 8);
for(j=8; j>=1; j--){
x[j] = u & 0xff;
u >>= 8;
}
x[0] = 'F';
SHA3Update(&cx,x,9);
break;
}
case SQLITE_TEXT: {
int n2 = sqlite3_column_bytes(pStmt, i);
const unsigned char *z2 = sqlite3_column_text(pStmt, i);
sha3_step_vformat(&cx,"T%d:",n2);
SHA3Update(&cx, z2, n2);
break;
}
case SQLITE_BLOB: {
int n2 = sqlite3_column_bytes(pStmt, i);
const unsigned char *z2 = sqlite3_column_blob(pStmt, i);
sha3_step_vformat(&cx,"B%d:",n2);
SHA3Update(&cx, z2, n2);
break;
}
}
}
}
sqlite3_finalize(pStmt);
}
sqlite3_result_blob(context, SHA3Final(&cx), iSize/8, SQLITE_TRANSIENT);
}
#ifdef _WIN32
#endif
int sqlite3_shathree_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
rc = sqlite3_create_function(db, "sha3", 1,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, sha3Func, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3", 2,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, sha3Func, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3_query", 1,
SQLITE_UTF8 | SQLITE_DIRECTONLY,
0, sha3QueryFunc, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3_query", 2,
SQLITE_UTF8 | SQLITE_DIRECTONLY,
0, sha3QueryFunc, 0, 0);
}
return rc;
}
/************************* End ../ext/misc/shathree.c ********************/
/************************* Begin ../ext/misc/uint.c ******************/
/*
** 2020-04-14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements the UINT collating sequence.
**
** UINT works like BINARY for text, except that embedded strings
** of digits compare in numeric order.
**
** * Leading zeros are handled properly, in the sense that
** they do not mess of the maginitude comparison of embedded
** strings of digits. "x00123y" is equal to "x123y".
**
** * Only unsigned integers are recognized. Plus and minus
** signs are ignored. Decimal points and exponential notation
** are ignored.
**
** * Embedded integers can be of arbitrary length. Comparison
** is *not* limited integers that can be expressed as a
** 64-bit machine integer.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <ctype.h>
/*
** Compare text in lexicographic order, except strings of digits
** compare in numeric order.
*/
static int uintCollFunc(
void *notUsed,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
const unsigned char *zA = (const unsigned char*)pKey1;
const unsigned char *zB = (const unsigned char*)pKey2;
int i=0, j=0, x;
(void)notUsed;
while( i<nKey1 && j<nKey2 ){
x = zA[i] - zB[j];
if( isdigit(zA[i]) ){
int k;
if( !isdigit(zB[j]) ) return x;
while( i<nKey1 && zA[i]=='0' ){ i++; }
while( j<nKey2 && zB[j]=='0' ){ j++; }
k = 0;
while( i+k<nKey1 && isdigit(zA[i+k])
&& j+k<nKey2 && isdigit(zB[j+k]) ){
k++;
}
if( i+k<nKey1 && isdigit(zA[i+k]) ){
return +1;
}else if( j+k<nKey2 && isdigit(zB[j+k]) ){
return -1;
}else{
x = memcmp(zA+i, zB+j, k);
if( x ) return x;
i += k;
j += k;
}
}else if( x ){
return x;
}else{
i++;
j++;
}
}
return (nKey1 - i) - (nKey2 - j);
}
#ifdef _WIN32
#endif
int sqlite3_uint_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
return sqlite3_create_collation(db, "uint", SQLITE_UTF8, 0, uintCollFunc);
}
/************************* End ../ext/misc/uint.c ********************/
/************************* Begin ../ext/misc/decimal.c ******************/
/*
** 2020-06-22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** Routines to implement arbitrary-precision decimal math.
**
** The focus here is on simplicity and correctness, not performance.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
/* Mark a function parameter as unused, to suppress nuisance compiler
** warnings. */
#ifndef UNUSED_PARAMETER
# define UNUSED_PARAMETER(X) (void)(X)
#endif
/* A decimal object */
typedef struct Decimal Decimal;
struct Decimal {
char sign; /* 0 for positive, 1 for negative */
char oom; /* True if an OOM is encountered */
char isNull; /* True if holds a NULL rather than a number */
char isInit; /* True upon initialization */
int nDigit; /* Total number of digits */
int nFrac; /* Number of digits to the right of the decimal point */
signed char *a; /* Array of digits. Most significant first. */
};
/*
** Release memory held by a Decimal, but do not free the object itself.
*/
static void decimal_clear(Decimal *p){
sqlite3_free(p->a);
}
/*
** Destroy a Decimal object
*/
static void decimal_free(Decimal *p){
if( p ){
decimal_clear(p);
sqlite3_free(p);
}
}
/*
** Allocate a new Decimal object. Initialize it to the number given
** by the input string.
*/
static Decimal *decimal_new(
sqlite3_context *pCtx,
sqlite3_value *pIn,
int nAlt,
const unsigned char *zAlt
){
Decimal *p;
int n, i;
const unsigned char *zIn;
int iExp = 0;
p = sqlite3_malloc( sizeof(*p) );
if( p==0 ) goto new_no_mem;
p->sign = 0;
p->oom = 0;
p->isInit = 1;
p->isNull = 0;
p->nDigit = 0;
p->nFrac = 0;
if( zAlt ){
n = nAlt,
zIn = zAlt;
}else{
if( sqlite3_value_type(pIn)==SQLITE_NULL ){
p->a = 0;
p->isNull = 1;
return p;
}
n = sqlite3_value_bytes(pIn);
zIn = sqlite3_value_text(pIn);
}
p->a = sqlite3_malloc64( n+1 );
if( p->a==0 ) goto new_no_mem;
for(i=0; isspace(zIn[i]); i++){}
if( zIn[i]=='-' ){
p->sign = 1;
i++;
}else if( zIn[i]=='+' ){
i++;
}
while( i<n && zIn[i]=='0' ) i++;
while( i<n ){
char c = zIn[i];
if( c>='0' && c<='9' ){
p->a[p->nDigit++] = c - '0';
}else if( c=='.' ){
p->nFrac = p->nDigit + 1;
}else if( c=='e' || c=='E' ){
int j = i+1;
int neg = 0;
if( j>=n ) break;
if( zIn[j]=='-' ){
neg = 1;
j++;
}else if( zIn[j]=='+' ){
j++;
}
while( j<n && iExp<1000000 ){
if( zIn[j]>='0' && zIn[j]<='9' ){
iExp = iExp*10 + zIn[j] - '0';
}
j++;
}
if( neg ) iExp = -iExp;
break;
}
i++;
}
if( p->nFrac ){
p->nFrac = p->nDigit - (p->nFrac - 1);
}
if( iExp>0 ){
if( p->nFrac>0 ){
if( iExp<=p->nFrac ){
p->nFrac -= iExp;
iExp = 0;
}else{
iExp -= p->nFrac;
p->nFrac = 0;
}
}
if( iExp>0 ){
p->a = sqlite3_realloc64(p->a, p->nDigit + iExp + 1 );
if( p->a==0 ) goto new_no_mem;
memset(p->a+p->nDigit, 0, iExp);
p->nDigit += iExp;
}
}else if( iExp<0 ){
int nExtra;
iExp = -iExp;
nExtra = p->nDigit - p->nFrac - 1;
if( nExtra ){
if( nExtra>=iExp ){
p->nFrac += iExp;
iExp = 0;
}else{
iExp -= nExtra;
p->nFrac = p->nDigit - 1;
}
}
if( iExp>0 ){
p->a = sqlite3_realloc64(p->a, p->nDigit + iExp + 1 );
if( p->a==0 ) goto new_no_mem;
memmove(p->a+iExp, p->a, p->nDigit);
memset(p->a, 0, iExp);
p->nDigit += iExp;
p->nFrac += iExp;
}
}
return p;
new_no_mem:
if( pCtx ) sqlite3_result_error_nomem(pCtx);
sqlite3_free(p);
return 0;
}
/*
** Make the given Decimal the result.
*/
static void decimal_result(sqlite3_context *pCtx, Decimal *p){
char *z;
int i, j;
int n;
if( p==0 || p->oom ){
sqlite3_result_error_nomem(pCtx);
return;
}
if( p->isNull ){
sqlite3_result_null(pCtx);
return;
}
z = sqlite3_malloc( p->nDigit+4 );
if( z==0 ){
sqlite3_result_error_nomem(pCtx);
return;
}
i = 0;
if( p->nDigit==0 || (p->nDigit==1 && p->a[0]==0) ){
p->sign = 0;
}
if( p->sign ){
z[0] = '-';
i = 1;
}
n = p->nDigit - p->nFrac;
if( n<=0 ){
z[i++] = '0';
}
j = 0;
while( n>1 && p->a[j]==0 ){
j++;
n--;
}
while( n>0 ){
z[i++] = p->a[j] + '0';
j++;
n--;
}
if( p->nFrac ){
z[i++] = '.';
do{
z[i++] = p->a[j] + '0';
j++;
}while( j<p->nDigit );
}
z[i] = 0;
sqlite3_result_text(pCtx, z, i, sqlite3_free);
}
/*
** SQL Function: decimal(X)
**
** Convert input X into decimal and then back into text
*/
static void decimalFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *p = decimal_new(context, argv[0], 0, 0);
UNUSED_PARAMETER(argc);
decimal_result(context, p);
decimal_free(p);
}
/*
** Compare to Decimal objects. Return negative, 0, or positive if the
** first object is less than, equal to, or greater than the second.
**
** Preconditions for this routine:
**
** pA!=0
** pA->isNull==0
** pB!=0
** pB->isNull==0
*/
static int decimal_cmp(const Decimal *pA, const Decimal *pB){
int nASig, nBSig, rc, n;
if( pA->sign!=pB->sign ){
return pA->sign ? -1 : +1;
}
if( pA->sign ){
const Decimal *pTemp = pA;
pA = pB;
pB = pTemp;
}
nASig = pA->nDigit - pA->nFrac;
nBSig = pB->nDigit - pB->nFrac;
if( nASig!=nBSig ){
return nASig - nBSig;
}
n = pA->nDigit;
if( n>pB->nDigit ) n = pB->nDigit;
rc = memcmp(pA->a, pB->a, n);
if( rc==0 ){
rc = pA->nDigit - pB->nDigit;
}
return rc;
}
/*
** SQL Function: decimal_cmp(X, Y)
**
** Return negative, zero, or positive if X is less then, equal to, or
** greater than Y.
*/
static void decimalCmpFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *pA = 0, *pB = 0;
int rc;
UNUSED_PARAMETER(argc);
pA = decimal_new(context, argv[0], 0, 0);
if( pA==0 || pA->isNull ) goto cmp_done;
pB = decimal_new(context, argv[1], 0, 0);
if( pB==0 || pB->isNull ) goto cmp_done;
rc = decimal_cmp(pA, pB);
if( rc<0 ) rc = -1;
else if( rc>0 ) rc = +1;
sqlite3_result_int(context, rc);
cmp_done:
decimal_free(pA);
decimal_free(pB);
}
/*
** Expand the Decimal so that it has a least nDigit digits and nFrac
** digits to the right of the decimal point.
*/
static void decimal_expand(Decimal *p, int nDigit, int nFrac){
int nAddSig;
int nAddFrac;
if( p==0 ) return;
nAddFrac = nFrac - p->nFrac;
nAddSig = (nDigit - p->nDigit) - nAddFrac;
if( nAddFrac==0 && nAddSig==0 ) return;
p->a = sqlite3_realloc64(p->a, nDigit+1);
if( p->a==0 ){
p->oom = 1;
return;
}
if( nAddSig ){
memmove(p->a+nAddSig, p->a, p->nDigit);
memset(p->a, 0, nAddSig);
p->nDigit += nAddSig;
}
if( nAddFrac ){
memset(p->a+p->nDigit, 0, nAddFrac);
p->nDigit += nAddFrac;
p->nFrac += nAddFrac;
}
}
/*
** Add the value pB into pA.
**
** Both pA and pB might become denormalized by this routine.
*/
static void decimal_add(Decimal *pA, Decimal *pB){
int nSig, nFrac, nDigit;
int i, rc;
if( pA==0 ){
return;
}
if( pA->oom || pB==0 || pB->oom ){
pA->oom = 1;
return;
}
if( pA->isNull || pB->isNull ){
pA->isNull = 1;
return;
}
nSig = pA->nDigit - pA->nFrac;
if( nSig && pA->a[0]==0 ) nSig--;
if( nSig<pB->nDigit-pB->nFrac ){
nSig = pB->nDigit - pB->nFrac;
}
nFrac = pA->nFrac;
if( nFrac<pB->nFrac ) nFrac = pB->nFrac;
nDigit = nSig + nFrac + 1;
decimal_expand(pA, nDigit, nFrac);
decimal_expand(pB, nDigit, nFrac);
if( pA->oom || pB->oom ){
pA->oom = 1;
}else{
if( pA->sign==pB->sign ){
int carry = 0;
for(i=nDigit-1; i>=0; i--){
int x = pA->a[i] + pB->a[i] + carry;
if( x>=10 ){
carry = 1;
pA->a[i] = x - 10;
}else{
carry = 0;
pA->a[i] = x;
}
}
}else{
signed char *aA, *aB;
int borrow = 0;
rc = memcmp(pA->a, pB->a, nDigit);
if( rc<0 ){
aA = pB->a;
aB = pA->a;
pA->sign = !pA->sign;
}else{
aA = pA->a;
aB = pB->a;
}
for(i=nDigit-1; i>=0; i--){
int x = aA[i] - aB[i] - borrow;
if( x<0 ){
pA->a[i] = x+10;
borrow = 1;
}else{
pA->a[i] = x;
borrow = 0;
}
}
}
}
}
/*
** Compare text in decimal order.
*/
static int decimalCollFunc(
void *notUsed,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
const unsigned char *zA = (const unsigned char*)pKey1;
const unsigned char *zB = (const unsigned char*)pKey2;
Decimal *pA = decimal_new(0, 0, nKey1, zA);
Decimal *pB = decimal_new(0, 0, nKey2, zB);
int rc;
UNUSED_PARAMETER(notUsed);
if( pA==0 || pB==0 ){
rc = 0;
}else{
rc = decimal_cmp(pA, pB);
}
decimal_free(pA);
decimal_free(pB);
return rc;
}
/*
** SQL Function: decimal_add(X, Y)
** decimal_sub(X, Y)
**
** Return the sum or difference of X and Y.
*/
static void decimalAddFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *pA = decimal_new(context, argv[0], 0, 0);
Decimal *pB = decimal_new(context, argv[1], 0, 0);
UNUSED_PARAMETER(argc);
decimal_add(pA, pB);
decimal_result(context, pA);
decimal_free(pA);
decimal_free(pB);
}
static void decimalSubFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *pA = decimal_new(context, argv[0], 0, 0);
Decimal *pB = decimal_new(context, argv[1], 0, 0);
UNUSED_PARAMETER(argc);
if( pB ){
pB->sign = !pB->sign;
decimal_add(pA, pB);
decimal_result(context, pA);
}
decimal_free(pA);
decimal_free(pB);
}
/* Aggregate funcion: decimal_sum(X)
**
** Works like sum() except that it uses decimal arithmetic for unlimited
** precision.
*/
static void decimalSumStep(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *p;
Decimal *pArg;
UNUSED_PARAMETER(argc);
p = sqlite3_aggregate_context(context, sizeof(*p));
if( p==0 ) return;
if( !p->isInit ){
p->isInit = 1;
p->a = sqlite3_malloc(2);
if( p->a==0 ){
p->oom = 1;
}else{
p->a[0] = 0;
}
p->nDigit = 1;
p->nFrac = 0;
}
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
pArg = decimal_new(context, argv[0], 0, 0);
decimal_add(p, pArg);
decimal_free(pArg);
}
static void decimalSumInverse(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *p;
Decimal *pArg;
UNUSED_PARAMETER(argc);
p = sqlite3_aggregate_context(context, sizeof(*p));
if( p==0 ) return;
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
pArg = decimal_new(context, argv[0], 0, 0);
if( pArg ) pArg->sign = !pArg->sign;
decimal_add(p, pArg);
decimal_free(pArg);
}
static void decimalSumValue(sqlite3_context *context){
Decimal *p = sqlite3_aggregate_context(context, 0);
if( p==0 ) return;
decimal_result(context, p);
}
static void decimalSumFinalize(sqlite3_context *context){
Decimal *p = sqlite3_aggregate_context(context, 0);
if( p==0 ) return;
decimal_result(context, p);
decimal_clear(p);
}
/*
** SQL Function: decimal_mul(X, Y)
**
** Return the product of X and Y.
**
** All significant digits after the decimal point are retained.
** Trailing zeros after the decimal point are omitted as long as
** the number of digits after the decimal point is no less than
** either the number of digits in either input.
*/
static void decimalMulFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
Decimal *pA = decimal_new(context, argv[0], 0, 0);
Decimal *pB = decimal_new(context, argv[1], 0, 0);
signed char *acc = 0;
int i, j, k;
int minFrac;
UNUSED_PARAMETER(argc);
if( pA==0 || pA->oom || pA->isNull
|| pB==0 || pB->oom || pB->isNull
){
goto mul_end;
}
acc = sqlite3_malloc64( pA->nDigit + pB->nDigit + 2 );
if( acc==0 ){
sqlite3_result_error_nomem(context);
goto mul_end;
}
memset(acc, 0, pA->nDigit + pB->nDigit + 2);
minFrac = pA->nFrac;
if( pB->nFrac<minFrac ) minFrac = pB->nFrac;
for(i=pA->nDigit-1; i>=0; i--){
signed char f = pA->a[i];
int carry = 0, x;
for(j=pB->nDigit-1, k=i+j+3; j>=0; j--, k--){
x = acc[k] + f*pB->a[j] + carry;
acc[k] = x%10;
carry = x/10;
}
x = acc[k] + carry;
acc[k] = x%10;
acc[k-1] += x/10;
}
sqlite3_free(pA->a);
pA->a = acc;
acc = 0;
pA->nDigit += pB->nDigit + 2;
pA->nFrac += pB->nFrac;
pA->sign ^= pB->sign;
while( pA->nFrac>minFrac && pA->a[pA->nDigit-1]==0 ){
pA->nFrac--;
pA->nDigit--;
}
decimal_result(context, pA);
mul_end:
sqlite3_free(acc);
decimal_free(pA);
decimal_free(pB);
}
#ifdef _WIN32
#endif
int sqlite3_decimal_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
static const struct {
const char *zFuncName;
int nArg;
void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
} aFunc[] = {
{ "decimal", 1, decimalFunc },
{ "decimal_cmp", 2, decimalCmpFunc },
{ "decimal_add", 2, decimalAddFunc },
{ "decimal_sub", 2, decimalSubFunc },
{ "decimal_mul", 2, decimalMulFunc },
};
unsigned int i;
(void)pzErrMsg; /* Unused parameter */
SQLITE_EXTENSION_INIT2(pApi);
for(i=0; i<(int)(sizeof(aFunc)/sizeof(aFunc[0])) && rc==SQLITE_OK; i++){
rc = sqlite3_create_function(db, aFunc[i].zFuncName, aFunc[i].nArg,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC,
0, aFunc[i].xFunc, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_window_function(db, "decimal_sum", 1,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC, 0,
decimalSumStep, decimalSumFinalize,
decimalSumValue, decimalSumInverse, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_collation(db, "decimal", SQLITE_UTF8,
0, decimalCollFunc);
}
return rc;
}
/************************* End ../ext/misc/decimal.c ********************/
#undef sqlite3_base_init
#define sqlite3_base_init sqlite3_base64_init
/************************* Begin ../ext/misc/base64.c ******************/
/*
** 2022-11-18
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This is a SQLite extension for converting in either direction
** between a (binary) blob and base64 text. Base64 can transit a
** sane USASCII channel unmolested. It also plays nicely in CSV or
** written as TCL brace-enclosed literals or SQL string literals,
** and can be used unmodified in XML-like documents.
**
** This is an independent implementation of conversions specified in
** RFC 4648, done on the above date by the author (Larry Brasfield)
** who thereby has the right to put this into the public domain.
**
** The conversions meet RFC 4648 requirements, provided that this
** C source specifies that line-feeds are included in the encoded
** data to limit visible line lengths to 72 characters and to
** terminate any encoded blob having non-zero length.
**
** Length limitations are not imposed except that the runtime
** SQLite string or blob length limits are respected. Otherwise,
** any length binary sequence can be represented and recovered.
** Generated base64 sequences, with their line-feeds included,
** can be concatenated; the result converted back to binary will
** be the concatenation of the represented binary sequences.
**
** This SQLite3 extension creates a function, base64(x), which
** either: converts text x containing base64 to a returned blob;
** or converts a blob x to returned text containing base64. An
** error will be thrown for other input argument types.
**
** This code relies on UTF-8 encoding only with respect to the
** meaning of the first 128 (7-bit) codes matching that of USASCII.
** It will fail miserably if somehow made to try to convert EBCDIC.
** Because it is table-driven, it could be enhanced to handle that,
** but the world and SQLite have moved on from that anachronism.
**
** To build the extension:
** Set shell variable SQDIR=<your favorite SQLite checkout directory>
** *Nix: gcc -O2 -shared -I$SQDIR -fPIC -o base64.so base64.c
** OSX: gcc -O2 -dynamiclib -fPIC -I$SQDIR -o base64.dylib base64.c
** Win32: gcc -O2 -shared -I%SQDIR% -o base64.dll base64.c
** Win32: cl /Os -I%SQDIR% base64.c -link -dll -out:base64.dll
*/
#include <assert.h>
/* #include "sqlite3ext.h" */
#ifndef deliberate_fall_through
/* Quiet some compilers about some of our intentional code. */
# if GCC_VERSION>=7000000
# define deliberate_fall_through __attribute__((fallthrough));
# else
# define deliberate_fall_through
# endif
#endif
SQLITE_EXTENSION_INIT1;
#define PC 0x80 /* pad character */
#define WS 0x81 /* whitespace */
#define ND 0x82 /* Not above or digit-value */
#define PAD_CHAR '='
#ifndef U8_TYPEDEF
/* typedef unsigned char u8; */
#define U8_TYPEDEF
#endif
/* Decoding table, ASCII (7-bit) value to base 64 digit value or other */
static const u8 b64DigitValues[128] = {
/* HT LF VT FF CR */
ND,ND,ND,ND, ND,ND,ND,ND, ND,WS,WS,WS, WS,WS,ND,ND,
/* US */
ND,ND,ND,ND, ND,ND,ND,ND, ND,ND,ND,ND, ND,ND,ND,ND,
/*sp + / */
WS,ND,ND,ND, ND,ND,ND,ND, ND,ND,ND,62, ND,ND,ND,63,
/* 0 1 5 9 = */
52,53,54,55, 56,57,58,59, 60,61,ND,ND, ND,PC,ND,ND,
/* A O */
ND, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14,
/* P Z */
15,16,17,18, 19,20,21,22, 23,24,25,ND, ND,ND,ND,ND,
/* a o */
ND,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40,
/* p z */
41,42,43,44, 45,46,47,48, 49,50,51,ND, ND,ND,ND,ND
};
static const char b64Numerals[64+1]
= "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
#define BX_DV_PROTO(c) \
((((u8)(c))<0x80)? (u8)(b64DigitValues[(u8)(c)]) : 0x80)
#define IS_BX_DIGIT(bdp) (((u8)(bdp))<0x80)
#define IS_BX_WS(bdp) ((bdp)==WS)
#define IS_BX_PAD(bdp) ((bdp)==PC)
#define BX_NUMERAL(dv) (b64Numerals[(u8)(dv)])
/* Width of base64 lines. Should be an integer multiple of 4. */
#define B64_DARK_MAX 72
/* Encode a byte buffer into base64 text with linefeeds appended to limit
** encoded group lengths to B64_DARK_MAX or to terminate the last group.
*/
static char* toBase64( u8 *pIn, int nbIn, char *pOut ){
int nCol = 0;
while( nbIn >= 3 ){
/* Do the bit-shuffle, exploiting unsigned input to avoid masking. */
pOut[0] = BX_NUMERAL(pIn[0]>>2);
pOut[1] = BX_NUMERAL(((pIn[0]<<4)|(pIn[1]>>4))&0x3f);
pOut[2] = BX_NUMERAL(((pIn[1]&0xf)<<2)|(pIn[2]>>6));
pOut[3] = BX_NUMERAL(pIn[2]&0x3f);
pOut += 4;
nbIn -= 3;
pIn += 3;
if( (nCol += 4)>=B64_DARK_MAX || nbIn<=0 ){
*pOut++ = '\n';
nCol = 0;
}
}
if( nbIn > 0 ){
signed char nco = nbIn+1;
int nbe;
unsigned long qv = *pIn++;
for( nbe=1; nbe<3; ++nbe ){
qv <<= 8;
if( nbe<nbIn ) qv |= *pIn++;
}
for( nbe=3; nbe>=0; --nbe ){
char ce = (nbe<nco)? BX_NUMERAL((u8)(qv & 0x3f)) : PAD_CHAR;
qv >>= 6;
pOut[nbe] = ce;
}
pOut += 4;
*pOut++ = '\n';
}
*pOut = 0;
return pOut;
}
/* Skip over text which is not base64 numeral(s). */
static char * skipNonB64( char *s, int nc ){
char c;
while( nc-- > 0 && (c = *s) && !IS_BX_DIGIT(BX_DV_PROTO(c)) ) ++s;
return s;
}
/* Decode base64 text into a byte buffer. */
static u8* fromBase64( char *pIn, int ncIn, u8 *pOut ){
if( ncIn>0 && pIn[ncIn-1]=='\n' ) --ncIn;
while( ncIn>0 && *pIn!=PAD_CHAR ){
static signed char nboi[] = { 0, 0, 1, 2, 3 };
char *pUse = skipNonB64(pIn, ncIn);
unsigned long qv = 0L;
int nti, nbo, nac;
ncIn -= (pUse - pIn);
pIn = pUse;
nti = (ncIn>4)? 4 : ncIn;
ncIn -= nti;
nbo = nboi[nti];
if( nbo==0 ) break;
for( nac=0; nac<4; ++nac ){
char c = (nac<nti)? *pIn++ : b64Numerals[0];
u8 bdp = BX_DV_PROTO(c);
switch( bdp ){
case ND:
/* Treat dark non-digits as pad, but they terminate decode too. */
ncIn = 0;
deliberate_fall_through;
case WS:
/* Treat whitespace as pad and terminate this group.*/
nti = nac;
deliberate_fall_through;
case PC:
bdp = 0;
--nbo;
deliberate_fall_through;
default: /* bdp is the digit value. */
qv = qv<<6 | bdp;
break;
}
}
switch( nbo ){
case 3:
pOut[2] = (qv) & 0xff;
case 2:
pOut[1] = (qv>>8) & 0xff;
case 1:
pOut[0] = (qv>>16) & 0xff;
}
pOut += nbo;
}
return pOut;
}
/* This function does the work for the SQLite base64(x) UDF. */
static void base64(sqlite3_context *context, int na, sqlite3_value *av[]){
int nb, nc, nv = sqlite3_value_bytes(av[0]);
int nvMax = sqlite3_limit(sqlite3_context_db_handle(context),
SQLITE_LIMIT_LENGTH, -1);
char *cBuf;
u8 *bBuf;
assert(na==1);
switch( sqlite3_value_type(av[0]) ){
case SQLITE_BLOB:
nb = nv;
nc = 4*(nv+2/3); /* quads needed */
nc += (nc+(B64_DARK_MAX-1))/B64_DARK_MAX + 1; /* LFs and a 0-terminator */
if( nvMax < nc ){
sqlite3_result_error(context, "blob expanded to base64 too big", -1);
return;
}
bBuf = (u8*)sqlite3_value_blob(av[0]);
if( !bBuf ){
if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){
goto memFail;
}
sqlite3_result_text(context,"",-1,SQLITE_STATIC);
break;
}
cBuf = sqlite3_malloc(nc);
if( !cBuf ) goto memFail;
nc = (int)(toBase64(bBuf, nb, cBuf) - cBuf);
sqlite3_result_text(context, cBuf, nc, sqlite3_free);
break;
case SQLITE_TEXT:
nc = nv;
nb = 3*((nv+3)/4); /* may overestimate due to LF and padding */
if( nvMax < nb ){
sqlite3_result_error(context, "blob from base64 may be too big", -1);
return;
}else if( nb<1 ){
nb = 1;
}
cBuf = (char *)sqlite3_value_text(av[0]);
if( !cBuf ){
if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){
goto memFail;
}
sqlite3_result_zeroblob(context, 0);
break;
}
bBuf = sqlite3_malloc(nb);
if( !bBuf ) goto memFail;
nb = (int)(fromBase64(cBuf, nc, bBuf) - bBuf);
sqlite3_result_blob(context, bBuf, nb, sqlite3_free);
break;
default:
sqlite3_result_error(context, "base64 accepts only blob or text", -1);
return;
}
return;
memFail:
sqlite3_result_error(context, "base64 OOM", -1);
}
/*
** Establish linkage to running SQLite library.
*/
#ifndef SQLITE_SHELL_EXTFUNCS
#ifdef _WIN32
#endif
int sqlite3_base_init
#else
static int sqlite3_base64_init
#endif
(sqlite3 *db, char **pzErr, const sqlite3_api_routines *pApi){
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErr;
return sqlite3_create_function
(db, "base64", 1,
SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS|SQLITE_DIRECTONLY|SQLITE_UTF8,
0, base64, 0, 0);
}
/*
** Define some macros to allow this extension to be built into the shell
** conveniently, in conjunction with use of SQLITE_SHELL_EXTFUNCS. This
** allows shell.c, as distributed, to have this extension built in.
*/
#define BASE64_INIT(db) sqlite3_base64_init(db, 0, 0)
#define BASE64_EXPOSE(db, pzErr) /* Not needed, ..._init() does this. */
/************************* End ../ext/misc/base64.c ********************/
#undef sqlite3_base_init
#define sqlite3_base_init sqlite3_base85_init
#define OMIT_BASE85_CHECKER
/************************* Begin ../ext/misc/base85.c ******************/
/*
** 2022-11-16
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This is a utility for converting binary to base85 or vice-versa.
** It can be built as a standalone program or an SQLite3 extension.
**
** Much like base64 representations, base85 can be sent through a
** sane USASCII channel unmolested. It also plays nicely in CSV or
** written as TCL brace-enclosed literals or SQL string literals.
** It is not suited for unmodified use in XML-like documents.
**
** The encoding used resembles Ascii85, but was devised by the author
** (Larry Brasfield) before Mozilla, Adobe, ZMODEM or other Ascii85
** variant sources existed, in the 1984 timeframe on a VAX mainframe.
** Further, this is an independent implementation of a base85 system.
** Hence, the author has rightfully put this into the public domain.
**
** Base85 numerals are taken from the set of 7-bit USASCII codes,
** excluding control characters and Space ! " ' ( ) { | } ~ Del
** in code order representing digit values 0 to 84 (base 10.)
**
** Groups of 4 bytes, interpreted as big-endian 32-bit values,
** are represented as 5-digit base85 numbers with MS to LS digit
** order. Groups of 1-3 bytes are represented with 2-4 digits,
** still big-endian but 8-24 bit values. (Using big-endian yields
** the simplest transition to byte groups smaller than 4 bytes.
** These byte groups can also be considered base-256 numbers.)
** Groups of 0 bytes are represented with 0 digits and vice-versa.
** No pad characters are used; Encoded base85 numeral sequence
** (aka "group") length maps 1-to-1 to the decoded binary length.
**
** Any character not in the base85 numeral set delimits groups.
** When base85 is streamed or stored in containers of indefinite
** size, newline is used to separate it into sub-sequences of no
** more than 80 digits so that fgets() can be used to read it.
**
** Length limitations are not imposed except that the runtime
** SQLite string or blob length limits are respected. Otherwise,
** any length binary sequence can be represented and recovered.
** Base85 sequences can be concatenated by separating them with
** a non-base85 character; the conversion to binary will then
** be the concatenation of the represented binary sequences.
** The standalone program either converts base85 on stdin to create
** a binary file or converts a binary file to base85 on stdout.
** Read or make it blurt its help for invocation details.
**
** The SQLite3 extension creates a function, base85(x), which will
** either convert text base85 to a blob or a blob to text base85
** and return the result (or throw an error for other types.)
** Unless built with OMIT_BASE85_CHECKER defined, it also creates a
** function, is_base85(t), which returns 1 iff the text t contains
** nothing other than base85 numerals and whitespace, or 0 otherwise.
**
** To build the extension:
** Set shell variable SQDIR=<your favorite SQLite checkout directory>
** and variable OPTS to -DOMIT_BASE85_CHECKER if is_base85() unwanted.
** *Nix: gcc -O2 -shared -I$SQDIR $OPTS -fPIC -o base85.so base85.c
** OSX: gcc -O2 -dynamiclib -fPIC -I$SQDIR $OPTS -o base85.dylib base85.c
** Win32: gcc -O2 -shared -I%SQDIR% %OPTS% -o base85.dll base85.c
** Win32: cl /Os -I%SQDIR% %OPTS% base85.c -link -dll -out:base85.dll
**
** To build the standalone program, define PP symbol BASE85_STANDALONE. Eg.
** *Nix or OSX: gcc -O2 -DBASE85_STANDALONE base85.c -o base85
** Win32: gcc -O2 -DBASE85_STANDALONE -o base85.exe base85.c
** Win32: cl /Os /MD -DBASE85_STANDALONE base85.c
*/
#include <stdio.h>
#include <memory.h>
#include <string.h>
#include <assert.h>
#ifndef OMIT_BASE85_CHECKER
# include <ctype.h>
#endif
#ifndef BASE85_STANDALONE
/* # include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1;
#else
# ifdef _WIN32
# include <io.h>
# include <fcntl.h>
# else
# define setmode(fd,m)
# endif
static char *zHelp =
"Usage: base85 <dirFlag> <binFile>\n"
" <dirFlag> is either -r to read or -w to write <binFile>,\n"
" content to be converted to/from base85 on stdout/stdin.\n"
" <binFile> names a binary file to be rendered or created.\n"
" Or, the name '-' refers to the stdin or stdout stream.\n"
;
static void sayHelp(){
printf("%s", zHelp);
}
#endif
#ifndef U8_TYPEDEF
/* typedef unsigned char u8; */
#define U8_TYPEDEF
#endif
/* Classify c according to interval within USASCII set w.r.t. base85
* Values of 1 and 3 are base85 numerals. Values of 0, 2, or 4 are not.
*/
#define B85_CLASS( c ) (((c)>='#')+((c)>'&')+((c)>='*')+((c)>'z'))
/* Provide digitValue to b85Numeral offset as a function of above class. */
static u8 b85_cOffset[] = { 0, '#', 0, '*'-4, 0 };
#define B85_DNOS( c ) b85_cOffset[B85_CLASS(c)]
/* Say whether c is a base85 numeral. */
#define IS_B85( c ) (B85_CLASS(c) & 1)
#if 0 /* Not used, */
static u8 base85DigitValue( char c ){
u8 dv = (u8)(c - '#');
if( dv>87 ) return 0xff;
return (dv > 3)? dv-3 : dv;
}
#endif
/* Width of base64 lines. Should be an integer multiple of 5. */
#define B85_DARK_MAX 80
static char * skipNonB85( char *s, int nc ){
char c;
while( nc-- > 0 && (c = *s) && !IS_B85(c) ) ++s;
return s;
}
/* Convert small integer, known to be in 0..84 inclusive, to base85 numeral.
* Do not use the macro form with argument expression having a side-effect.*/
#if 0
static char base85Numeral( u8 b ){
return (b < 4)? (char)(b + '#') : (char)(b - 4 + '*');
}
#else
# define base85Numeral( dn )\
((char)(((dn) < 4)? (char)((dn) + '#') : (char)((dn) - 4 + '*')))
#endif
static char *putcs(char *pc, char *s){
char c;
while( (c = *s++)!=0 ) *pc++ = c;
return pc;
}
/* Encode a byte buffer into base85 text. If pSep!=0, it's a C string
** to be appended to encoded groups to limit their length to B85_DARK_MAX
** or to terminate the last group (to aid concatenation.)
*/
static char* toBase85( u8 *pIn, int nbIn, char *pOut, char *pSep ){
int nCol = 0;
while( nbIn >= 4 ){
int nco = 5;
unsigned long qbv = (((unsigned long)pIn[0])<<24) |
(pIn[1]<<16) | (pIn[2]<<8) | pIn[3];
while( nco > 0 ){
unsigned nqv = (unsigned)(qbv/85UL);
unsigned char dv = qbv - 85UL*nqv;
qbv = nqv;
pOut[--nco] = base85Numeral(dv);
}
nbIn -= 4;
pIn += 4;
pOut += 5;
if( pSep && (nCol += 5)>=B85_DARK_MAX ){
pOut = putcs(pOut, pSep);
nCol = 0;
}
}
if( nbIn > 0 ){
int nco = nbIn + 1;
unsigned long qv = *pIn++;
int nbe = 1;
while( nbe++ < nbIn ){
qv = (qv<<8) | *pIn++;
}
nCol += nco;
while( nco > 0 ){
u8 dv = (u8)(qv % 85);
qv /= 85;
pOut[--nco] = base85Numeral(dv);
}
pOut += (nbIn+1);
}
if( pSep && nCol>0 ) pOut = putcs(pOut, pSep);
*pOut = 0;
return pOut;
}
/* Decode base85 text into a byte buffer. */
static u8* fromBase85( char *pIn, int ncIn, u8 *pOut ){
if( ncIn>0 && pIn[ncIn-1]=='\n' ) --ncIn;
while( ncIn>0 ){
static signed char nboi[] = { 0, 0, 1, 2, 3, 4 };
char *pUse = skipNonB85(pIn, ncIn);
unsigned long qv = 0L;
int nti, nbo;
ncIn -= (pUse - pIn);
pIn = pUse;
nti = (ncIn>5)? 5 : ncIn;
nbo = nboi[nti];
if( nbo==0 ) break;
while( nti>0 ){
char c = *pIn++;
u8 cdo = B85_DNOS(c);
--ncIn;
if( cdo==0 ) break;
qv = 85 * qv + (c - cdo);
--nti;
}
nbo -= nti; /* Adjust for early (non-digit) end of group. */
switch( nbo ){
case 4:
*pOut++ = (qv >> 24)&0xff;
case 3:
*pOut++ = (qv >> 16)&0xff;
case 2:
*pOut++ = (qv >> 8)&0xff;
case 1:
*pOut++ = qv&0xff;
case 0:
break;
}
}
return pOut;
}
#ifndef OMIT_BASE85_CHECKER
/* Say whether input char sequence is all (base85 and/or whitespace).*/
static int allBase85( char *p, int len ){
char c;
while( len-- > 0 && (c = *p++) != 0 ){
if( !IS_B85(c) && !isspace(c) ) return 0;
}
return 1;
}
#endif
#ifndef BASE85_STANDALONE
# ifndef OMIT_BASE85_CHECKER
/* This function does the work for the SQLite is_base85(t) UDF. */
static void is_base85(sqlite3_context *context, int na, sqlite3_value *av[]){
assert(na==1);
switch( sqlite3_value_type(av[0]) ){
case SQLITE_TEXT:
{
int rv = allBase85( (char *)sqlite3_value_text(av[0]),
sqlite3_value_bytes(av[0]) );
sqlite3_result_int(context, rv);
}
break;
case SQLITE_NULL:
sqlite3_result_null(context);
break;
default:
sqlite3_result_error(context, "is_base85 accepts only text or NULL", -1);
return;
}
}
# endif
/* This function does the work for the SQLite base85(x) UDF. */
static void base85(sqlite3_context *context, int na, sqlite3_value *av[]){
int nb, nc, nv = sqlite3_value_bytes(av[0]);
int nvMax = sqlite3_limit(sqlite3_context_db_handle(context),
SQLITE_LIMIT_LENGTH, -1);
char *cBuf;
u8 *bBuf;
assert(na==1);
switch( sqlite3_value_type(av[0]) ){
case SQLITE_BLOB:
nb = nv;
/* ulongs tail newlines tailenc+nul*/
nc = 5*(nv/4) + nv%4 + nv/64+1 + 2;
if( nvMax < nc ){
sqlite3_result_error(context, "blob expanded to base85 too big", -1);
return;
}
bBuf = (u8*)sqlite3_value_blob(av[0]);
if( !bBuf ){
if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){
goto memFail;
}
sqlite3_result_text(context,"",-1,SQLITE_STATIC);
break;
}
cBuf = sqlite3_malloc(nc);
if( !cBuf ) goto memFail;
nc = (int)(toBase85(bBuf, nb, cBuf, "\n") - cBuf);
sqlite3_result_text(context, cBuf, nc, sqlite3_free);
break;
case SQLITE_TEXT:
nc = nv;
nb = 4*(nv/5) + nv%5; /* may overestimate */
if( nvMax < nb ){
sqlite3_result_error(context, "blob from base85 may be too big", -1);
return;
}else if( nb<1 ){
nb = 1;
}
cBuf = (char *)sqlite3_value_text(av[0]);
if( !cBuf ){
if( SQLITE_NOMEM==sqlite3_errcode(sqlite3_context_db_handle(context)) ){
goto memFail;
}
sqlite3_result_zeroblob(context, 0);
break;
}
bBuf = sqlite3_malloc(nb);
if( !bBuf ) goto memFail;
nb = (int)(fromBase85(cBuf, nc, bBuf) - bBuf);
sqlite3_result_blob(context, bBuf, nb, sqlite3_free);
break;
default:
sqlite3_result_error(context, "base85 accepts only blob or text.", -1);
return;
}
return;
memFail:
sqlite3_result_error(context, "base85 OOM", -1);
}
/*
** Establish linkage to running SQLite library.
*/
#ifndef SQLITE_SHELL_EXTFUNCS
#ifdef _WIN32
#endif
int sqlite3_base_init
#else
static int sqlite3_base85_init
#endif
(sqlite3 *db, char **pzErr, const sqlite3_api_routines *pApi){
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErr;
# ifndef OMIT_BASE85_CHECKER
{
int rc = sqlite3_create_function
(db, "is_base85", 1,
SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS|SQLITE_UTF8,
0, is_base85, 0, 0);
if( rc!=SQLITE_OK ) return rc;
}
# endif
return sqlite3_create_function
(db, "base85", 1,
SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS|SQLITE_DIRECTONLY|SQLITE_UTF8,
0, base85, 0, 0);
}
/*
** Define some macros to allow this extension to be built into the shell
** conveniently, in conjunction with use of SQLITE_SHELL_EXTFUNCS. This
** allows shell.c, as distributed, to have this extension built in.
*/
# define BASE85_INIT(db) sqlite3_base85_init(db, 0, 0)
# define BASE85_EXPOSE(db, pzErr) /* Not needed, ..._init() does this. */
#else /* standalone program */
int main(int na, char *av[]){
int cin;
int rc = 0;
u8 bBuf[4*(B85_DARK_MAX/5)];
char cBuf[5*(sizeof(bBuf)/4)+2];
size_t nio;
# ifndef OMIT_BASE85_CHECKER
int b85Clean = 1;
# endif
char rw;
FILE *fb = 0, *foc = 0;
char fmode[3] = "xb";
if( na < 3 || av[1][0]!='-' || (rw = av[1][1])==0 || (rw!='r' && rw!='w') ){
sayHelp();
return 0;
}
fmode[0] = rw;
if( av[2][0]=='-' && av[2][1]==0 ){
switch( rw ){
case 'r':
fb = stdin;
setmode(fileno(stdin), O_BINARY);
break;
case 'w':
fb = stdout;
setmode(fileno(stdout), O_BINARY);
break;
}
}else{
fb = fopen(av[2], fmode);
foc = fb;
}
if( !fb ){
fprintf(stderr, "Cannot open %s for %c\n", av[2], rw);
rc = 1;
}else{
switch( rw ){
case 'r':
while( (nio = fread( bBuf, 1, sizeof(bBuf), fb))>0 ){
toBase85( bBuf, (int)nio, cBuf, 0 );
fprintf(stdout, "%s\n", cBuf);
}
break;
case 'w':
while( 0 != fgets(cBuf, sizeof(cBuf), stdin) ){
int nc = strlen(cBuf);
size_t nbo = fromBase85( cBuf, nc, bBuf ) - bBuf;
if( 1 != fwrite(bBuf, nbo, 1, fb) ) rc = 1;
# ifndef OMIT_BASE85_CHECKER
b85Clean &= allBase85( cBuf, nc );
# endif
}
break;
default:
sayHelp();
rc = 1;
}
if( foc ) fclose(foc);
}
# ifndef OMIT_BASE85_CHECKER
if( !b85Clean ){
fprintf(stderr, "Base85 input had non-base85 dark or control content.\n");
}
# endif
return rc;
}
#endif
/************************* End ../ext/misc/base85.c ********************/
/************************* Begin ../ext/misc/ieee754.c ******************/
/*
** 2013-04-17
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements functions for the exact display
** and input of IEEE754 Binary64 floating-point numbers.
**
** ieee754(X)
** ieee754(Y,Z)
**
** In the first form, the value X should be a floating-point number.
** The function will return a string of the form 'ieee754(Y,Z)' where
** Y and Z are integers such that X==Y*pow(2,Z).
**
** In the second form, Y and Z are integers which are the mantissa and
** base-2 exponent of a new floating point number. The function returns
** a floating-point value equal to Y*pow(2,Z).
**
** Examples:
**
** ieee754(2.0) -> 'ieee754(2,0)'
** ieee754(45.25) -> 'ieee754(181,-2)'
** ieee754(2, 0) -> 2.0
** ieee754(181, -2) -> 45.25
**
** Two additional functions break apart the one-argument ieee754()
** result into separate integer values:
**
** ieee754_mantissa(45.25) -> 181
** ieee754_exponent(45.25) -> -2
**
** These functions convert binary64 numbers into blobs and back again.
**
** ieee754_from_blob(x'3ff0000000000000') -> 1.0
** ieee754_to_blob(1.0) -> x'3ff0000000000000'
**
** In all single-argument functions, if the argument is an 8-byte blob
** then that blob is interpreted as a big-endian binary64 value.
**
**
** EXACT DECIMAL REPRESENTATION OF BINARY64 VALUES
** -----------------------------------------------
**
** This extension in combination with the separate 'decimal' extension
** can be used to compute the exact decimal representation of binary64
** values. To begin, first compute a table of exponent values:
**
** CREATE TABLE pow2(x INTEGER PRIMARY KEY, v TEXT);
** WITH RECURSIVE c(x,v) AS (
** VALUES(0,'1')
** UNION ALL
** SELECT x+1, decimal_mul(v,'2') FROM c WHERE x+1<=971
** ) INSERT INTO pow2(x,v) SELECT x, v FROM c;
** WITH RECURSIVE c(x,v) AS (
** VALUES(-1,'0.5')
** UNION ALL
** SELECT x-1, decimal_mul(v,'0.5') FROM c WHERE x-1>=-1075
** ) INSERT INTO pow2(x,v) SELECT x, v FROM c;
**
** Then, to compute the exact decimal representation of a floating
** point value (the value 47.49 is used in the example) do:
**
** WITH c(n) AS (VALUES(47.49))
** ---------------^^^^^---- Replace with whatever you want
** SELECT decimal_mul(ieee754_mantissa(c.n),pow2.v)
** FROM pow2, c WHERE pow2.x=ieee754_exponent(c.n);
**
** Here is a query to show various boundry values for the binary64
** number format:
**
** WITH c(name,bin) AS (VALUES
** ('minimum positive value', x'0000000000000001'),
** ('maximum subnormal value', x'000fffffffffffff'),
** ('mininum positive nornal value', x'0010000000000000'),
** ('maximum value', x'7fefffffffffffff'))
** SELECT c.name, decimal_mul(ieee754_mantissa(c.bin),pow2.v)
** FROM pow2, c WHERE pow2.x=ieee754_exponent(c.bin);
**
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
/* Mark a function parameter as unused, to suppress nuisance compiler
** warnings. */
#ifndef UNUSED_PARAMETER
# define UNUSED_PARAMETER(X) (void)(X)
#endif
/*
** Implementation of the ieee754() function
*/
static void ieee754func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
if( argc==1 ){
sqlite3_int64 m, a;
double r;
int e;
int isNeg;
char zResult[100];
assert( sizeof(m)==sizeof(r) );
if( sqlite3_value_type(argv[0])==SQLITE_BLOB
&& sqlite3_value_bytes(argv[0])==sizeof(r)
){
const unsigned char *x = sqlite3_value_blob(argv[0]);
unsigned int i;
sqlite3_uint64 v = 0;
for(i=0; i<sizeof(r); i++){
v = (v<<8) | x[i];
}
memcpy(&r, &v, sizeof(r));
}else{
r = sqlite3_value_double(argv[0]);
}
if( r<0.0 ){
isNeg = 1;
r = -r;
}else{
isNeg = 0;
}
memcpy(&a,&r,sizeof(a));
if( a==0 ){
e = 0;
m = 0;
}else{
e = a>>52;
m = a & ((((sqlite3_int64)1)<<52)-1);
if( e==0 ){
m <<= 1;
}else{
m |= ((sqlite3_int64)1)<<52;
}
while( e<1075 && m>0 && (m&1)==0 ){
m >>= 1;
e++;
}
if( isNeg ) m = -m;
}
switch( *(int*)sqlite3_user_data(context) ){
case 0:
sqlite3_snprintf(sizeof(zResult), zResult, "ieee754(%lld,%d)",
m, e-1075);
sqlite3_result_text(context, zResult, -1, SQLITE_TRANSIENT);
break;
case 1:
sqlite3_result_int64(context, m);
break;
case 2:
sqlite3_result_int(context, e-1075);
break;
}
}else{
sqlite3_int64 m, e, a;
double r;
int isNeg = 0;
m = sqlite3_value_int64(argv[0]);
e = sqlite3_value_int64(argv[1]);
/* Limit the range of e. Ticket 22dea1cfdb9151e4 2021-03-02 */
if( e>10000 ){
e = 10000;
}else if( e<-10000 ){
e = -10000;
}
if( m<0 ){
isNeg = 1;
m = -m;
if( m<0 ) return;
}else if( m==0 && e>-1000 && e<1000 ){
sqlite3_result_double(context, 0.0);
return;
}
while( (m>>32)&0xffe00000 ){
m >>= 1;
e++;
}
while( m!=0 && ((m>>32)&0xfff00000)==0 ){
m <<= 1;
e--;
}
e += 1075;
if( e<=0 ){
/* Subnormal */
if( 1-e >= 64 ){
m = 0;
}else{
m >>= 1-e;
}
e = 0;
}else if( e>0x7ff ){
e = 0x7ff;
}
a = m & ((((sqlite3_int64)1)<<52)-1);
a |= e<<52;
if( isNeg ) a |= ((sqlite3_uint64)1)<<63;
memcpy(&r, &a, sizeof(r));
sqlite3_result_double(context, r);
}
}
/*
** Functions to convert between blobs and floats.
*/
static void ieee754func_from_blob(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
UNUSED_PARAMETER(argc);
if( sqlite3_value_type(argv[0])==SQLITE_BLOB
&& sqlite3_value_bytes(argv[0])==sizeof(double)
){
double r;
const unsigned char *x = sqlite3_value_blob(argv[0]);
unsigned int i;
sqlite3_uint64 v = 0;
for(i=0; i<sizeof(r); i++){
v = (v<<8) | x[i];
}
memcpy(&r, &v, sizeof(r));
sqlite3_result_double(context, r);
}
}
static void ieee754func_to_blob(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
UNUSED_PARAMETER(argc);
if( sqlite3_value_type(argv[0])==SQLITE_FLOAT
|| sqlite3_value_type(argv[0])==SQLITE_INTEGER
){
double r = sqlite3_value_double(argv[0]);
sqlite3_uint64 v;
unsigned char a[sizeof(r)];
unsigned int i;
memcpy(&v, &r, sizeof(r));
for(i=1; i<=sizeof(r); i++){
a[sizeof(r)-i] = v&0xff;
v >>= 8;
}
sqlite3_result_blob(context, a, sizeof(r), SQLITE_TRANSIENT);
}
}
#ifdef _WIN32
#endif
int sqlite3_ieee_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
static const struct {
char *zFName;
int nArg;
int iAux;
void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
} aFunc[] = {
{ "ieee754", 1, 0, ieee754func },
{ "ieee754", 2, 0, ieee754func },
{ "ieee754_mantissa", 1, 1, ieee754func },
{ "ieee754_exponent", 1, 2, ieee754func },
{ "ieee754_to_blob", 1, 0, ieee754func_to_blob },
{ "ieee754_from_blob", 1, 0, ieee754func_from_blob },
};
unsigned int i;
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
rc = sqlite3_create_function(db, aFunc[i].zFName, aFunc[i].nArg,
SQLITE_UTF8|SQLITE_INNOCUOUS,
(void*)&aFunc[i].iAux,
aFunc[i].xFunc, 0, 0);
}
return rc;
}
/************************* End ../ext/misc/ieee754.c ********************/
/************************* Begin ../ext/misc/series.c ******************/
/*
** 2015-08-18, 2023-04-28
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file demonstrates how to create a table-valued-function using
** a virtual table. This demo implements the generate_series() function
** which gives the same results as the eponymous function in PostgreSQL,
** within the limitation that its arguments are signed 64-bit integers.
**
** Considering its equivalents to generate_series(start,stop,step): A
** value V[n] sequence is produced for integer n ascending from 0 where
** ( V[n] == start + n * step && sgn(V[n] - stop) * sgn(step) >= 0 )
** for each produced value (independent of production time ordering.)
**
** All parameters must be either integer or convertable to integer.
** The start parameter is required.
** The stop parameter defaults to (1<<32)-1 (aka 4294967295 or 0xffffffff)
** The step parameter defaults to 1 and 0 is treated as 1.
**
** Examples:
**
** SELECT * FROM generate_series(0,100,5);
**
** The query above returns integers from 0 through 100 counting by steps
** of 5.
**
** SELECT * FROM generate_series(0,100);
**
** Integers from 0 through 100 with a step size of 1.
**
** SELECT * FROM generate_series(20) LIMIT 10;
**
** Integers 20 through 29.
**
** SELECT * FROM generate_series(0,-100,-5);
**
** Integers 0 -5 -10 ... -100.
**
** SELECT * FROM generate_series(0,-1);
**
** Empty sequence.
**
** HOW IT WORKS
**
** The generate_series "function" is really a virtual table with the
** following schema:
**
** CREATE TABLE generate_series(
** value,
** start HIDDEN,
** stop HIDDEN,
** step HIDDEN
** );
**
** The virtual table also has a rowid, logically equivalent to n+1 where
** "n" is the ascending integer in the aforesaid production definition.
**
** Function arguments in queries against this virtual table are translated
** into equality constraints against successive hidden columns. In other
** words, the following pairs of queries are equivalent to each other:
**
** SELECT * FROM generate_series(0,100,5);
** SELECT * FROM generate_series WHERE start=0 AND stop=100 AND step=5;
**
** SELECT * FROM generate_series(0,100);
** SELECT * FROM generate_series WHERE start=0 AND stop=100;
**
** SELECT * FROM generate_series(20) LIMIT 10;
** SELECT * FROM generate_series WHERE start=20 LIMIT 10;
**
** The generate_series virtual table implementation leaves the xCreate method
** set to NULL. This means that it is not possible to do a CREATE VIRTUAL
** TABLE command with "generate_series" as the USING argument. Instead, there
** is a single generate_series virtual table that is always available without
** having to be created first.
**
** The xBestIndex method looks for equality constraints against the hidden
** start, stop, and step columns, and if present, it uses those constraints
** to bound the sequence of generated values. If the equality constraints
** are missing, it uses 0 for start, 4294967295 for stop, and 1 for step.
** xBestIndex returns a small cost when both start and stop are available,
** and a very large cost if either start or stop are unavailable. This
** encourages the query planner to order joins such that the bounds of the
** series are well-defined.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <limits.h>
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Return that member of a generate_series(...) sequence whose 0-based
** index is ix. The 0th member is given by smBase. The sequence members
** progress per ix increment by smStep.
*/
static sqlite3_int64 genSeqMember(sqlite3_int64 smBase,
sqlite3_int64 smStep,
sqlite3_uint64 ix){
if( ix>=(sqlite3_uint64)LLONG_MAX ){
/* Get ix into signed i64 range. */
ix -= (sqlite3_uint64)LLONG_MAX;
/* With 2's complement ALU, this next can be 1 step, but is split into
* 2 for UBSAN's satisfaction (and hypothetical 1's complement ALUs.) */
smBase += (LLONG_MAX/2) * smStep;
smBase += (LLONG_MAX - LLONG_MAX/2) * smStep;
}
/* Under UBSAN (or on 1's complement machines), must do this last term
* in steps to avoid the dreaded (and harmless) signed multiply overlow. */
if( ix>=2 ){
sqlite3_int64 ix2 = (sqlite3_int64)ix/2;
smBase += ix2*smStep;
ix -= ix2;
}
return smBase + ((sqlite3_int64)ix)*smStep;
}
/* typedef unsigned char u8; */
typedef struct SequenceSpec {
sqlite3_int64 iBase; /* Starting value ("start") */
sqlite3_int64 iTerm; /* Given terminal value ("stop") */
sqlite3_int64 iStep; /* Increment ("step") */
sqlite3_uint64 uSeqIndexMax; /* maximum sequence index (aka "n") */
sqlite3_uint64 uSeqIndexNow; /* Current index during generation */
sqlite3_int64 iValueNow; /* Current value during generation */
u8 isNotEOF; /* Sequence generation not exhausted */
u8 isReversing; /* Sequence is being reverse generated */
} SequenceSpec;
/*
** Prepare a SequenceSpec for use in generating an integer series
** given initialized iBase, iTerm and iStep values. Sequence is
** initialized per given isReversing. Other members are computed.
*/
static void setupSequence( SequenceSpec *pss ){
int bSameSigns;
pss->uSeqIndexMax = 0;
pss->isNotEOF = 0;
bSameSigns = (pss->iBase < 0)==(pss->iTerm < 0);
if( pss->iTerm < pss->iBase ){
sqlite3_uint64 nuspan = 0;
if( bSameSigns ){
nuspan = (sqlite3_uint64)(pss->iBase - pss->iTerm);
}else{
/* Under UBSAN (or on 1's complement machines), must do this in steps.
* In this clause, iBase>=0 and iTerm<0 . */
nuspan = 1;
nuspan += pss->iBase;
nuspan += -(pss->iTerm+1);
}
if( pss->iStep<0 ){
pss->isNotEOF = 1;
if( nuspan==ULONG_MAX ){
pss->uSeqIndexMax = ( pss->iStep>LLONG_MIN )? nuspan/-pss->iStep : 1;
}else if( pss->iStep>LLONG_MIN ){
pss->uSeqIndexMax = nuspan/-pss->iStep;
}
}
}else if( pss->iTerm > pss->iBase ){
sqlite3_uint64 puspan = 0;
if( bSameSigns ){
puspan = (sqlite3_uint64)(pss->iTerm - pss->iBase);
}else{
/* Under UBSAN (or on 1's complement machines), must do this in steps.
* In this clause, iTerm>=0 and iBase<0 . */
puspan = 1;
puspan += pss->iTerm;
puspan += -(pss->iBase+1);
}
if( pss->iStep>0 ){
pss->isNotEOF = 1;
pss->uSeqIndexMax = puspan/pss->iStep;
}
}else if( pss->iTerm == pss->iBase ){
pss->isNotEOF = 1;
pss->uSeqIndexMax = 0;
}
pss->uSeqIndexNow = (pss->isReversing)? pss->uSeqIndexMax : 0;
pss->iValueNow = (pss->isReversing)
? genSeqMember(pss->iBase, pss->iStep, pss->uSeqIndexMax)
: pss->iBase;
}
/*
** Progress sequence generator to yield next value, if any.
** Leave its state to either yield next value or be at EOF.
** Return whether there is a next value, or 0 at EOF.
*/
static int progressSequence( SequenceSpec *pss ){
if( !pss->isNotEOF ) return 0;
if( pss->isReversing ){
if( pss->uSeqIndexNow > 0 ){
pss->uSeqIndexNow--;
pss->iValueNow -= pss->iStep;
}else{
pss->isNotEOF = 0;
}
}else{
if( pss->uSeqIndexNow < pss->uSeqIndexMax ){
pss->uSeqIndexNow++;
pss->iValueNow += pss->iStep;
}else{
pss->isNotEOF = 0;
}
}
return pss->isNotEOF;
}
/* series_cursor is a subclass of sqlite3_vtab_cursor which will
** serve as the underlying representation of a cursor that scans
** over rows of the result
*/
typedef struct series_cursor series_cursor;
struct series_cursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
SequenceSpec ss; /* (this) Derived class data */
};
/*
** The seriesConnect() method is invoked to create a new
** series_vtab that describes the generate_series virtual table.
**
** Think of this routine as the constructor for series_vtab objects.
**
** All this routine needs to do is:
**
** (1) Allocate the series_vtab object and initialize all fields.
**
** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
** result set of queries against generate_series will look like.
*/
static int seriesConnect(
sqlite3 *db,
void *pUnused,
int argcUnused, const char *const*argvUnused,
sqlite3_vtab **ppVtab,
char **pzErrUnused
){
sqlite3_vtab *pNew;
int rc;
/* Column numbers */
#define SERIES_COLUMN_VALUE 0
#define SERIES_COLUMN_START 1
#define SERIES_COLUMN_STOP 2
#define SERIES_COLUMN_STEP 3
(void)pUnused;
(void)argcUnused;
(void)argvUnused;
(void)pzErrUnused;
rc = sqlite3_declare_vtab(db,
"CREATE TABLE x(value,start hidden,stop hidden,step hidden)");
if( rc==SQLITE_OK ){
pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, sizeof(*pNew));
sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
}
return rc;
}
/*
** This method is the destructor for series_cursor objects.
*/
static int seriesDisconnect(sqlite3_vtab *pVtab){
sqlite3_free(pVtab);
return SQLITE_OK;
}
/*
** Constructor for a new series_cursor object.
*/
static int seriesOpen(sqlite3_vtab *pUnused, sqlite3_vtab_cursor **ppCursor){
series_cursor *pCur;
(void)pUnused;
pCur = sqlite3_malloc( sizeof(*pCur) );
if( pCur==0 ) return SQLITE_NOMEM;
memset(pCur, 0, sizeof(*pCur));
*ppCursor = &pCur->base;
return SQLITE_OK;
}
/*
** Destructor for a series_cursor.
*/
static int seriesClose(sqlite3_vtab_cursor *cur){
sqlite3_free(cur);
return SQLITE_OK;
}
/*
** Advance a series_cursor to its next row of output.
*/
static int seriesNext(sqlite3_vtab_cursor *cur){
series_cursor *pCur = (series_cursor*)cur;
progressSequence( & pCur->ss );
return SQLITE_OK;
}
/*
** Return values of columns for the row at which the series_cursor
** is currently pointing.
*/
static int seriesColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int i /* Which column to return */
){
series_cursor *pCur = (series_cursor*)cur;
sqlite3_int64 x = 0;
switch( i ){
case SERIES_COLUMN_START: x = pCur->ss.iBase; break;
case SERIES_COLUMN_STOP: x = pCur->ss.iTerm; break;
case SERIES_COLUMN_STEP: x = pCur->ss.iStep; break;
default: x = pCur->ss.iValueNow; break;
}
sqlite3_result_int64(ctx, x);
return SQLITE_OK;
}
/*
** Return the rowid for the current row, logically equivalent to n+1 where
** "n" is the ascending integer in the aforesaid production definition.
*/
static int seriesRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
series_cursor *pCur = (series_cursor*)cur;
sqlite3_uint64 n = pCur->ss.uSeqIndexNow;
*pRowid = (sqlite3_int64)((n<0xffffffffffffffff)? n+1 : 0);
return SQLITE_OK;
}
/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int seriesEof(sqlite3_vtab_cursor *cur){
series_cursor *pCur = (series_cursor*)cur;
return !pCur->ss.isNotEOF;
}
/* True to cause run-time checking of the start=, stop=, and/or step=
** parameters. The only reason to do this is for testing the
** constraint checking logic for virtual tables in the SQLite core.
*/
#ifndef SQLITE_SERIES_CONSTRAINT_VERIFY
# define SQLITE_SERIES_CONSTRAINT_VERIFY 0
#endif
/*
** This method is called to "rewind" the series_cursor object back
** to the first row of output. This method is always called at least
** once prior to any call to seriesColumn() or seriesRowid() or
** seriesEof().
**
** The query plan selected by seriesBestIndex is passed in the idxNum
** parameter. (idxStr is not used in this implementation.) idxNum
** is a bitmask showing which constraints are available:
**
** 1: start=VALUE
** 2: stop=VALUE
** 4: step=VALUE
**
** Also, if bit 8 is set, that means that the series should be output
** in descending order rather than in ascending order. If bit 16 is
** set, then output must appear in ascending order.
**
** This routine should initialize the cursor and position it so that it
** is pointing at the first row, or pointing off the end of the table
** (so that seriesEof() will return true) if the table is empty.
*/
static int seriesFilter(
sqlite3_vtab_cursor *pVtabCursor,
int idxNum, const char *idxStrUnused,
int argc, sqlite3_value **argv
){
series_cursor *pCur = (series_cursor *)pVtabCursor;
int i = 0;
(void)idxStrUnused;
if( idxNum & 1 ){
pCur->ss.iBase = sqlite3_value_int64(argv[i++]);
}else{
pCur->ss.iBase = 0;
}
if( idxNum & 2 ){
pCur->ss.iTerm = sqlite3_value_int64(argv[i++]);
}else{
pCur->ss.iTerm = 0xffffffff;
}
if( idxNum & 4 ){
pCur->ss.iStep = sqlite3_value_int64(argv[i++]);
if( pCur->ss.iStep==0 ){
pCur->ss.iStep = 1;
}else if( pCur->ss.iStep<0 ){
if( (idxNum & 16)==0 ) idxNum |= 8;
}
}else{
pCur->ss.iStep = 1;
}
for(i=0; i<argc; i++){
if( sqlite3_value_type(argv[i])==SQLITE_NULL ){
/* If any of the constraints have a NULL value, then return no rows.
** See ticket https://www.sqlite.org/src/info/fac496b61722daf2 */
pCur->ss.iBase = 1;
pCur->ss.iTerm = 0;
pCur->ss.iStep = 1;
break;
}
}
if( idxNum & 8 ){
pCur->ss.isReversing = pCur->ss.iStep > 0;
}else{
pCur->ss.isReversing = pCur->ss.iStep < 0;
}
setupSequence( &pCur->ss );
return SQLITE_OK;
}
/*
** SQLite will invoke this method one or more times while planning a query
** that uses the generate_series virtual table. This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
**
** In this implementation idxNum is used to represent the
** query plan. idxStr is unused.
**
** The query plan is represented by bits in idxNum:
**
** (1) start = $value -- constraint exists
** (2) stop = $value -- constraint exists
** (4) step = $value -- constraint exists
** (8) output in descending order
*/
static int seriesBestIndex(
sqlite3_vtab *pVTab,
sqlite3_index_info *pIdxInfo
){
int i, j; /* Loop over constraints */
int idxNum = 0; /* The query plan bitmask */
int bStartSeen = 0; /* EQ constraint seen on the START column */
int unusableMask = 0; /* Mask of unusable constraints */
int nArg = 0; /* Number of arguments that seriesFilter() expects */
int aIdx[3]; /* Constraints on start, stop, and step */
const struct sqlite3_index_constraint *pConstraint;
/* This implementation assumes that the start, stop, and step columns
** are the last three columns in the virtual table. */
assert( SERIES_COLUMN_STOP == SERIES_COLUMN_START+1 );
assert( SERIES_COLUMN_STEP == SERIES_COLUMN_START+2 );
aIdx[0] = aIdx[1] = aIdx[2] = -1;
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
int iCol; /* 0 for start, 1 for stop, 2 for step */
int iMask; /* bitmask for those column */
if( pConstraint->iColumn<SERIES_COLUMN_START ) continue;
iCol = pConstraint->iColumn - SERIES_COLUMN_START;
assert( iCol>=0 && iCol<=2 );
iMask = 1 << iCol;
if( iCol==0 ) bStartSeen = 1;
if( pConstraint->usable==0 ){
unusableMask |= iMask;
continue;
}else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
idxNum |= iMask;
aIdx[iCol] = i;
}
}
for(i=0; i<3; i++){
if( (j = aIdx[i])>=0 ){
pIdxInfo->aConstraintUsage[j].argvIndex = ++nArg;
pIdxInfo->aConstraintUsage[j].omit = !SQLITE_SERIES_CONSTRAINT_VERIFY;
}
}
/* The current generate_column() implementation requires at least one
** argument (the START value). Legacy versions assumed START=0 if the
** first argument was omitted. Compile with -DZERO_ARGUMENT_GENERATE_SERIES
** to obtain the legacy behavior */
#ifndef ZERO_ARGUMENT_GENERATE_SERIES
if( !bStartSeen ){
sqlite3_free(pVTab->zErrMsg);
pVTab->zErrMsg = sqlite3_mprintf(
"first argument to \"generate_series()\" missing or unusable");
return SQLITE_ERROR;
}
#endif
if( (unusableMask & ~idxNum)!=0 ){
/* The start, stop, and step columns are inputs. Therefore if there
** are unusable constraints on any of start, stop, or step then
** this plan is unusable */
return SQLITE_CONSTRAINT;
}
if( (idxNum & 3)==3 ){
/* Both start= and stop= boundaries are available. This is the
** the preferred case */
pIdxInfo->estimatedCost = (double)(2 - ((idxNum&4)!=0));
pIdxInfo->estimatedRows = 1000;
if( pIdxInfo->nOrderBy>=1 && pIdxInfo->aOrderBy[0].iColumn==0 ){
if( pIdxInfo->aOrderBy[0].desc ){
idxNum |= 8;
}else{
idxNum |= 16;
}
pIdxInfo->orderByConsumed = 1;
}
}else{
/* If either boundary is missing, we have to generate a huge span
** of numbers. Make this case very expensive so that the query
** planner will work hard to avoid it. */
pIdxInfo->estimatedRows = 2147483647;
}
pIdxInfo->idxNum = idxNum;
return SQLITE_OK;
}
/*
** This following structure defines all the methods for the
** generate_series virtual table.
*/
static sqlite3_module seriesModule = {
0, /* iVersion */
0, /* xCreate */
seriesConnect, /* xConnect */
seriesBestIndex, /* xBestIndex */
seriesDisconnect, /* xDisconnect */
0, /* xDestroy */
seriesOpen, /* xOpen - open a cursor */
seriesClose, /* xClose - close a cursor */
seriesFilter, /* xFilter - configure scan constraints */
seriesNext, /* xNext - advance a cursor */
seriesEof, /* xEof - check for end of scan */
seriesColumn, /* xColumn - read data */
seriesRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0 /* xShadowName */
};
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifdef _WIN32
#endif
int sqlite3_series_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( sqlite3_libversion_number()<3008012 && pzErrMsg!=0 ){
*pzErrMsg = sqlite3_mprintf(
"generate_series() requires SQLite 3.8.12 or later");
return SQLITE_ERROR;
}
rc = sqlite3_create_module(db, "generate_series", &seriesModule, 0);
#endif
return rc;
}
/************************* End ../ext/misc/series.c ********************/
/************************* Begin ../ext/misc/regexp.c ******************/
/*
** 2012-11-13
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** The code in this file implements a compact but reasonably
** efficient regular-expression matcher for posix extended regular
** expressions against UTF8 text.
**
** This file is an SQLite extension. It registers a single function
** named "regexp(A,B)" where A is the regular expression and B is the
** string to be matched. By registering this function, SQLite will also
** then implement the "B regexp A" operator. Note that with the function
** the regular expression comes first, but with the operator it comes
** second.
**
** The following regular expression syntax is supported:
**
** X* zero or more occurrences of X
** X+ one or more occurrences of X
** X? zero or one occurrences of X
** X{p,q} between p and q occurrences of X
** (X) match X
** X|Y X or Y
** ^X X occurring at the beginning of the string
** X$ X occurring at the end of the string
** . Match any single character
** \c Character c where c is one of \{}()[]|*+?.
** \c C-language escapes for c in afnrtv. ex: \t or \n
** \uXXXX Where XXXX is exactly 4 hex digits, unicode value XXXX
** \xXX Where XX is exactly 2 hex digits, unicode value XX
** [abc] Any single character from the set abc
** [^abc] Any single character not in the set abc
** [a-z] Any single character in the range a-z
** [^a-z] Any single character not in the range a-z
** \b Word boundary
** \w Word character. [A-Za-z0-9_]
** \W Non-word character
** \d Digit
** \D Non-digit
** \s Whitespace character
** \S Non-whitespace character
**
** A nondeterministic finite automaton (NFA) is used for matching, so the
** performance is bounded by O(N*M) where N is the size of the regular
** expression and M is the size of the input string. The matcher never
** exhibits exponential behavior. Note that the X{p,q} operator expands
** to p copies of X following by q-p copies of X? and that the size of the
** regular expression in the O(N*M) performance bound is computed after
** this expansion.
*/
#include <string.h>
#include <stdlib.h>
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
/*
** The following #defines change the names of some functions implemented in
** this file to prevent name collisions with C-library functions of the
** same name.
*/
#define re_match sqlite3re_match
#define re_compile sqlite3re_compile
#define re_free sqlite3re_free
/* The end-of-input character */
#define RE_EOF 0 /* End of input */
#define RE_START 0xfffffff /* Start of input - larger than an UTF-8 */
/* The NFA is implemented as sequence of opcodes taken from the following
** set. Each opcode has a single integer argument.
*/
#define RE_OP_MATCH 1 /* Match the one character in the argument */
#define RE_OP_ANY 2 /* Match any one character. (Implements ".") */
#define RE_OP_ANYSTAR 3 /* Special optimized version of .* */
#define RE_OP_FORK 4 /* Continue to both next and opcode at iArg */
#define RE_OP_GOTO 5 /* Jump to opcode at iArg */
#define RE_OP_ACCEPT 6 /* Halt and indicate a successful match */
#define RE_OP_CC_INC 7 /* Beginning of a [...] character class */
#define RE_OP_CC_EXC 8 /* Beginning of a [^...] character class */
#define RE_OP_CC_VALUE 9 /* Single value in a character class */
#define RE_OP_CC_RANGE 10 /* Range of values in a character class */
#define RE_OP_WORD 11 /* Perl word character [A-Za-z0-9_] */
#define RE_OP_NOTWORD 12 /* Not a perl word character */
#define RE_OP_DIGIT 13 /* digit: [0-9] */
#define RE_OP_NOTDIGIT 14 /* Not a digit */
#define RE_OP_SPACE 15 /* space: [ \t\n\r\v\f] */
#define RE_OP_NOTSPACE 16 /* Not a digit */
#define RE_OP_BOUNDARY 17 /* Boundary between word and non-word */
#define RE_OP_ATSTART 18 /* Currently at the start of the string */
#if defined(SQLITE_DEBUG)
/* Opcode names used for symbolic debugging */
static const char *ReOpName[] = {
"EOF",
"MATCH",
"ANY",
"ANYSTAR",
"FORK",
"GOTO",
"ACCEPT",
"CC_INC",
"CC_EXC",
"CC_VALUE",
"CC_RANGE",
"WORD",
"NOTWORD",
"DIGIT",
"NOTDIGIT",
"SPACE",
"NOTSPACE",
"BOUNDARY",
"ATSTART",
};
#endif /* SQLITE_DEBUG */
/* Each opcode is a "state" in the NFA */
typedef unsigned short ReStateNumber;
/* Because this is an NFA and not a DFA, multiple states can be active at
** once. An instance of the following object records all active states in
** the NFA. The implementation is optimized for the common case where the
** number of actives states is small.
*/
typedef struct ReStateSet {
unsigned nState; /* Number of current states */
ReStateNumber *aState; /* Current states */
} ReStateSet;
/* An input string read one character at a time.
*/
typedef struct ReInput ReInput;
struct ReInput {
const unsigned char *z; /* All text */
int i; /* Next byte to read */
int mx; /* EOF when i>=mx */
};
/* A compiled NFA (or an NFA that is in the process of being compiled) is
** an instance of the following object.
*/
typedef struct ReCompiled ReCompiled;
struct ReCompiled {
ReInput sIn; /* Regular expression text */
const char *zErr; /* Error message to return */
char *aOp; /* Operators for the virtual machine */
int *aArg; /* Arguments to each operator */
unsigned (*xNextChar)(ReInput*); /* Next character function */
unsigned char zInit[12]; /* Initial text to match */
int nInit; /* Number of bytes in zInit */
unsigned nState; /* Number of entries in aOp[] and aArg[] */
unsigned nAlloc; /* Slots allocated for aOp[] and aArg[] */
};
/* Add a state to the given state set if it is not already there */
static void re_add_state(ReStateSet *pSet, int newState){
unsigned i;
for(i=0; i<pSet->nState; i++) if( pSet->aState[i]==newState ) return;
pSet->aState[pSet->nState++] = (ReStateNumber)newState;
}
/* Extract the next unicode character from *pzIn and return it. Advance
** *pzIn to the first byte past the end of the character returned. To
** be clear: this routine converts utf8 to unicode. This routine is
** optimized for the common case where the next character is a single byte.
*/
static unsigned re_next_char(ReInput *p){
unsigned c;
if( p->i>=p->mx ) return 0;
c = p->z[p->i++];
if( c>=0x80 ){
if( (c&0xe0)==0xc0 && p->i<p->mx && (p->z[p->i]&0xc0)==0x80 ){
c = (c&0x1f)<<6 | (p->z[p->i++]&0x3f);
if( c<0x80 ) c = 0xfffd;
}else if( (c&0xf0)==0xe0 && p->i+1<p->mx && (p->z[p->i]&0xc0)==0x80
&& (p->z[p->i+1]&0xc0)==0x80 ){
c = (c&0x0f)<<12 | ((p->z[p->i]&0x3f)<<6) | (p->z[p->i+1]&0x3f);
p->i += 2;
if( c<=0x7ff || (c>=0xd800 && c<=0xdfff) ) c = 0xfffd;
}else if( (c&0xf8)==0xf0 && p->i+2<p->mx && (p->z[p->i]&0xc0)==0x80
&& (p->z[p->i+1]&0xc0)==0x80 && (p->z[p->i+2]&0xc0)==0x80 ){
c = (c&0x07)<<18 | ((p->z[p->i]&0x3f)<<12) | ((p->z[p->i+1]&0x3f)<<6)
| (p->z[p->i+2]&0x3f);
p->i += 3;
if( c<=0xffff || c>0x10ffff ) c = 0xfffd;
}else{
c = 0xfffd;
}
}
return c;
}
static unsigned re_next_char_nocase(ReInput *p){
unsigned c = re_next_char(p);
if( c>='A' && c<='Z' ) c += 'a' - 'A';
return c;
}
/* Return true if c is a perl "word" character: [A-Za-z0-9_] */
static int re_word_char(int c){
return (c>='0' && c<='9') || (c>='a' && c<='z')
|| (c>='A' && c<='Z') || c=='_';
}
/* Return true if c is a "digit" character: [0-9] */
static int re_digit_char(int c){
return (c>='0' && c<='9');
}
/* Return true if c is a perl "space" character: [ \t\r\n\v\f] */
static int re_space_char(int c){
return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
}
/* Run a compiled regular expression on the zero-terminated input
** string zIn[]. Return true on a match and false if there is no match.
*/
static int re_match(ReCompiled *pRe, const unsigned char *zIn, int nIn){
ReStateSet aStateSet[2], *pThis, *pNext;
ReStateNumber aSpace[100];
ReStateNumber *pToFree;
unsigned int i = 0;
unsigned int iSwap = 0;
int c = RE_START;
int cPrev = 0;
int rc = 0;
ReInput in;
in.z = zIn;
in.i = 0;
in.mx = nIn>=0 ? nIn : (int)strlen((char const*)zIn);
/* Look for the initial prefix match, if there is one. */
if( pRe->nInit ){
unsigned char x = pRe->zInit[0];
while( in.i+pRe->nInit<=in.mx
&& (zIn[in.i]!=x ||
strncmp((const char*)zIn+in.i, (const char*)pRe->zInit, pRe->nInit)!=0)
){
in.i++;
}
if( in.i+pRe->nInit>in.mx ) return 0;
c = RE_START-1;
}
if( pRe->nState<=(sizeof(aSpace)/(sizeof(aSpace[0])*2)) ){
pToFree = 0;
aStateSet[0].aState = aSpace;
}else{
pToFree = sqlite3_malloc64( sizeof(ReStateNumber)*2*pRe->nState );
if( pToFree==0 ) return -1;
aStateSet[0].aState = pToFree;
}
aStateSet[1].aState = &aStateSet[0].aState[pRe->nState];
pNext = &aStateSet[1];
pNext->nState = 0;
re_add_state(pNext, 0);
while( c!=RE_EOF && pNext->nState>0 ){
cPrev = c;
c = pRe->xNextChar(&in);
pThis = pNext;
pNext = &aStateSet[iSwap];
iSwap = 1 - iSwap;
pNext->nState = 0;
for(i=0; i<pThis->nState; i++){
int x = pThis->aState[i];
switch( pRe->aOp[x] ){
case RE_OP_MATCH: {
if( pRe->aArg[x]==c ) re_add_state(pNext, x+1);
break;
}
case RE_OP_ATSTART: {
if( cPrev==RE_START ) re_add_state(pThis, x+1);
break;
}
case RE_OP_ANY: {
if( c!=0 ) re_add_state(pNext, x+1);
break;
}
case RE_OP_WORD: {
if( re_word_char(c) ) re_add_state(pNext, x+1);
break;
}
case RE_OP_NOTWORD: {
if( !re_word_char(c) && c!=0 ) re_add_state(pNext, x+1);
break;
}
case RE_OP_DIGIT: {
if( re_digit_char(c) ) re_add_state(pNext, x+1);
break;
}
case RE_OP_NOTDIGIT: {
if( !re_digit_char(c) && c!=0 ) re_add_state(pNext, x+1);
break;
}
case RE_OP_SPACE: {
if( re_space_char(c) ) re_add_state(pNext, x+1);
break;
}
case RE_OP_NOTSPACE: {
if( !re_space_char(c) && c!=0 ) re_add_state(pNext, x+1);
break;
}
case RE_OP_BOUNDARY: {
if( re_word_char(c)!=re_word_char(cPrev) ) re_add_state(pThis, x+1);
break;
}
case RE_OP_ANYSTAR: {
re_add_state(pNext, x);
re_add_state(pThis, x+1);
break;
}
case RE_OP_FORK: {
re_add_state(pThis, x+pRe->aArg[x]);
re_add_state(pThis, x+1);
break;
}
case RE_OP_GOTO: {
re_add_state(pThis, x+pRe->aArg[x]);
break;
}
case RE_OP_ACCEPT: {
rc = 1;
goto re_match_end;
}
case RE_OP_CC_EXC: {
if( c==0 ) break;
/* fall-through */ goto re_op_cc_inc;
}
case RE_OP_CC_INC: re_op_cc_inc: {
int j = 1;
int n = pRe->aArg[x];
int hit = 0;
for(j=1; j>0 && j<n; j++){
if( pRe->aOp[x+j]==RE_OP_CC_VALUE ){
if( pRe->aArg[x+j]==c ){
hit = 1;
j = -1;
}
}else{
if( pRe->aArg[x+j]<=c && pRe->aArg[x+j+1]>=c ){
hit = 1;
j = -1;
}else{
j++;
}
}
}
if( pRe->aOp[x]==RE_OP_CC_EXC ) hit = !hit;
if( hit ) re_add_state(pNext, x+n);
break;
}
}
}
}
for(i=0; i<pNext->nState; i++){
int x = pNext->aState[i];
while( pRe->aOp[x]==RE_OP_GOTO ) x += pRe->aArg[x];
if( pRe->aOp[x]==RE_OP_ACCEPT ){ rc = 1; break; }
}
re_match_end:
sqlite3_free(pToFree);
return rc;
}
/* Resize the opcode and argument arrays for an RE under construction.
*/
static int re_resize(ReCompiled *p, int N){
char *aOp;
int *aArg;
aOp = sqlite3_realloc64(p->aOp, N*sizeof(p->aOp[0]));
if( aOp==0 ) return 1;
p->aOp = aOp;
aArg = sqlite3_realloc64(p->aArg, N*sizeof(p->aArg[0]));
if( aArg==0 ) return 1;
p->aArg = aArg;
p->nAlloc = N;
return 0;
}
/* Insert a new opcode and argument into an RE under construction. The
** insertion point is just prior to existing opcode iBefore.
*/
static int re_insert(ReCompiled *p, int iBefore, int op, int arg){
int i;
if( p->nAlloc<=p->nState && re_resize(p, p->nAlloc*2) ) return 0;
for(i=p->nState; i>iBefore; i--){
p->aOp[i] = p->aOp[i-1];
p->aArg[i] = p->aArg[i-1];
}
p->nState++;
p->aOp[iBefore] = (char)op;
p->aArg[iBefore] = arg;
return iBefore;
}
/* Append a new opcode and argument to the end of the RE under construction.
*/
static int re_append(ReCompiled *p, int op, int arg){
return re_insert(p, p->nState, op, arg);
}
/* Make a copy of N opcodes starting at iStart onto the end of the RE
** under construction.
*/
static void re_copy(ReCompiled *p, int iStart, int N){
if( p->nState+N>=p->nAlloc && re_resize(p, p->nAlloc*2+N) ) return;
memcpy(&p->aOp[p->nState], &p->aOp[iStart], N*sizeof(p->aOp[0]));
memcpy(&p->aArg[p->nState], &p->aArg[iStart], N*sizeof(p->aArg[0]));
p->nState += N;
}
/* Return true if c is a hexadecimal digit character: [0-9a-fA-F]
** If c is a hex digit, also set *pV = (*pV)*16 + valueof(c). If
** c is not a hex digit *pV is unchanged.
*/
static int re_hex(int c, int *pV){
if( c>='0' && c<='9' ){
c -= '0';
}else if( c>='a' && c<='f' ){
c -= 'a' - 10;
}else if( c>='A' && c<='F' ){
c -= 'A' - 10;
}else{
return 0;
}
*pV = (*pV)*16 + (c & 0xff);
return 1;
}
/* A backslash character has been seen, read the next character and
** return its interpretation.
*/
static unsigned re_esc_char(ReCompiled *p){
static const char zEsc[] = "afnrtv\\()*.+?[$^{|}]";
static const char zTrans[] = "\a\f\n\r\t\v";
int i, v = 0;
char c;
if( p->sIn.i>=p->sIn.mx ) return 0;
c = p->sIn.z[p->sIn.i];
if( c=='u' && p->sIn.i+4<p->sIn.mx ){
const unsigned char *zIn = p->sIn.z + p->sIn.i;
if( re_hex(zIn[1],&v)
&& re_hex(zIn[2],&v)
&& re_hex(zIn[3],&v)
&& re_hex(zIn[4],&v)
){
p->sIn.i += 5;
return v;
}
}
if( c=='x' && p->sIn.i+2<p->sIn.mx ){
const unsigned char *zIn = p->sIn.z + p->sIn.i;
if( re_hex(zIn[1],&v)
&& re_hex(zIn[2],&v)
){
p->sIn.i += 3;
return v;
}
}
for(i=0; zEsc[i] && zEsc[i]!=c; i++){}
if( zEsc[i] ){
if( i<6 ) c = zTrans[i];
p->sIn.i++;
}else{
p->zErr = "unknown \\ escape";
}
return c;
}
/* Forward declaration */
static const char *re_subcompile_string(ReCompiled*);
/* Peek at the next byte of input */
static unsigned char rePeek(ReCompiled *p){
return p->sIn.i<p->sIn.mx ? p->sIn.z[p->sIn.i] : 0;
}
/* Compile RE text into a sequence of opcodes. Continue up to the
** first unmatched ")" character, then return. If an error is found,
** return a pointer to the error message string.
*/
static const char *re_subcompile_re(ReCompiled *p){
const char *zErr;
int iStart, iEnd, iGoto;
iStart = p->nState;
zErr = re_subcompile_string(p);
if( zErr ) return zErr;
while( rePeek(p)=='|' ){
iEnd = p->nState;
re_insert(p, iStart, RE_OP_FORK, iEnd + 2 - iStart);
iGoto = re_append(p, RE_OP_GOTO, 0);
p->sIn.i++;
zErr = re_subcompile_string(p);
if( zErr ) return zErr;
p->aArg[iGoto] = p->nState - iGoto;
}
return 0;
}
/* Compile an element of regular expression text (anything that can be
** an operand to the "|" operator). Return NULL on success or a pointer
** to the error message if there is a problem.
*/
static const char *re_subcompile_string(ReCompiled *p){
int iPrev = -1;
int iStart;
unsigned c;
const char *zErr;
while( (c = p->xNextChar(&p->sIn))!=0 ){
iStart = p->nState;
switch( c ){
case '|':
case ')': {
p->sIn.i--;
return 0;
}
case '(': {
zErr = re_subcompile_re(p);
if( zErr ) return zErr;
if( rePeek(p)!=')' ) return "unmatched '('";
p->sIn.i++;
break;
}
case '.': {
if( rePeek(p)=='*' ){
re_append(p, RE_OP_ANYSTAR, 0);
p->sIn.i++;
}else{
re_append(p, RE_OP_ANY, 0);
}
break;
}
case '*': {
if( iPrev<0 ) return "'*' without operand";
re_insert(p, iPrev, RE_OP_GOTO, p->nState - iPrev + 1);
re_append(p, RE_OP_FORK, iPrev - p->nState + 1);
break;
}
case '+': {
if( iPrev<0 ) return "'+' without operand";
re_append(p, RE_OP_FORK, iPrev - p->nState);
break;
}
case '?': {
if( iPrev<0 ) return "'?' without operand";
re_insert(p, iPrev, RE_OP_FORK, p->nState - iPrev+1);
break;
}
case '$': {
re_append(p, RE_OP_MATCH, RE_EOF);
break;
}
case '^': {
re_append(p, RE_OP_ATSTART, 0);
break;
}
case '{': {
int m = 0, n = 0;
int sz, j;
if( iPrev<0 ) return "'{m,n}' without operand";
while( (c=rePeek(p))>='0' && c<='9' ){ m = m*10 + c - '0'; p->sIn.i++; }
n = m;
if( c==',' ){
p->sIn.i++;
n = 0;
while( (c=rePeek(p))>='0' && c<='9' ){ n = n*10 + c-'0'; p->sIn.i++; }
}
if( c!='}' ) return "unmatched '{'";
if( n>0 && n<m ) return "n less than m in '{m,n}'";
p->sIn.i++;
sz = p->nState - iPrev;
if( m==0 ){
if( n==0 ) return "both m and n are zero in '{m,n}'";
re_insert(p, iPrev, RE_OP_FORK, sz+1);
iPrev++;
n--;
}else{
for(j=1; j<m; j++) re_copy(p, iPrev, sz);
}
for(j=m; j<n; j++){
re_append(p, RE_OP_FORK, sz+1);
re_copy(p, iPrev, sz);
}
if( n==0 && m>0 ){
re_append(p, RE_OP_FORK, -sz);
}
break;
}
case '[': {
unsigned int iFirst = p->nState;
if( rePeek(p)=='^' ){
re_append(p, RE_OP_CC_EXC, 0);
p->sIn.i++;
}else{
re_append(p, RE_OP_CC_INC, 0);
}
while( (c = p->xNextChar(&p->sIn))!=0 ){
if( c=='[' && rePeek(p)==':' ){
return "POSIX character classes not supported";
}
if( c=='\\' ) c = re_esc_char(p);
if( rePeek(p)=='-' ){
re_append(p, RE_OP_CC_RANGE, c);
p->sIn.i++;
c = p->xNextChar(&p->sIn);
if( c=='\\' ) c = re_esc_char(p);
re_append(p, RE_OP_CC_RANGE, c);
}else{
re_append(p, RE_OP_CC_VALUE, c);
}
if( rePeek(p)==']' ){ p->sIn.i++; break; }
}
if( c==0 ) return "unclosed '['";
if( p->nState>iFirst ) p->aArg[iFirst] = p->nState - iFirst;
break;
}
case '\\': {
int specialOp = 0;
switch( rePeek(p) ){
case 'b': specialOp = RE_OP_BOUNDARY; break;
case 'd': specialOp = RE_OP_DIGIT; break;
case 'D': specialOp = RE_OP_NOTDIGIT; break;
case 's': specialOp = RE_OP_SPACE; break;
case 'S': specialOp = RE_OP_NOTSPACE; break;
case 'w': specialOp = RE_OP_WORD; break;
case 'W': specialOp = RE_OP_NOTWORD; break;
}
if( specialOp ){
p->sIn.i++;
re_append(p, specialOp, 0);
}else{
c = re_esc_char(p);
re_append(p, RE_OP_MATCH, c);
}
break;
}
default: {
re_append(p, RE_OP_MATCH, c);
break;
}
}
iPrev = iStart;
}
return 0;
}
/* Free and reclaim all the memory used by a previously compiled
** regular expression. Applications should invoke this routine once
** for every call to re_compile() to avoid memory leaks.
*/
static void re_free(ReCompiled *pRe){
if( pRe ){
sqlite3_free(pRe->aOp);
sqlite3_free(pRe->aArg);
sqlite3_free(pRe);
}
}
/*
** Compile a textual regular expression in zIn[] into a compiled regular
** expression suitable for us by re_match() and return a pointer to the
** compiled regular expression in *ppRe. Return NULL on success or an
** error message if something goes wrong.
*/
static const char *re_compile(ReCompiled **ppRe, const char *zIn, int noCase){
ReCompiled *pRe;
const char *zErr;
int i, j;
*ppRe = 0;
pRe = sqlite3_malloc( sizeof(*pRe) );
if( pRe==0 ){
return "out of memory";
}
memset(pRe, 0, sizeof(*pRe));
pRe->xNextChar = noCase ? re_next_char_nocase : re_next_char;
if( re_resize(pRe, 30) ){
re_free(pRe);
return "out of memory";
}
if( zIn[0]=='^' ){
zIn++;
}else{
re_append(pRe, RE_OP_ANYSTAR, 0);
}
pRe->sIn.z = (unsigned char*)zIn;
pRe->sIn.i = 0;
pRe->sIn.mx = (int)strlen(zIn);
zErr = re_subcompile_re(pRe);
if( zErr ){
re_free(pRe);
return zErr;
}
if( pRe->sIn.i>=pRe->sIn.mx ){
re_append(pRe, RE_OP_ACCEPT, 0);
*ppRe = pRe;
}else{
re_free(pRe);
return "unrecognized character";
}
/* The following is a performance optimization. If the regex begins with
** ".*" (if the input regex lacks an initial "^") and afterwards there are
** one or more matching characters, enter those matching characters into
** zInit[]. The re_match() routine can then search ahead in the input
** string looking for the initial match without having to run the whole
** regex engine over the string. Do not worry about trying to match
** unicode characters beyond plane 0 - those are very rare and this is
** just an optimization. */
if( pRe->aOp[0]==RE_OP_ANYSTAR && !noCase ){
for(j=0, i=1; j<(int)sizeof(pRe->zInit)-2 && pRe->aOp[i]==RE_OP_MATCH; i++){
unsigned x = pRe->aArg[i];
if( x<=0x7f ){
pRe->zInit[j++] = (unsigned char)x;
}else if( x<=0x7ff ){
pRe->zInit[j++] = (unsigned char)(0xc0 | (x>>6));
pRe->zInit[j++] = 0x80 | (x&0x3f);
}else if( x<=0xffff ){
pRe->zInit[j++] = (unsigned char)(0xe0 | (x>>12));
pRe->zInit[j++] = 0x80 | ((x>>6)&0x3f);
pRe->zInit[j++] = 0x80 | (x&0x3f);
}else{
break;
}
}
if( j>0 && pRe->zInit[j-1]==0 ) j--;
pRe->nInit = j;
}
return pRe->zErr;
}
/*
** Implementation of the regexp() SQL function. This function implements
** the build-in REGEXP operator. The first argument to the function is the
** pattern and the second argument is the string. So, the SQL statements:
**
** A REGEXP B
**
** is implemented as regexp(B,A).
*/
static void re_sql_func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
ReCompiled *pRe; /* Compiled regular expression */
const char *zPattern; /* The regular expression */
const unsigned char *zStr;/* String being searched */
const char *zErr; /* Compile error message */
int setAux = 0; /* True to invoke sqlite3_set_auxdata() */
(void)argc; /* Unused */
pRe = sqlite3_get_auxdata(context, 0);
if( pRe==0 ){
zPattern = (const char*)sqlite3_value_text(argv[0]);
if( zPattern==0 ) return;
zErr = re_compile(&pRe, zPattern, sqlite3_user_data(context)!=0);
if( zErr ){
re_free(pRe);
sqlite3_result_error(context, zErr, -1);
return;
}
if( pRe==0 ){
sqlite3_result_error_nomem(context);
return;
}
setAux = 1;
}
zStr = (const unsigned char*)sqlite3_value_text(argv[1]);
if( zStr!=0 ){
sqlite3_result_int(context, re_match(pRe, zStr, -1));
}
if( setAux ){
sqlite3_set_auxdata(context, 0, pRe, (void(*)(void*))re_free);
}
}
#if defined(SQLITE_DEBUG)
/*
** This function is used for testing and debugging only. It is only available
** if the SQLITE_DEBUG compile-time option is used.
**
** Compile a regular expression and then convert the compiled expression into
** text and return that text.
*/
static void re_bytecode_func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zPattern;
const char *zErr;
ReCompiled *pRe;
sqlite3_str *pStr;
int i;
int n;
char *z;
(void)argc;
zPattern = (const char*)sqlite3_value_text(argv[0]);
if( zPattern==0 ) return;
zErr = re_compile(&pRe, zPattern, sqlite3_user_data(context)!=0);
if( zErr ){
re_free(pRe);
sqlite3_result_error(context, zErr, -1);
return;
}
if( pRe==0 ){
sqlite3_result_error_nomem(context);
return;
}
pStr = sqlite3_str_new(0);
if( pStr==0 ) goto re_bytecode_func_err;
if( pRe->nInit>0 ){
sqlite3_str_appendf(pStr, "INIT ");
for(i=0; i<pRe->nInit; i++){
sqlite3_str_appendf(pStr, "%02x", pRe->zInit[i]);
}
sqlite3_str_appendf(pStr, "\n");
}
for(i=0; (unsigned)i<pRe->nState; i++){
sqlite3_str_appendf(pStr, "%-8s %4d\n",
ReOpName[(unsigned char)pRe->aOp[i]], pRe->aArg[i]);
}
n = sqlite3_str_length(pStr);
z = sqlite3_str_finish(pStr);
if( n==0 ){
sqlite3_free(z);
}else{
sqlite3_result_text(context, z, n-1, sqlite3_free);
}
re_bytecode_func_err:
re_free(pRe);
}
#endif /* SQLITE_DEBUG */
/*
** Invoke this routine to register the regexp() function with the
** SQLite database connection.
*/
#ifdef _WIN32
#endif
int sqlite3_regexp_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused */
rc = sqlite3_create_function(db, "regexp", 2,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC,
0, re_sql_func, 0, 0);
if( rc==SQLITE_OK ){
/* The regexpi(PATTERN,STRING) function is a case-insensitive version
** of regexp(PATTERN,STRING). */
rc = sqlite3_create_function(db, "regexpi", 2,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC,
(void*)db, re_sql_func, 0, 0);
#if defined(SQLITE_DEBUG)
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "regexp_bytecode", 1,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_DETERMINISTIC,
0, re_bytecode_func, 0, 0);
}
#endif /* SQLITE_DEBUG */
}
return rc;
}
/************************* End ../ext/misc/regexp.c ********************/
#ifndef SQLITE_SHELL_FIDDLE
/************************* Begin ../ext/misc/fileio.c ******************/
/*
** 2014-06-13
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements SQL functions readfile() and
** writefile(), and eponymous virtual type "fsdir".
**
** WRITEFILE(FILE, DATA [, MODE [, MTIME]]):
**
** If neither of the optional arguments is present, then this UDF
** function writes blob DATA to file FILE. If successful, the number
** of bytes written is returned. If an error occurs, NULL is returned.
**
** If the first option argument - MODE - is present, then it must
** be passed an integer value that corresponds to a POSIX mode
** value (file type + permissions, as returned in the stat.st_mode
** field by the stat() system call). Three types of files may
** be written/created:
**
** regular files: (mode & 0170000)==0100000
** symbolic links: (mode & 0170000)==0120000
** directories: (mode & 0170000)==0040000
**
** For a directory, the DATA is ignored. For a symbolic link, it is
** interpreted as text and used as the target of the link. For a
** regular file, it is interpreted as a blob and written into the
** named file. Regardless of the type of file, its permissions are
** set to (mode & 0777) before returning.
**
** If the optional MTIME argument is present, then it is interpreted
** as an integer - the number of seconds since the unix epoch. The
** modification-time of the target file is set to this value before
** returning.
**
** If three or more arguments are passed to this function and an
** error is encountered, an exception is raised.
**
** READFILE(FILE):
**
** Read and return the contents of file FILE (type blob) from disk.
**
** FSDIR:
**
** Used as follows:
**
** SELECT * FROM fsdir($path [, $dir]);
**
** Parameter $path is an absolute or relative pathname. If the file that it
** refers to does not exist, it is an error. If the path refers to a regular
** file or symbolic link, it returns a single row. Or, if the path refers
** to a directory, it returns one row for the directory, and one row for each
** file within the hierarchy rooted at $path.
**
** Each row has the following columns:
**
** name: Path to file or directory (text value).
** mode: Value of stat.st_mode for directory entry (an integer).
** mtime: Value of stat.st_mtime for directory entry (an integer).
** data: For a regular file, a blob containing the file data. For a
** symlink, a text value containing the text of the link. For a
** directory, NULL.
**
** If a non-NULL value is specified for the optional $dir parameter and
** $path is a relative path, then $path is interpreted relative to $dir.
** And the paths returned in the "name" column of the table are also
** relative to directory $dir.
**
** Notes on building this extension for Windows:
** Unless linked statically with the SQLite library, a preprocessor
** symbol, FILEIO_WIN32_DLL, must be #define'd to create a stand-alone
** DLL form of this extension for WIN32. See its use below for details.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#if !defined(_WIN32) && !defined(WIN32)
# include <unistd.h>
# include <dirent.h>
# include <utime.h>
# include <sys/time.h>
#else
# include "windows.h"
# include <io.h>
# include <direct.h>
/* # include "test_windirent.h" */
# define dirent DIRENT
# ifndef chmod
# define chmod _chmod
# endif
# ifndef stat
# define stat _stat
# endif
# define mkdir(path,mode) _mkdir(path)
# define lstat(path,buf) stat(path,buf)
#endif
#include <time.h>
#include <errno.h>
/*
** Structure of the fsdir() table-valued function
*/
/* 0 1 2 3 4 5 */
#define FSDIR_SCHEMA "(name,mode,mtime,data,path HIDDEN,dir HIDDEN)"
#define FSDIR_COLUMN_NAME 0 /* Name of the file */
#define FSDIR_COLUMN_MODE 1 /* Access mode */
#define FSDIR_COLUMN_MTIME 2 /* Last modification time */
#define FSDIR_COLUMN_DATA 3 /* File content */
#define FSDIR_COLUMN_PATH 4 /* Path to top of search */
#define FSDIR_COLUMN_DIR 5 /* Path is relative to this directory */
/*
** Set the result stored by context ctx to a blob containing the
** contents of file zName. Or, leave the result unchanged (NULL)
** if the file does not exist or is unreadable.
**
** If the file exceeds the SQLite blob size limit, through an
** SQLITE_TOOBIG error.
**
** Throw an SQLITE_IOERR if there are difficulties pulling the file
** off of disk.
*/
static void readFileContents(sqlite3_context *ctx, const char *zName){
FILE *in;
sqlite3_int64 nIn;
void *pBuf;
sqlite3 *db;
int mxBlob;
in = fopen(zName, "rb");
if( in==0 ){
/* File does not exist or is unreadable. Leave the result set to NULL. */
return;
}
fseek(in, 0, SEEK_END);
nIn = ftell(in);
rewind(in);
db = sqlite3_context_db_handle(ctx);
mxBlob = sqlite3_limit(db, SQLITE_LIMIT_LENGTH, -1);
if( nIn>mxBlob ){
sqlite3_result_error_code(ctx, SQLITE_TOOBIG);
fclose(in);
return;
}
pBuf = sqlite3_malloc64( nIn ? nIn : 1 );
if( pBuf==0 ){
sqlite3_result_error_nomem(ctx);
fclose(in);
return;
}
if( nIn==(sqlite3_int64)fread(pBuf, 1, (size_t)nIn, in) ){
sqlite3_result_blob64(ctx, pBuf, nIn, sqlite3_free);
}else{
sqlite3_result_error_code(ctx, SQLITE_IOERR);
sqlite3_free(pBuf);
}
fclose(in);
}
/*
** Implementation of the "readfile(X)" SQL function. The entire content
** of the file named X is read and returned as a BLOB. NULL is returned
** if the file does not exist or is unreadable.
*/
static void readfileFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zName;
(void)(argc); /* Unused parameter */
zName = (const char*)sqlite3_value_text(argv[0]);
if( zName==0 ) return;
readFileContents(context, zName);
}
/*
** Set the error message contained in context ctx to the results of
** vprintf(zFmt, ...).
*/
static void ctxErrorMsg(sqlite3_context *ctx, const char *zFmt, ...){
char *zMsg = 0;
va_list ap;
va_start(ap, zFmt);
zMsg = sqlite3_vmprintf(zFmt, ap);
sqlite3_result_error(ctx, zMsg, -1);
sqlite3_free(zMsg);
va_end(ap);
}
#if defined(_WIN32)
/*
** This function is designed to convert a Win32 FILETIME structure into the
** number of seconds since the Unix Epoch (1970-01-01 00:00:00 UTC).
*/
static sqlite3_uint64 fileTimeToUnixTime(
LPFILETIME pFileTime
){
SYSTEMTIME epochSystemTime;
ULARGE_INTEGER epochIntervals;
FILETIME epochFileTime;
ULARGE_INTEGER fileIntervals;
memset(&epochSystemTime, 0, sizeof(SYSTEMTIME));
epochSystemTime.wYear = 1970;
epochSystemTime.wMonth = 1;
epochSystemTime.wDay = 1;
SystemTimeToFileTime(&epochSystemTime, &epochFileTime);
epochIntervals.LowPart = epochFileTime.dwLowDateTime;
epochIntervals.HighPart = epochFileTime.dwHighDateTime;
fileIntervals.LowPart = pFileTime->dwLowDateTime;
fileIntervals.HighPart = pFileTime->dwHighDateTime;
return (fileIntervals.QuadPart - epochIntervals.QuadPart) / 10000000;
}
#if defined(FILEIO_WIN32_DLL) && (defined(_WIN32) || defined(WIN32))
# /* To allow a standalone DLL, use this next replacement function: */
# undef sqlite3_win32_utf8_to_unicode
# define sqlite3_win32_utf8_to_unicode utf8_to_utf16
#
LPWSTR utf8_to_utf16(const char *z){
int nAllot = MultiByteToWideChar(CP_UTF8, 0, z, -1, NULL, 0);
LPWSTR rv = sqlite3_malloc(nAllot * sizeof(WCHAR));
if( rv!=0 && 0 < MultiByteToWideChar(CP_UTF8, 0, z, -1, rv, nAllot) )
return rv;
sqlite3_free(rv);
return 0;
}
#endif
/*
** This function attempts to normalize the time values found in the stat()
** buffer to UTC. This is necessary on Win32, where the runtime library
** appears to return these values as local times.
*/
static void statTimesToUtc(
const char *zPath,
struct stat *pStatBuf
){
HANDLE hFindFile;
WIN32_FIND_DATAW fd;
LPWSTR zUnicodeName;
extern LPWSTR sqlite3_win32_utf8_to_unicode(const char*);
zUnicodeName = sqlite3_win32_utf8_to_unicode(zPath);
if( zUnicodeName ){
memset(&fd, 0, sizeof(WIN32_FIND_DATAW));
hFindFile = FindFirstFileW(zUnicodeName, &fd);
if( hFindFile!=NULL ){
pStatBuf->st_ctime = (time_t)fileTimeToUnixTime(&fd.ftCreationTime);
pStatBuf->st_atime = (time_t)fileTimeToUnixTime(&fd.ftLastAccessTime);
pStatBuf->st_mtime = (time_t)fileTimeToUnixTime(&fd.ftLastWriteTime);
FindClose(hFindFile);
}
sqlite3_free(zUnicodeName);
}
}
#endif
/*
** This function is used in place of stat(). On Windows, special handling
** is required in order for the included time to be returned as UTC. On all
** other systems, this function simply calls stat().
*/
static int fileStat(
const char *zPath,
struct stat *pStatBuf
){
#if defined(_WIN32)
int rc = stat(zPath, pStatBuf);
if( rc==0 ) statTimesToUtc(zPath, pStatBuf);
return rc;
#else
return stat(zPath, pStatBuf);
#endif
}
/*
** This function is used in place of lstat(). On Windows, special handling
** is required in order for the included time to be returned as UTC. On all
** other systems, this function simply calls lstat().
*/
static int fileLinkStat(
const char *zPath,
struct stat *pStatBuf
){
#if defined(_WIN32)
int rc = lstat(zPath, pStatBuf);
if( rc==0 ) statTimesToUtc(zPath, pStatBuf);
return rc;
#else
return lstat(zPath, pStatBuf);
#endif
}
/*
** Argument zFile is the name of a file that will be created and/or written
** by SQL function writefile(). This function ensures that the directory
** zFile will be written to exists, creating it if required. The permissions
** for any path components created by this function are set in accordance
** with the current umask.
**
** If an OOM condition is encountered, SQLITE_NOMEM is returned. Otherwise,
** SQLITE_OK is returned if the directory is successfully created, or
** SQLITE_ERROR otherwise.
*/
static int makeDirectory(
const char *zFile
){
char *zCopy = sqlite3_mprintf("%s", zFile);
int rc = SQLITE_OK;
if( zCopy==0 ){
rc = SQLITE_NOMEM;
}else{
int nCopy = (int)strlen(zCopy);
int i = 1;
while( rc==SQLITE_OK ){
struct stat sStat;
int rc2;
for(; zCopy[i]!='/' && i<nCopy; i++);
if( i==nCopy ) break;
zCopy[i] = '\0';
rc2 = fileStat(zCopy, &sStat);
if( rc2!=0 ){
if( mkdir(zCopy, 0777) ) rc = SQLITE_ERROR;
}else{
if( !S_ISDIR(sStat.st_mode) ) rc = SQLITE_ERROR;
}
zCopy[i] = '/';
i++;
}
sqlite3_free(zCopy);
}
return rc;
}
/*
** This function does the work for the writefile() UDF. Refer to
** header comments at the top of this file for details.
*/
static int writeFile(
sqlite3_context *pCtx, /* Context to return bytes written in */
const char *zFile, /* File to write */
sqlite3_value *pData, /* Data to write */
mode_t mode, /* MODE parameter passed to writefile() */
sqlite3_int64 mtime /* MTIME parameter (or -1 to not set time) */
){
if( zFile==0 ) return 1;
#if !defined(_WIN32) && !defined(WIN32)
if( S_ISLNK(mode) ){
const char *zTo = (const char*)sqlite3_value_text(pData);
if( zTo==0 || symlink(zTo, zFile)<0 ) return 1;
}else
#endif
{
if( S_ISDIR(mode) ){
if( mkdir(zFile, mode) ){
/* The mkdir() call to create the directory failed. This might not
** be an error though - if there is already a directory at the same
** path and either the permissions already match or can be changed
** to do so using chmod(), it is not an error. */
struct stat sStat;
if( errno!=EEXIST
|| 0!=fileStat(zFile, &sStat)
|| !S_ISDIR(sStat.st_mode)
|| ((sStat.st_mode&0777)!=(mode&0777) && 0!=chmod(zFile, mode&0777))
){
return 1;
}
}
}else{
sqlite3_int64 nWrite = 0;
const char *z;
int rc = 0;
FILE *out = fopen(zFile, "wb");
if( out==0 ) return 1;
z = (const char*)sqlite3_value_blob(pData);
if( z ){
sqlite3_int64 n = fwrite(z, 1, sqlite3_value_bytes(pData), out);
nWrite = sqlite3_value_bytes(pData);
if( nWrite!=n ){
rc = 1;
}
}
fclose(out);
if( rc==0 && mode && chmod(zFile, mode & 0777) ){
rc = 1;
}
if( rc ) return 2;
sqlite3_result_int64(pCtx, nWrite);
}
}
if( mtime>=0 ){
#if defined(_WIN32)
#if !SQLITE_OS_WINRT
/* Windows */
FILETIME lastAccess;
FILETIME lastWrite;
SYSTEMTIME currentTime;
LONGLONG intervals;
HANDLE hFile;
LPWSTR zUnicodeName;
extern LPWSTR sqlite3_win32_utf8_to_unicode(const char*);
GetSystemTime(&currentTime);
SystemTimeToFileTime(&currentTime, &lastAccess);
intervals = Int32x32To64(mtime, 10000000) + 116444736000000000;
lastWrite.dwLowDateTime = (DWORD)intervals;
lastWrite.dwHighDateTime = intervals >> 32;
zUnicodeName = sqlite3_win32_utf8_to_unicode(zFile);
if( zUnicodeName==0 ){
return 1;
}
hFile = CreateFileW(
zUnicodeName, FILE_WRITE_ATTRIBUTES, 0, NULL, OPEN_EXISTING,
FILE_FLAG_BACKUP_SEMANTICS, NULL
);
sqlite3_free(zUnicodeName);
if( hFile!=INVALID_HANDLE_VALUE ){
BOOL bResult = SetFileTime(hFile, NULL, &lastAccess, &lastWrite);
CloseHandle(hFile);
return !bResult;
}else{
return 1;
}
#endif
#elif defined(AT_FDCWD) && 0 /* utimensat() is not universally available */
/* Recent unix */
struct timespec times[2];
times[0].tv_nsec = times[1].tv_nsec = 0;
times[0].tv_sec = time(0);
times[1].tv_sec = mtime;
if( utimensat(AT_FDCWD, zFile, times, AT_SYMLINK_NOFOLLOW) ){
return 1;
}
#else
/* Legacy unix */
struct timeval times[2];
times[0].tv_usec = times[1].tv_usec = 0;
times[0].tv_sec = time(0);
times[1].tv_sec = mtime;
if( utimes(zFile, times) ){
return 1;
}
#endif
}
return 0;
}
/*
** Implementation of the "writefile(W,X[,Y[,Z]]])" SQL function.
** Refer to header comments at the top of this file for details.
*/
static void writefileFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zFile;
mode_t mode = 0;
int res;
sqlite3_int64 mtime = -1;
if( argc<2 || argc>4 ){
sqlite3_result_error(context,
"wrong number of arguments to function writefile()", -1
);
return;
}
zFile = (const char*)sqlite3_value_text(argv[0]);
if( zFile==0 ) return;
if( argc>=3 ){
mode = (mode_t)sqlite3_value_int(argv[2]);
}
if( argc==4 ){
mtime = sqlite3_value_int64(argv[3]);
}
res = writeFile(context, zFile, argv[1], mode, mtime);
if( res==1 && errno==ENOENT ){
if( makeDirectory(zFile)==SQLITE_OK ){
res = writeFile(context, zFile, argv[1], mode, mtime);
}
}
if( argc>2 && res!=0 ){
if( S_ISLNK(mode) ){
ctxErrorMsg(context, "failed to create symlink: %s", zFile);
}else if( S_ISDIR(mode) ){
ctxErrorMsg(context, "failed to create directory: %s", zFile);
}else{
ctxErrorMsg(context, "failed to write file: %s", zFile);
}
}
}
/*
** SQL function: lsmode(MODE)
**
** Given a numberic st_mode from stat(), convert it into a human-readable
** text string in the style of "ls -l".
*/
static void lsModeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int i;
int iMode = sqlite3_value_int(argv[0]);
char z[16];
(void)argc;
if( S_ISLNK(iMode) ){
z[0] = 'l';
}else if( S_ISREG(iMode) ){
z[0] = '-';
}else if( S_ISDIR(iMode) ){
z[0] = 'd';
}else{
z[0] = '?';
}
for(i=0; i<3; i++){
int m = (iMode >> ((2-i)*3));
char *a = &z[1 + i*3];
a[0] = (m & 0x4) ? 'r' : '-';
a[1] = (m & 0x2) ? 'w' : '-';
a[2] = (m & 0x1) ? 'x' : '-';
}
z[10] = '\0';
sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Cursor type for recursively iterating through a directory structure.
*/
typedef struct fsdir_cursor fsdir_cursor;
typedef struct FsdirLevel FsdirLevel;
struct FsdirLevel {
DIR *pDir; /* From opendir() */
char *zDir; /* Name of directory (nul-terminated) */
};
struct fsdir_cursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
int nLvl; /* Number of entries in aLvl[] array */
int iLvl; /* Index of current entry */
FsdirLevel *aLvl; /* Hierarchy of directories being traversed */
const char *zBase;
int nBase;
struct stat sStat; /* Current lstat() results */
char *zPath; /* Path to current entry */
sqlite3_int64 iRowid; /* Current rowid */
};
typedef struct fsdir_tab fsdir_tab;
struct fsdir_tab {
sqlite3_vtab base; /* Base class - must be first */
};
/*
** Construct a new fsdir virtual table object.
*/
static int fsdirConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
fsdir_tab *pNew = 0;
int rc;
(void)pAux;
(void)argc;
(void)argv;
(void)pzErr;
rc = sqlite3_declare_vtab(db, "CREATE TABLE x" FSDIR_SCHEMA);
if( rc==SQLITE_OK ){
pNew = (fsdir_tab*)sqlite3_malloc( sizeof(*pNew) );
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, sizeof(*pNew));
sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
}
*ppVtab = (sqlite3_vtab*)pNew;
return rc;
}
/*
** This method is the destructor for fsdir vtab objects.
*/
static int fsdirDisconnect(sqlite3_vtab *pVtab){
sqlite3_free(pVtab);
return SQLITE_OK;
}
/*
** Constructor for a new fsdir_cursor object.
*/
static int fsdirOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
fsdir_cursor *pCur;
(void)p;
pCur = sqlite3_malloc( sizeof(*pCur) );
if( pCur==0 ) return SQLITE_NOMEM;
memset(pCur, 0, sizeof(*pCur));
pCur->iLvl = -1;
*ppCursor = &pCur->base;
return SQLITE_OK;
}
/*
** Reset a cursor back to the state it was in when first returned
** by fsdirOpen().
*/
static void fsdirResetCursor(fsdir_cursor *pCur){
int i;
for(i=0; i<=pCur->iLvl; i++){
FsdirLevel *pLvl = &pCur->aLvl[i];
if( pLvl->pDir ) closedir(pLvl->pDir);
sqlite3_free(pLvl->zDir);
}
sqlite3_free(pCur->zPath);
sqlite3_free(pCur->aLvl);
pCur->aLvl = 0;
pCur->zPath = 0;
pCur->zBase = 0;
pCur->nBase = 0;
pCur->nLvl = 0;
pCur->iLvl = -1;
pCur->iRowid = 1;
}
/*
** Destructor for an fsdir_cursor.
*/
static int fsdirClose(sqlite3_vtab_cursor *cur){
fsdir_cursor *pCur = (fsdir_cursor*)cur;
fsdirResetCursor(pCur);
sqlite3_free(pCur);
return SQLITE_OK;
}
/*
** Set the error message for the virtual table associated with cursor
** pCur to the results of vprintf(zFmt, ...).
*/
static void fsdirSetErrmsg(fsdir_cursor *pCur, const char *zFmt, ...){
va_list ap;
va_start(ap, zFmt);
pCur->base.pVtab->zErrMsg = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
}
/*
** Advance an fsdir_cursor to its next row of output.
*/
static int fsdirNext(sqlite3_vtab_cursor *cur){
fsdir_cursor *pCur = (fsdir_cursor*)cur;
mode_t m = pCur->sStat.st_mode;
pCur->iRowid++;
if( S_ISDIR(m) ){
/* Descend into this directory */
int iNew = pCur->iLvl + 1;
FsdirLevel *pLvl;
if( iNew>=pCur->nLvl ){
int nNew = iNew+1;
sqlite3_int64 nByte = nNew*sizeof(FsdirLevel);
FsdirLevel *aNew = (FsdirLevel*)sqlite3_realloc64(pCur->aLvl, nByte);
if( aNew==0 ) return SQLITE_NOMEM;
memset(&aNew[pCur->nLvl], 0, sizeof(FsdirLevel)*(nNew-pCur->nLvl));
pCur->aLvl = aNew;
pCur->nLvl = nNew;
}
pCur->iLvl = iNew;
pLvl = &pCur->aLvl[iNew];
pLvl->zDir = pCur->zPath;
pCur->zPath = 0;
pLvl->pDir = opendir(pLvl->zDir);
if( pLvl->pDir==0 ){
fsdirSetErrmsg(pCur, "cannot read directory: %s", pCur->zPath);
return SQLITE_ERROR;
}
}
while( pCur->iLvl>=0 ){
FsdirLevel *pLvl = &pCur->aLvl[pCur->iLvl];
struct dirent *pEntry = readdir(pLvl->pDir);
if( pEntry ){
if( pEntry->d_name[0]=='.' ){
if( pEntry->d_name[1]=='.' && pEntry->d_name[2]=='\0' ) continue;
if( pEntry->d_name[1]=='\0' ) continue;
}
sqlite3_free(pCur->zPath);
pCur->zPath = sqlite3_mprintf("%s/%s", pLvl->zDir, pEntry->d_name);
if( pCur->zPath==0 ) return SQLITE_NOMEM;
if( fileLinkStat(pCur->zPath, &pCur->sStat) ){
fsdirSetErrmsg(pCur, "cannot stat file: %s", pCur->zPath);
return SQLITE_ERROR;
}
return SQLITE_OK;
}
closedir(pLvl->pDir);
sqlite3_free(pLvl->zDir);
pLvl->pDir = 0;
pLvl->zDir = 0;
pCur->iLvl--;
}
/* EOF */
sqlite3_free(pCur->zPath);
pCur->zPath = 0;
return SQLITE_OK;
}
/*
** Return values of columns for the row at which the series_cursor
** is currently pointing.
*/
static int fsdirColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int i /* Which column to return */
){
fsdir_cursor *pCur = (fsdir_cursor*)cur;
switch( i ){
case FSDIR_COLUMN_NAME: {
sqlite3_result_text(ctx, &pCur->zPath[pCur->nBase], -1, SQLITE_TRANSIENT);
break;
}
case FSDIR_COLUMN_MODE:
sqlite3_result_int64(ctx, pCur->sStat.st_mode);
break;
case FSDIR_COLUMN_MTIME:
sqlite3_result_int64(ctx, pCur->sStat.st_mtime);
break;
case FSDIR_COLUMN_DATA: {
mode_t m = pCur->sStat.st_mode;
if( S_ISDIR(m) ){
sqlite3_result_null(ctx);
#if !defined(_WIN32) && !defined(WIN32)
}else if( S_ISLNK(m) ){
char aStatic[64];
char *aBuf = aStatic;
sqlite3_int64 nBuf = 64;
int n;
while( 1 ){
n = readlink(pCur->zPath, aBuf, nBuf);
if( n<nBuf ) break;
if( aBuf!=aStatic ) sqlite3_free(aBuf);
nBuf = nBuf*2;
aBuf = sqlite3_malloc64(nBuf);
if( aBuf==0 ){
sqlite3_result_error_nomem(ctx);
return SQLITE_NOMEM;
}
}
sqlite3_result_text(ctx, aBuf, n, SQLITE_TRANSIENT);
if( aBuf!=aStatic ) sqlite3_free(aBuf);
#endif
}else{
readFileContents(ctx, pCur->zPath);
}
}
case FSDIR_COLUMN_PATH:
default: {
/* The FSDIR_COLUMN_PATH and FSDIR_COLUMN_DIR are input parameters.
** always return their values as NULL */
break;
}
}
return SQLITE_OK;
}
/*
** Return the rowid for the current row. In this implementation, the
** first row returned is assigned rowid value 1, and each subsequent
** row a value 1 more than that of the previous.
*/
static int fsdirRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
fsdir_cursor *pCur = (fsdir_cursor*)cur;
*pRowid = pCur->iRowid;
return SQLITE_OK;
}
/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int fsdirEof(sqlite3_vtab_cursor *cur){
fsdir_cursor *pCur = (fsdir_cursor*)cur;
return (pCur->zPath==0);
}
/*
** xFilter callback.
**
** idxNum==1 PATH parameter only
** idxNum==2 Both PATH and DIR supplied
*/
static int fsdirFilter(
sqlite3_vtab_cursor *cur,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
const char *zDir = 0;
fsdir_cursor *pCur = (fsdir_cursor*)cur;
(void)idxStr;
fsdirResetCursor(pCur);
if( idxNum==0 ){
fsdirSetErrmsg(pCur, "table function fsdir requires an argument");
return SQLITE_ERROR;
}
assert( argc==idxNum && (argc==1 || argc==2) );
zDir = (const char*)sqlite3_value_text(argv[0]);
if( zDir==0 ){
fsdirSetErrmsg(pCur, "table function fsdir requires a non-NULL argument");
return SQLITE_ERROR;
}
if( argc==2 ){
pCur->zBase = (const char*)sqlite3_value_text(argv[1]);
}
if( pCur->zBase ){
pCur->nBase = (int)strlen(pCur->zBase)+1;
pCur->zPath = sqlite3_mprintf("%s/%s", pCur->zBase, zDir);
}else{
pCur->zPath = sqlite3_mprintf("%s", zDir);
}
if( pCur->zPath==0 ){
return SQLITE_NOMEM;
}
if( fileLinkStat(pCur->zPath, &pCur->sStat) ){
fsdirSetErrmsg(pCur, "cannot stat file: %s", pCur->zPath);
return SQLITE_ERROR;
}
return SQLITE_OK;
}
/*
** SQLite will invoke this method one or more times while planning a query
** that uses the generate_series virtual table. This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
**
** In this implementation idxNum is used to represent the
** query plan. idxStr is unused.
**
** The query plan is represented by values of idxNum:
**
** (1) The path value is supplied by argv[0]
** (2) Path is in argv[0] and dir is in argv[1]
*/
static int fsdirBestIndex(
sqlite3_vtab *tab,
sqlite3_index_info *pIdxInfo
){
int i; /* Loop over constraints */
int idxPath = -1; /* Index in pIdxInfo->aConstraint of PATH= */
int idxDir = -1; /* Index in pIdxInfo->aConstraint of DIR= */
int seenPath = 0; /* True if an unusable PATH= constraint is seen */
int seenDir = 0; /* True if an unusable DIR= constraint is seen */
const struct sqlite3_index_constraint *pConstraint;
(void)tab;
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
switch( pConstraint->iColumn ){
case FSDIR_COLUMN_PATH: {
if( pConstraint->usable ){
idxPath = i;
seenPath = 0;
}else if( idxPath<0 ){
seenPath = 1;
}
break;
}
case FSDIR_COLUMN_DIR: {
if( pConstraint->usable ){
idxDir = i;
seenDir = 0;
}else if( idxDir<0 ){
seenDir = 1;
}
break;
}
}
}
if( seenPath || seenDir ){
/* If input parameters are unusable, disallow this plan */
return SQLITE_CONSTRAINT;
}
if( idxPath<0 ){
pIdxInfo->idxNum = 0;
/* The pIdxInfo->estimatedCost should have been initialized to a huge
** number. Leave it unchanged. */
pIdxInfo->estimatedRows = 0x7fffffff;
}else{
pIdxInfo->aConstraintUsage[idxPath].omit = 1;
pIdxInfo->aConstraintUsage[idxPath].argvIndex = 1;
if( idxDir>=0 ){
pIdxInfo->aConstraintUsage[idxDir].omit = 1;
pIdxInfo->aConstraintUsage[idxDir].argvIndex = 2;
pIdxInfo->idxNum = 2;
pIdxInfo->estimatedCost = 10.0;
}else{
pIdxInfo->idxNum = 1;
pIdxInfo->estimatedCost = 100.0;
}
}
return SQLITE_OK;
}
/*
** Register the "fsdir" virtual table.
*/
static int fsdirRegister(sqlite3 *db){
static sqlite3_module fsdirModule = {
0, /* iVersion */
0, /* xCreate */
fsdirConnect, /* xConnect */
fsdirBestIndex, /* xBestIndex */
fsdirDisconnect, /* xDisconnect */
0, /* xDestroy */
fsdirOpen, /* xOpen - open a cursor */
fsdirClose, /* xClose - close a cursor */
fsdirFilter, /* xFilter - configure scan constraints */
fsdirNext, /* xNext - advance a cursor */
fsdirEof, /* xEof - check for end of scan */
fsdirColumn, /* xColumn - read data */
fsdirRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadowName */
};
int rc = sqlite3_create_module(db, "fsdir", &fsdirModule, 0);
return rc;
}
#else /* SQLITE_OMIT_VIRTUALTABLE */
# define fsdirRegister(x) SQLITE_OK
#endif
#ifdef _WIN32
#endif
int sqlite3_fileio_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
rc = sqlite3_create_function(db, "readfile", 1,
SQLITE_UTF8|SQLITE_DIRECTONLY, 0,
readfileFunc, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "writefile", -1,
SQLITE_UTF8|SQLITE_DIRECTONLY, 0,
writefileFunc, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "lsmode", 1, SQLITE_UTF8, 0,
lsModeFunc, 0, 0);
}
if( rc==SQLITE_OK ){
rc = fsdirRegister(db);
}
return rc;
}
#if defined(FILEIO_WIN32_DLL) && (defined(_WIN32) || defined(WIN32))
/* To allow a standalone DLL, make test_windirent.c use the same
* redefined SQLite API calls as the above extension code does.
* Just pull in this .c to accomplish this. As a beneficial side
* effect, this extension becomes a single translation unit. */
# include "test_windirent.c"
#endif
/************************* End ../ext/misc/fileio.c ********************/
/************************* Begin ../ext/misc/completion.c ******************/
/*
** 2017-07-10
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements an eponymous virtual table that returns suggested
** completions for a partial SQL input.
**
** Suggested usage:
**
** SELECT DISTINCT candidate COLLATE nocase
** FROM completion($prefix,$wholeline)
** ORDER BY 1;
**
** The two query parameters are optional. $prefix is the text of the
** current word being typed and that is to be completed. $wholeline is
** the complete input line, used for context.
**
** The raw completion() table might return the same candidate multiple
** times, for example if the same column name is used to two or more
** tables. And the candidates are returned in an arbitrary order. Hence,
** the DISTINCT and ORDER BY are recommended.
**
** This virtual table operates at the speed of human typing, and so there
** is no attempt to make it fast. Even a slow implementation will be much
** faster than any human can type.
**
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <ctype.h>
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* completion_vtab is a subclass of sqlite3_vtab which will
** serve as the underlying representation of a completion virtual table
*/
typedef struct completion_vtab completion_vtab;
struct completion_vtab {
sqlite3_vtab base; /* Base class - must be first */
sqlite3 *db; /* Database connection for this completion vtab */
};
/* completion_cursor is a subclass of sqlite3_vtab_cursor which will
** serve as the underlying representation of a cursor that scans
** over rows of the result
*/
typedef struct completion_cursor completion_cursor;
struct completion_cursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
sqlite3 *db; /* Database connection for this cursor */
int nPrefix, nLine; /* Number of bytes in zPrefix and zLine */
char *zPrefix; /* The prefix for the word we want to complete */
char *zLine; /* The whole that we want to complete */
const char *zCurrentRow; /* Current output row */
int szRow; /* Length of the zCurrentRow string */
sqlite3_stmt *pStmt; /* Current statement */
sqlite3_int64 iRowid; /* The rowid */
int ePhase; /* Current phase */
int j; /* inter-phase counter */
};
/* Values for ePhase:
*/
#define COMPLETION_FIRST_PHASE 1
#define COMPLETION_KEYWORDS 1
#define COMPLETION_PRAGMAS 2
#define COMPLETION_FUNCTIONS 3
#define COMPLETION_COLLATIONS 4
#define COMPLETION_INDEXES 5
#define COMPLETION_TRIGGERS 6
#define COMPLETION_DATABASES 7
#define COMPLETION_TABLES 8 /* Also VIEWs and TRIGGERs */
#define COMPLETION_COLUMNS 9
#define COMPLETION_MODULES 10
#define COMPLETION_EOF 11
/*
** The completionConnect() method is invoked to create a new
** completion_vtab that describes the completion virtual table.
**
** Think of this routine as the constructor for completion_vtab objects.
**
** All this routine needs to do is:
**
** (1) Allocate the completion_vtab object and initialize all fields.
**
** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
** result set of queries against completion will look like.
*/
static int completionConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
completion_vtab *pNew;
int rc;
(void)(pAux); /* Unused parameter */
(void)(argc); /* Unused parameter */
(void)(argv); /* Unused parameter */
(void)(pzErr); /* Unused parameter */
/* Column numbers */
#define COMPLETION_COLUMN_CANDIDATE 0 /* Suggested completion of the input */
#define COMPLETION_COLUMN_PREFIX 1 /* Prefix of the word to be completed */
#define COMPLETION_COLUMN_WHOLELINE 2 /* Entire line seen so far */
#define COMPLETION_COLUMN_PHASE 3 /* ePhase - used for debugging only */
sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
rc = sqlite3_declare_vtab(db,
"CREATE TABLE x("
" candidate TEXT,"
" prefix TEXT HIDDEN,"
" wholeline TEXT HIDDEN,"
" phase INT HIDDEN" /* Used for debugging only */
")");
if( rc==SQLITE_OK ){
pNew = sqlite3_malloc( sizeof(*pNew) );
*ppVtab = (sqlite3_vtab*)pNew;
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, sizeof(*pNew));
pNew->db = db;
}
return rc;
}
/*
** This method is the destructor for completion_cursor objects.
*/
static int completionDisconnect(sqlite3_vtab *pVtab){
sqlite3_free(pVtab);
return SQLITE_OK;
}
/*
** Constructor for a new completion_cursor object.
*/
static int completionOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
completion_cursor *pCur;
pCur = sqlite3_malloc( sizeof(*pCur) );
if( pCur==0 ) return SQLITE_NOMEM;
memset(pCur, 0, sizeof(*pCur));
pCur->db = ((completion_vtab*)p)->db;
*ppCursor = &pCur->base;
return SQLITE_OK;
}
/*
** Reset the completion_cursor.
*/
static void completionCursorReset(completion_cursor *pCur){
sqlite3_free(pCur->zPrefix); pCur->zPrefix = 0; pCur->nPrefix = 0;
sqlite3_free(pCur->zLine); pCur->zLine = 0; pCur->nLine = 0;
sqlite3_finalize(pCur->pStmt); pCur->pStmt = 0;
pCur->j = 0;
}
/*
** Destructor for a completion_cursor.
*/
static int completionClose(sqlite3_vtab_cursor *cur){
completionCursorReset((completion_cursor*)cur);
sqlite3_free(cur);
return SQLITE_OK;
}
/*
** Advance a completion_cursor to its next row of output.
**
** The ->ePhase, ->j, and ->pStmt fields of the completion_cursor object
** record the current state of the scan. This routine sets ->zCurrentRow
** to the current row of output and then returns. If no more rows remain,
** then ->ePhase is set to COMPLETION_EOF which will signal the virtual
** table that has reached the end of its scan.
**
** The current implementation just lists potential identifiers and
** keywords and filters them by zPrefix. Future enhancements should
** take zLine into account to try to restrict the set of identifiers and
** keywords based on what would be legal at the current point of input.
*/
static int completionNext(sqlite3_vtab_cursor *cur){
completion_cursor *pCur = (completion_cursor*)cur;
int eNextPhase = 0; /* Next phase to try if current phase reaches end */
int iCol = -1; /* If >=0, step pCur->pStmt and use the i-th column */
pCur->iRowid++;
while( pCur->ePhase!=COMPLETION_EOF ){
switch( pCur->ePhase ){
case COMPLETION_KEYWORDS: {
if( pCur->j >= sqlite3_keyword_count() ){
pCur->zCurrentRow = 0;
pCur->ePhase = COMPLETION_DATABASES;
}else{
sqlite3_keyword_name(pCur->j++, &pCur->zCurrentRow, &pCur->szRow);
}
iCol = -1;
break;
}
case COMPLETION_DATABASES: {
if( pCur->pStmt==0 ){
sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1,
&pCur->pStmt, 0);
}
iCol = 1;
eNextPhase = COMPLETION_TABLES;
break;
}
case COMPLETION_TABLES: {
if( pCur->pStmt==0 ){
sqlite3_stmt *pS2;
char *zSql = 0;
const char *zSep = "";
sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1, &pS2, 0);
while( sqlite3_step(pS2)==SQLITE_ROW ){
const char *zDb = (const char*)sqlite3_column_text(pS2, 1);
zSql = sqlite3_mprintf(
"%z%s"
"SELECT name FROM \"%w\".sqlite_schema",
zSql, zSep, zDb
);
if( zSql==0 ) return SQLITE_NOMEM;
zSep = " UNION ";
}
sqlite3_finalize(pS2);
sqlite3_prepare_v2(pCur->db, zSql, -1, &pCur->pStmt, 0);
sqlite3_free(zSql);
}
iCol = 0;
eNextPhase = COMPLETION_COLUMNS;
break;
}
case COMPLETION_COLUMNS: {
if( pCur->pStmt==0 ){
sqlite3_stmt *pS2;
char *zSql = 0;
const char *zSep = "";
sqlite3_prepare_v2(pCur->db, "PRAGMA database_list", -1, &pS2, 0);
while( sqlite3_step(pS2)==SQLITE_ROW ){
const char *zDb = (const char*)sqlite3_column_text(pS2, 1);
zSql = sqlite3_mprintf(
"%z%s"
"SELECT pti.name FROM \"%w\".sqlite_schema AS sm"
" JOIN pragma_table_info(sm.name,%Q) AS pti"
" WHERE sm.type='table'",
zSql, zSep, zDb, zDb
);
if( zSql==0 ) return SQLITE_NOMEM;
zSep = " UNION ";
}
sqlite3_finalize(pS2);
sqlite3_prepare_v2(pCur->db, zSql, -1, &pCur->pStmt, 0);
sqlite3_free(zSql);
}
iCol = 0;
eNextPhase = COMPLETION_EOF;
break;
}
}
if( iCol<0 ){
/* This case is when the phase presets zCurrentRow */
if( pCur->zCurrentRow==0 ) continue;
}else{
if( sqlite3_step(pCur->pStmt)==SQLITE_ROW ){
/* Extract the next row of content */
pCur->zCurrentRow = (const char*)sqlite3_column_text(pCur->pStmt, iCol);
pCur->szRow = sqlite3_column_bytes(pCur->pStmt, iCol);
}else{
/* When all rows are finished, advance to the next phase */
sqlite3_finalize(pCur->pStmt);
pCur->pStmt = 0;
pCur->ePhase = eNextPhase;
continue;
}
}
if( pCur->nPrefix==0 ) break;
if( pCur->nPrefix<=pCur->szRow
&& sqlite3_strnicmp(pCur->zPrefix, pCur->zCurrentRow, pCur->nPrefix)==0
){
break;
}
}
return SQLITE_OK;
}
/*
** Return values of columns for the row at which the completion_cursor
** is currently pointing.
*/
static int completionColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int i /* Which column to return */
){
completion_cursor *pCur = (completion_cursor*)cur;
switch( i ){
case COMPLETION_COLUMN_CANDIDATE: {
sqlite3_result_text(ctx, pCur->zCurrentRow, pCur->szRow,SQLITE_TRANSIENT);
break;
}
case COMPLETION_COLUMN_PREFIX: {
sqlite3_result_text(ctx, pCur->zPrefix, -1, SQLITE_TRANSIENT);
break;
}
case COMPLETION_COLUMN_WHOLELINE: {
sqlite3_result_text(ctx, pCur->zLine, -1, SQLITE_TRANSIENT);
break;
}
case COMPLETION_COLUMN_PHASE: {
sqlite3_result_int(ctx, pCur->ePhase);
break;
}
}
return SQLITE_OK;
}
/*
** Return the rowid for the current row. In this implementation, the
** rowid is the same as the output value.
*/
static int completionRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
completion_cursor *pCur = (completion_cursor*)cur;
*pRowid = pCur->iRowid;
return SQLITE_OK;
}
/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int completionEof(sqlite3_vtab_cursor *cur){
completion_cursor *pCur = (completion_cursor*)cur;
return pCur->ePhase >= COMPLETION_EOF;
}
/*
** This method is called to "rewind" the completion_cursor object back
** to the first row of output. This method is always called at least
** once prior to any call to completionColumn() or completionRowid() or
** completionEof().
*/
static int completionFilter(
sqlite3_vtab_cursor *pVtabCursor,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
completion_cursor *pCur = (completion_cursor *)pVtabCursor;
int iArg = 0;
(void)(idxStr); /* Unused parameter */
(void)(argc); /* Unused parameter */
completionCursorReset(pCur);
if( idxNum & 1 ){
pCur->nPrefix = sqlite3_value_bytes(argv[iArg]);
if( pCur->nPrefix>0 ){
pCur->zPrefix = sqlite3_mprintf("%s", sqlite3_value_text(argv[iArg]));
if( pCur->zPrefix==0 ) return SQLITE_NOMEM;
}
iArg = 1;
}
if( idxNum & 2 ){
pCur->nLine = sqlite3_value_bytes(argv[iArg]);
if( pCur->nLine>0 ){
pCur->zLine = sqlite3_mprintf("%s", sqlite3_value_text(argv[iArg]));
if( pCur->zLine==0 ) return SQLITE_NOMEM;
}
}
if( pCur->zLine!=0 && pCur->zPrefix==0 ){
int i = pCur->nLine;
while( i>0 && (isalnum(pCur->zLine[i-1]) || pCur->zLine[i-1]=='_') ){
i--;
}
pCur->nPrefix = pCur->nLine - i;
if( pCur->nPrefix>0 ){
pCur->zPrefix = sqlite3_mprintf("%.*s", pCur->nPrefix, pCur->zLine + i);
if( pCur->zPrefix==0 ) return SQLITE_NOMEM;
}
}
pCur->iRowid = 0;
pCur->ePhase = COMPLETION_FIRST_PHASE;
return completionNext(pVtabCursor);
}
/*
** SQLite will invoke this method one or more times while planning a query
** that uses the completion virtual table. This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
**
** There are two hidden parameters that act as arguments to the table-valued
** function: "prefix" and "wholeline". Bit 0 of idxNum is set if "prefix"
** is available and bit 1 is set if "wholeline" is available.
*/
static int completionBestIndex(
sqlite3_vtab *tab,
sqlite3_index_info *pIdxInfo
){
int i; /* Loop over constraints */
int idxNum = 0; /* The query plan bitmask */
int prefixIdx = -1; /* Index of the start= constraint, or -1 if none */
int wholelineIdx = -1; /* Index of the stop= constraint, or -1 if none */
int nArg = 0; /* Number of arguments that completeFilter() expects */
const struct sqlite3_index_constraint *pConstraint;
(void)(tab); /* Unused parameter */
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
if( pConstraint->usable==0 ) continue;
if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
switch( pConstraint->iColumn ){
case COMPLETION_COLUMN_PREFIX:
prefixIdx = i;
idxNum |= 1;
break;
case COMPLETION_COLUMN_WHOLELINE:
wholelineIdx = i;
idxNum |= 2;
break;
}
}
if( prefixIdx>=0 ){
pIdxInfo->aConstraintUsage[prefixIdx].argvIndex = ++nArg;
pIdxInfo->aConstraintUsage[prefixIdx].omit = 1;
}
if( wholelineIdx>=0 ){
pIdxInfo->aConstraintUsage[wholelineIdx].argvIndex = ++nArg;
pIdxInfo->aConstraintUsage[wholelineIdx].omit = 1;
}
pIdxInfo->idxNum = idxNum;
pIdxInfo->estimatedCost = (double)5000 - 1000*nArg;
pIdxInfo->estimatedRows = 500 - 100*nArg;
return SQLITE_OK;
}
/*
** This following structure defines all the methods for the
** completion virtual table.
*/
static sqlite3_module completionModule = {
0, /* iVersion */
0, /* xCreate */
completionConnect, /* xConnect */
completionBestIndex, /* xBestIndex */
completionDisconnect, /* xDisconnect */
0, /* xDestroy */
completionOpen, /* xOpen - open a cursor */
completionClose, /* xClose - close a cursor */
completionFilter, /* xFilter - configure scan constraints */
completionNext, /* xNext - advance a cursor */
completionEof, /* xEof - check for end of scan */
completionColumn, /* xColumn - read data */
completionRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0 /* xShadowName */
};
#endif /* SQLITE_OMIT_VIRTUALTABLE */
int sqlite3CompletionVtabInit(sqlite3 *db){
int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_VIRTUALTABLE
rc = sqlite3_create_module(db, "completion", &completionModule, 0);
#endif
return rc;
}
#ifdef _WIN32
#endif
int sqlite3_completion_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)(pzErrMsg); /* Unused parameter */
#ifndef SQLITE_OMIT_VIRTUALTABLE
rc = sqlite3CompletionVtabInit(db);
#endif
return rc;
}
/************************* End ../ext/misc/completion.c ********************/
/************************* Begin ../ext/misc/appendvfs.c ******************/
/*
** 2017-10-20
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file implements a VFS shim that allows an SQLite database to be
** appended onto the end of some other file, such as an executable.
**
** A special record must appear at the end of the file that identifies the
** file as an appended database and provides the offset to the first page
** of the exposed content. (Or, it is the length of the content prefix.)
** For best performance page 1 should be located at a disk page boundary,
** though that is not required.
**
** When opening a database using this VFS, the connection might treat
** the file as an ordinary SQLite database, or it might treat it as a
** database appended onto some other file. The decision is made by
** applying the following rules in order:
**
** (1) An empty file is an ordinary database.
**
** (2) If the file ends with the appendvfs trailer string
** "Start-Of-SQLite3-NNNNNNNN" that file is an appended database.
**
** (3) If the file begins with the standard SQLite prefix string
** "SQLite format 3", that file is an ordinary database.
**
** (4) If none of the above apply and the SQLITE_OPEN_CREATE flag is
** set, then a new database is appended to the already existing file.
**
** (5) Otherwise, SQLITE_CANTOPEN is returned.
**
** To avoid unnecessary complications with the PENDING_BYTE, the size of
** the file containing the database is limited to 1GiB. (1073741824 bytes)
** This VFS will not read or write past the 1GiB mark. This restriction
** might be lifted in future versions. For now, if you need a larger
** database, then keep it in a separate file.
**
** If the file being opened is a plain database (not an appended one), then
** this shim is a pass-through into the default underlying VFS. (rule 3)
**/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <string.h>
#include <assert.h>
/* The append mark at the end of the database is:
**
** Start-Of-SQLite3-NNNNNNNN
** 123456789 123456789 12345
**
** The NNNNNNNN represents a 64-bit big-endian unsigned integer which is
** the offset to page 1, and also the length of the prefix content.
*/
#define APND_MARK_PREFIX "Start-Of-SQLite3-"
#define APND_MARK_PREFIX_SZ 17
#define APND_MARK_FOS_SZ 8
#define APND_MARK_SIZE (APND_MARK_PREFIX_SZ+APND_MARK_FOS_SZ)
/*
** Maximum size of the combined prefix + database + append-mark. This
** must be less than 0x40000000 to avoid locking issues on Windows.
*/
#define APND_MAX_SIZE (0x40000000)
/*
** Try to align the database to an even multiple of APND_ROUNDUP bytes.
*/
#ifndef APND_ROUNDUP
#define APND_ROUNDUP 4096
#endif
#define APND_ALIGN_MASK ((sqlite3_int64)(APND_ROUNDUP-1))
#define APND_START_ROUNDUP(fsz) (((fsz)+APND_ALIGN_MASK) & ~APND_ALIGN_MASK)
/*
** Forward declaration of objects used by this utility
*/
typedef struct sqlite3_vfs ApndVfs;
typedef struct ApndFile ApndFile;
/* Access to a lower-level VFS that (might) implement dynamic loading,
** access to randomness, etc.
*/
#define ORIGVFS(p) ((sqlite3_vfs*)((p)->pAppData))
#define ORIGFILE(p) ((sqlite3_file*)(((ApndFile*)(p))+1))
/* An open appendvfs file
**
** An instance of this structure describes the appended database file.
** A separate sqlite3_file object is always appended. The appended
** sqlite3_file object (which can be accessed using ORIGFILE()) describes
** the entire file, including the prefix, the database, and the
** append-mark.
**
** The structure of an AppendVFS database is like this:
**
** +-------------+---------+----------+-------------+
** | prefix-file | padding | database | append-mark |
** +-------------+---------+----------+-------------+
** ^ ^
** | |
** iPgOne iMark
**
**
** "prefix file" - file onto which the database has been appended.
** "padding" - zero or more bytes inserted so that "database"
** starts on an APND_ROUNDUP boundary
** "database" - The SQLite database file
** "append-mark" - The 25-byte "Start-Of-SQLite3-NNNNNNNN" that indicates
** the offset from the start of prefix-file to the start
** of "database".
**
** The size of the database is iMark - iPgOne.
**
** The NNNNNNNN in the "Start-Of-SQLite3-NNNNNNNN" suffix is the value
** of iPgOne stored as a big-ending 64-bit integer.
**
** iMark will be the size of the underlying file minus 25 (APND_MARKSIZE).
** Or, iMark is -1 to indicate that it has not yet been written.
*/
struct ApndFile {
sqlite3_file base; /* Subclass. MUST BE FIRST! */
sqlite3_int64 iPgOne; /* Offset to the start of the database */
sqlite3_int64 iMark; /* Offset of the append mark. -1 if unwritten */
/* Always followed by another sqlite3_file that describes the whole file */
};
/*
** Methods for ApndFile
*/
static int apndClose(sqlite3_file*);
static int apndRead(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
static int apndWrite(sqlite3_file*,const void*,int iAmt, sqlite3_int64 iOfst);
static int apndTruncate(sqlite3_file*, sqlite3_int64 size);
static int apndSync(sqlite3_file*, int flags);
static int apndFileSize(sqlite3_file*, sqlite3_int64 *pSize);
static int apndLock(sqlite3_file*, int);
static int apndUnlock(sqlite3_file*, int);
static int apndCheckReservedLock(sqlite3_file*, int *pResOut);
static int apndFileControl(sqlite3_file*, int op, void *pArg);
static int apndSectorSize(sqlite3_file*);
static int apndDeviceCharacteristics(sqlite3_file*);
static int apndShmMap(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
static int apndShmLock(sqlite3_file*, int offset, int n, int flags);
static void apndShmBarrier(sqlite3_file*);
static int apndShmUnmap(sqlite3_file*, int deleteFlag);
static int apndFetch(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
static int apndUnfetch(sqlite3_file*, sqlite3_int64 iOfst, void *p);
/*
** Methods for ApndVfs
*/
static int apndOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *);
static int apndDelete(sqlite3_vfs*, const char *zName, int syncDir);
static int apndAccess(sqlite3_vfs*, const char *zName, int flags, int *);
static int apndFullPathname(sqlite3_vfs*, const char *zName, int, char *zOut);
static void *apndDlOpen(sqlite3_vfs*, const char *zFilename);
static void apndDlError(sqlite3_vfs*, int nByte, char *zErrMsg);
static void (*apndDlSym(sqlite3_vfs *pVfs, void *p, const char*zSym))(void);
static void apndDlClose(sqlite3_vfs*, void*);
static int apndRandomness(sqlite3_vfs*, int nByte, char *zOut);
static int apndSleep(sqlite3_vfs*, int microseconds);
static int apndCurrentTime(sqlite3_vfs*, double*);
static int apndGetLastError(sqlite3_vfs*, int, char *);
static int apndCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*);
static int apndSetSystemCall(sqlite3_vfs*, const char*,sqlite3_syscall_ptr);
static sqlite3_syscall_ptr apndGetSystemCall(sqlite3_vfs*, const char *z);
static const char *apndNextSystemCall(sqlite3_vfs*, const char *zName);
static sqlite3_vfs apnd_vfs = {
3, /* iVersion (set when registered) */
0, /* szOsFile (set when registered) */
1024, /* mxPathname */
0, /* pNext */
"apndvfs", /* zName */
0, /* pAppData (set when registered) */
apndOpen, /* xOpen */
apndDelete, /* xDelete */
apndAccess, /* xAccess */
apndFullPathname, /* xFullPathname */
apndDlOpen, /* xDlOpen */
apndDlError, /* xDlError */
apndDlSym, /* xDlSym */
apndDlClose, /* xDlClose */
apndRandomness, /* xRandomness */
apndSleep, /* xSleep */
apndCurrentTime, /* xCurrentTime */
apndGetLastError, /* xGetLastError */
apndCurrentTimeInt64, /* xCurrentTimeInt64 */
apndSetSystemCall, /* xSetSystemCall */
apndGetSystemCall, /* xGetSystemCall */
apndNextSystemCall /* xNextSystemCall */
};
static const sqlite3_io_methods apnd_io_methods = {
3, /* iVersion */
apndClose, /* xClose */
apndRead, /* xRead */
apndWrite, /* xWrite */
apndTruncate, /* xTruncate */
apndSync, /* xSync */
apndFileSize, /* xFileSize */
apndLock, /* xLock */
apndUnlock, /* xUnlock */
apndCheckReservedLock, /* xCheckReservedLock */
apndFileControl, /* xFileControl */
apndSectorSize, /* xSectorSize */
apndDeviceCharacteristics, /* xDeviceCharacteristics */
apndShmMap, /* xShmMap */
apndShmLock, /* xShmLock */
apndShmBarrier, /* xShmBarrier */
apndShmUnmap, /* xShmUnmap */
apndFetch, /* xFetch */
apndUnfetch /* xUnfetch */
};
/*
** Close an apnd-file.
*/
static int apndClose(sqlite3_file *pFile){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xClose(pFile);
}
/*
** Read data from an apnd-file.
*/
static int apndRead(
sqlite3_file *pFile,
void *zBuf,
int iAmt,
sqlite_int64 iOfst
){
ApndFile *paf = (ApndFile *)pFile;
pFile = ORIGFILE(pFile);
return pFile->pMethods->xRead(pFile, zBuf, iAmt, paf->iPgOne+iOfst);
}
/*
** Add the append-mark onto what should become the end of the file.
* If and only if this succeeds, internal ApndFile.iMark is updated.
* Parameter iWriteEnd is the appendvfs-relative offset of the new mark.
*/
static int apndWriteMark(
ApndFile *paf,
sqlite3_file *pFile,
sqlite_int64 iWriteEnd
){
sqlite_int64 iPgOne = paf->iPgOne;
unsigned char a[APND_MARK_SIZE];
int i = APND_MARK_FOS_SZ;
int rc;
assert(pFile == ORIGFILE(paf));
memcpy(a, APND_MARK_PREFIX, APND_MARK_PREFIX_SZ);
while( --i >= 0 ){
a[APND_MARK_PREFIX_SZ+i] = (unsigned char)(iPgOne & 0xff);
iPgOne >>= 8;
}
iWriteEnd += paf->iPgOne;
if( SQLITE_OK==(rc = pFile->pMethods->xWrite
(pFile, a, APND_MARK_SIZE, iWriteEnd)) ){
paf->iMark = iWriteEnd;
}
return rc;
}
/*
** Write data to an apnd-file.
*/
static int apndWrite(
sqlite3_file *pFile,
const void *zBuf,
int iAmt,
sqlite_int64 iOfst
){
ApndFile *paf = (ApndFile *)pFile;
sqlite_int64 iWriteEnd = iOfst + iAmt;
if( iWriteEnd>=APND_MAX_SIZE ) return SQLITE_FULL;
pFile = ORIGFILE(pFile);
/* If append-mark is absent or will be overwritten, write it. */
if( paf->iMark < 0 || paf->iPgOne + iWriteEnd > paf->iMark ){
int rc = apndWriteMark(paf, pFile, iWriteEnd);
if( SQLITE_OK!=rc ) return rc;
}
return pFile->pMethods->xWrite(pFile, zBuf, iAmt, paf->iPgOne+iOfst);
}
/*
** Truncate an apnd-file.
*/
static int apndTruncate(sqlite3_file *pFile, sqlite_int64 size){
ApndFile *paf = (ApndFile *)pFile;
pFile = ORIGFILE(pFile);
/* The append mark goes out first so truncate failure does not lose it. */
if( SQLITE_OK!=apndWriteMark(paf, pFile, size) ) return SQLITE_IOERR;
/* Truncate underlying file just past append mark */
return pFile->pMethods->xTruncate(pFile, paf->iMark+APND_MARK_SIZE);
}
/*
** Sync an apnd-file.
*/
static int apndSync(sqlite3_file *pFile, int flags){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xSync(pFile, flags);
}
/*
** Return the current file-size of an apnd-file.
** If the append mark is not yet there, the file-size is 0.
*/
static int apndFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
ApndFile *paf = (ApndFile *)pFile;
*pSize = ( paf->iMark >= 0 )? (paf->iMark - paf->iPgOne) : 0;
return SQLITE_OK;
}
/*
** Lock an apnd-file.
*/
static int apndLock(sqlite3_file *pFile, int eLock){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xLock(pFile, eLock);
}
/*
** Unlock an apnd-file.
*/
static int apndUnlock(sqlite3_file *pFile, int eLock){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xUnlock(pFile, eLock);
}
/*
** Check if another file-handle holds a RESERVED lock on an apnd-file.
*/
static int apndCheckReservedLock(sqlite3_file *pFile, int *pResOut){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xCheckReservedLock(pFile, pResOut);
}
/*
** File control method. For custom operations on an apnd-file.
*/
static int apndFileControl(sqlite3_file *pFile, int op, void *pArg){
ApndFile *paf = (ApndFile *)pFile;
int rc;
pFile = ORIGFILE(pFile);
if( op==SQLITE_FCNTL_SIZE_HINT ) *(sqlite3_int64*)pArg += paf->iPgOne;
rc = pFile->pMethods->xFileControl(pFile, op, pArg);
if( rc==SQLITE_OK && op==SQLITE_FCNTL_VFSNAME ){
*(char**)pArg = sqlite3_mprintf("apnd(%lld)/%z", paf->iPgOne,*(char**)pArg);
}
return rc;
}
/*
** Return the sector-size in bytes for an apnd-file.
*/
static int apndSectorSize(sqlite3_file *pFile){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xSectorSize(pFile);
}
/*
** Return the device characteristic flags supported by an apnd-file.
*/
static int apndDeviceCharacteristics(sqlite3_file *pFile){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xDeviceCharacteristics(pFile);
}
/* Create a shared memory file mapping */
static int apndShmMap(
sqlite3_file *pFile,
int iPg,
int pgsz,
int bExtend,
void volatile **pp
){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xShmMap(pFile,iPg,pgsz,bExtend,pp);
}
/* Perform locking on a shared-memory segment */
static int apndShmLock(sqlite3_file *pFile, int offset, int n, int flags){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xShmLock(pFile,offset,n,flags);
}
/* Memory barrier operation on shared memory */
static void apndShmBarrier(sqlite3_file *pFile){
pFile = ORIGFILE(pFile);
pFile->pMethods->xShmBarrier(pFile);
}
/* Unmap a shared memory segment */
static int apndShmUnmap(sqlite3_file *pFile, int deleteFlag){
pFile = ORIGFILE(pFile);
return pFile->pMethods->xShmUnmap(pFile,deleteFlag);
}
/* Fetch a page of a memory-mapped file */
static int apndFetch(
sqlite3_file *pFile,
sqlite3_int64 iOfst,
int iAmt,
void **pp
){
ApndFile *p = (ApndFile *)pFile;
if( p->iMark < 0 || iOfst+iAmt > p->iMark ){
return SQLITE_IOERR; /* Cannot read what is not yet there. */
}
pFile = ORIGFILE(pFile);
return pFile->pMethods->xFetch(pFile, iOfst+p->iPgOne, iAmt, pp);
}
/* Release a memory-mapped page */
static int apndUnfetch(sqlite3_file *pFile, sqlite3_int64 iOfst, void *pPage){
ApndFile *p = (ApndFile *)pFile;
pFile = ORIGFILE(pFile);
return pFile->pMethods->xUnfetch(pFile, iOfst+p->iPgOne, pPage);
}
/*
** Try to read the append-mark off the end of a file. Return the
** start of the appended database if the append-mark is present.
** If there is no valid append-mark, return -1;
**
** An append-mark is only valid if the NNNNNNNN start-of-database offset
** indicates that the appended database contains at least one page. The
** start-of-database value must be a multiple of 512.
*/
static sqlite3_int64 apndReadMark(sqlite3_int64 sz, sqlite3_file *pFile){
int rc, i;
sqlite3_int64 iMark;
int msbs = 8 * (APND_MARK_FOS_SZ-1);
unsigned char a[APND_MARK_SIZE];
if( APND_MARK_SIZE!=(sz & 0x1ff) ) return -1;
rc = pFile->pMethods->xRead(pFile, a, APND_MARK_SIZE, sz-APND_MARK_SIZE);
if( rc ) return -1;
if( memcmp(a, APND_MARK_PREFIX, APND_MARK_PREFIX_SZ)!=0 ) return -1;
iMark = ((sqlite3_int64)(a[APND_MARK_PREFIX_SZ] & 0x7f)) << msbs;
for(i=1; i<8; i++){
msbs -= 8;
iMark |= (sqlite3_int64)a[APND_MARK_PREFIX_SZ+i]<<msbs;
}
if( iMark > (sz - APND_MARK_SIZE - 512) ) return -1;
if( iMark & 0x1ff ) return -1;
return iMark;
}
static const char apvfsSqliteHdr[] = "SQLite format 3";
/*
** Check to see if the file is an appendvfs SQLite database file.
** Return true iff it is such. Parameter sz is the file's size.
*/
static int apndIsAppendvfsDatabase(sqlite3_int64 sz, sqlite3_file *pFile){
int rc;
char zHdr[16];
sqlite3_int64 iMark = apndReadMark(sz, pFile);
if( iMark>=0 ){
/* If file has the correct end-marker, the expected odd size, and the
** SQLite DB type marker where the end-marker puts it, then it
** is an appendvfs database.
*/
rc = pFile->pMethods->xRead(pFile, zHdr, sizeof(zHdr), iMark);
if( SQLITE_OK==rc
&& memcmp(zHdr, apvfsSqliteHdr, sizeof(zHdr))==0
&& (sz & 0x1ff) == APND_MARK_SIZE
&& sz>=512+APND_MARK_SIZE
){
return 1; /* It's an appendvfs database */
}
}
return 0;
}
/*
** Check to see if the file is an ordinary SQLite database file.
** Return true iff so. Parameter sz is the file's size.
*/
static int apndIsOrdinaryDatabaseFile(sqlite3_int64 sz, sqlite3_file *pFile){
char zHdr[16];
if( apndIsAppendvfsDatabase(sz, pFile) /* rule 2 */
|| (sz & 0x1ff) != 0
|| SQLITE_OK!=pFile->pMethods->xRead(pFile, zHdr, sizeof(zHdr), 0)
|| memcmp(zHdr, apvfsSqliteHdr, sizeof(zHdr))!=0
){
return 0;
}else{
return 1;
}
}
/*
** Open an apnd file handle.
*/
static int apndOpen(
sqlite3_vfs *pApndVfs,
const char *zName,
sqlite3_file *pFile,
int flags,
int *pOutFlags
){
ApndFile *pApndFile = (ApndFile*)pFile;
sqlite3_file *pBaseFile = ORIGFILE(pFile);
sqlite3_vfs *pBaseVfs = ORIGVFS(pApndVfs);
int rc;
sqlite3_int64 sz = 0;
if( (flags & SQLITE_OPEN_MAIN_DB)==0 ){
/* The appendvfs is not to be used for transient or temporary databases.
** Just use the base VFS open to initialize the given file object and
** open the underlying file. (Appendvfs is then unused for this file.)
*/
return pBaseVfs->xOpen(pBaseVfs, zName, pFile, flags, pOutFlags);
}
memset(pApndFile, 0, sizeof(ApndFile));
pFile->pMethods = &apnd_io_methods;
pApndFile->iMark = -1; /* Append mark not yet written */
rc = pBaseVfs->xOpen(pBaseVfs, zName, pBaseFile, flags, pOutFlags);
if( rc==SQLITE_OK ){
rc = pBaseFile->pMethods->xFileSize(pBaseFile, &sz);
if( rc ){
pBaseFile->pMethods->xClose(pBaseFile);
}
}
if( rc ){
pFile->pMethods = 0;
return rc;
}
if( apndIsOrdinaryDatabaseFile(sz, pBaseFile) ){
/* The file being opened appears to be just an ordinary DB. Copy
** the base dispatch-table so this instance mimics the base VFS.
*/
memmove(pApndFile, pBaseFile, pBaseVfs->szOsFile);
return SQLITE_OK;
}
pApndFile->iPgOne = apndReadMark(sz, pFile);
if( pApndFile->iPgOne>=0 ){
pApndFile->iMark = sz - APND_MARK_SIZE; /* Append mark found */
return SQLITE_OK;
}
if( (flags & SQLITE_OPEN_CREATE)==0 ){
pBaseFile->pMethods->xClose(pBaseFile);
rc = SQLITE_CANTOPEN;
pFile->pMethods = 0;
}else{
/* Round newly added appendvfs location to #define'd page boundary.
** Note that nothing has yet been written to the underlying file.
** The append mark will be written along with first content write.
** Until then, paf->iMark value indicates it is not yet written.
*/
pApndFile->iPgOne = APND_START_ROUNDUP(sz);
}
return rc;
}
/*
** Delete an apnd file.
** For an appendvfs, this could mean delete the appendvfs portion,
** leaving the appendee as it was before it gained an appendvfs.
** For now, this code deletes the underlying file too.
*/
static int apndDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
return ORIGVFS(pVfs)->xDelete(ORIGVFS(pVfs), zPath, dirSync);
}
/*
** All other VFS methods are pass-thrus.
*/
static int apndAccess(
sqlite3_vfs *pVfs,
const char *zPath,
int flags,
int *pResOut
){
return ORIGVFS(pVfs)->xAccess(ORIGVFS(pVfs), zPath, flags, pResOut);
}
static int apndFullPathname(
sqlite3_vfs *pVfs,
const char *zPath,
int nOut,
char *zOut
){
return ORIGVFS(pVfs)->xFullPathname(ORIGVFS(pVfs),zPath,nOut,zOut);
}
static void *apndDlOpen(sqlite3_vfs *pVfs, const char *zPath){
return ORIGVFS(pVfs)->xDlOpen(ORIGVFS(pVfs), zPath);
}
static void apndDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
ORIGVFS(pVfs)->xDlError(ORIGVFS(pVfs), nByte, zErrMsg);
}
static void (*apndDlSym(sqlite3_vfs *pVfs, void *p, const char *zSym))(void){
return ORIGVFS(pVfs)->xDlSym(ORIGVFS(pVfs), p, zSym);
}
static void apndDlClose(sqlite3_vfs *pVfs, void *pHandle){
ORIGVFS(pVfs)->xDlClose(ORIGVFS(pVfs), pHandle);
}
static int apndRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
return ORIGVFS(pVfs)->xRandomness(ORIGVFS(pVfs), nByte, zBufOut);
}
static int apndSleep(sqlite3_vfs *pVfs, int nMicro){
return ORIGVFS(pVfs)->xSleep(ORIGVFS(pVfs), nMicro);
}
static int apndCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
return ORIGVFS(pVfs)->xCurrentTime(ORIGVFS(pVfs), pTimeOut);
}
static int apndGetLastError(sqlite3_vfs *pVfs, int a, char *b){
return ORIGVFS(pVfs)->xGetLastError(ORIGVFS(pVfs), a, b);
}
static int apndCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *p){
return ORIGVFS(pVfs)->xCurrentTimeInt64(ORIGVFS(pVfs), p);
}
static int apndSetSystemCall(
sqlite3_vfs *pVfs,
const char *zName,
sqlite3_syscall_ptr pCall
){
return ORIGVFS(pVfs)->xSetSystemCall(ORIGVFS(pVfs),zName,pCall);
}
static sqlite3_syscall_ptr apndGetSystemCall(
sqlite3_vfs *pVfs,
const char *zName
){
return ORIGVFS(pVfs)->xGetSystemCall(ORIGVFS(pVfs),zName);
}
static const char *apndNextSystemCall(sqlite3_vfs *pVfs, const char *zName){
return ORIGVFS(pVfs)->xNextSystemCall(ORIGVFS(pVfs), zName);
}
#ifdef _WIN32
#endif
/*
** This routine is called when the extension is loaded.
** Register the new VFS.
*/
int sqlite3_appendvfs_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
sqlite3_vfs *pOrig;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg;
(void)db;
pOrig = sqlite3_vfs_find(0);
if( pOrig==0 ) return SQLITE_ERROR;
apnd_vfs.iVersion = pOrig->iVersion;
apnd_vfs.pAppData = pOrig;
apnd_vfs.szOsFile = pOrig->szOsFile + sizeof(ApndFile);
rc = sqlite3_vfs_register(&apnd_vfs, 0);
#ifdef APPENDVFS_TEST
if( rc==SQLITE_OK ){
rc = sqlite3_auto_extension((void(*)(void))apndvfsRegister);
}
#endif
if( rc==SQLITE_OK ) rc = SQLITE_OK_LOAD_PERMANENTLY;
return rc;
}
/************************* End ../ext/misc/appendvfs.c ********************/
#endif
#ifdef SQLITE_HAVE_ZLIB
/************************* Begin ../ext/misc/zipfile.c ******************/
/*
** 2017-12-26
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file implements a virtual table for reading and writing ZIP archive
** files.
**
** Usage example:
**
** SELECT name, sz, datetime(mtime,'unixepoch') FROM zipfile($filename);
**
** Current limitations:
**
** * No support for encryption
** * No support for ZIP archives spanning multiple files
** * No support for zip64 extensions
** * Only the "inflate/deflate" (zlib) compression method is supported
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <zlib.h>
#ifndef SQLITE_OMIT_VIRTUALTABLE
#ifndef SQLITE_AMALGAMATION
#ifndef UINT32_TYPE
# ifdef HAVE_UINT32_T
# define UINT32_TYPE uint32_t
# else
# define UINT32_TYPE unsigned int
# endif
#endif
#ifndef UINT16_TYPE
# ifdef HAVE_UINT16_T
# define UINT16_TYPE uint16_t
# else
# define UINT16_TYPE unsigned short int
# endif
#endif
/* typedef sqlite3_int64 i64; */
/* typedef unsigned char u8; */
/* typedef UINT32_TYPE u32; // 4-byte unsigned integer // */
/* typedef UINT16_TYPE u16; // 2-byte unsigned integer // */
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
#endif
#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
# define ALWAYS(X) (1)
# define NEVER(X) (0)
#elif !defined(NDEBUG)
# define ALWAYS(X) ((X)?1:(assert(0),0))
# define NEVER(X) ((X)?(assert(0),1):0)
#else
# define ALWAYS(X) (X)
# define NEVER(X) (X)
#endif
#endif /* SQLITE_AMALGAMATION */
/*
** Definitions for mode bitmasks S_IFDIR, S_IFREG and S_IFLNK.
**
** In some ways it would be better to obtain these values from system
** header files. But, the dependency is undesirable and (a) these
** have been stable for decades, (b) the values are part of POSIX and
** are also made explicit in [man stat], and (c) are part of the
** file format for zip archives.
*/
#ifndef S_IFDIR
# define S_IFDIR 0040000
#endif
#ifndef S_IFREG
# define S_IFREG 0100000
#endif
#ifndef S_IFLNK
# define S_IFLNK 0120000
#endif
static const char ZIPFILE_SCHEMA[] =
"CREATE TABLE y("
"name PRIMARY KEY," /* 0: Name of file in zip archive */
"mode," /* 1: POSIX mode for file */
"mtime," /* 2: Last modification time (secs since 1970)*/
"sz," /* 3: Size of object */
"rawdata," /* 4: Raw data */
"data," /* 5: Uncompressed data */
"method," /* 6: Compression method (integer) */
"z HIDDEN" /* 7: Name of zip file */
") WITHOUT ROWID;";
#define ZIPFILE_F_COLUMN_IDX 7 /* Index of column "file" in the above */
#define ZIPFILE_BUFFER_SIZE (64*1024)
/*
** Magic numbers used to read and write zip files.
**
** ZIPFILE_NEWENTRY_MADEBY:
** Use this value for the "version-made-by" field in new zip file
** entries. The upper byte indicates "unix", and the lower byte
** indicates that the zip file matches pkzip specification 3.0.
** This is what info-zip seems to do.
**
** ZIPFILE_NEWENTRY_REQUIRED:
** Value for "version-required-to-extract" field of new entries.
** Version 2.0 is required to support folders and deflate compression.
**
** ZIPFILE_NEWENTRY_FLAGS:
** Value for "general-purpose-bit-flags" field of new entries. Bit
** 11 means "utf-8 filename and comment".
**
** ZIPFILE_SIGNATURE_CDS:
** First 4 bytes of a valid CDS record.
**
** ZIPFILE_SIGNATURE_LFH:
** First 4 bytes of a valid LFH record.
**
** ZIPFILE_SIGNATURE_EOCD
** First 4 bytes of a valid EOCD record.
*/
#define ZIPFILE_EXTRA_TIMESTAMP 0x5455
#define ZIPFILE_NEWENTRY_MADEBY ((3<<8) + 30)
#define ZIPFILE_NEWENTRY_REQUIRED 20
#define ZIPFILE_NEWENTRY_FLAGS 0x800
#define ZIPFILE_SIGNATURE_CDS 0x02014b50
#define ZIPFILE_SIGNATURE_LFH 0x04034b50
#define ZIPFILE_SIGNATURE_EOCD 0x06054b50
/*
** The sizes of the fixed-size part of each of the three main data
** structures in a zip archive.
*/
#define ZIPFILE_LFH_FIXED_SZ 30
#define ZIPFILE_EOCD_FIXED_SZ 22
#define ZIPFILE_CDS_FIXED_SZ 46
/*
*** 4.3.16 End of central directory record:
***
*** end of central dir signature 4 bytes (0x06054b50)
*** number of this disk 2 bytes
*** number of the disk with the
*** start of the central directory 2 bytes
*** total number of entries in the
*** central directory on this disk 2 bytes
*** total number of entries in
*** the central directory 2 bytes
*** size of the central directory 4 bytes
*** offset of start of central
*** directory with respect to
*** the starting disk number 4 bytes
*** .ZIP file comment length 2 bytes
*** .ZIP file comment (variable size)
*/
typedef struct ZipfileEOCD ZipfileEOCD;
struct ZipfileEOCD {
u16 iDisk;
u16 iFirstDisk;
u16 nEntry;
u16 nEntryTotal;
u32 nSize;
u32 iOffset;
};
/*
*** 4.3.12 Central directory structure:
***
*** ...
***
*** central file header signature 4 bytes (0x02014b50)
*** version made by 2 bytes
*** version needed to extract 2 bytes
*** general purpose bit flag 2 bytes
*** compression method 2 bytes
*** last mod file time 2 bytes
*** last mod file date 2 bytes
*** crc-32 4 bytes
*** compressed size 4 bytes
*** uncompressed size 4 bytes
*** file name length 2 bytes
*** extra field length 2 bytes
*** file comment length 2 bytes
*** disk number start 2 bytes
*** internal file attributes 2 bytes
*** external file attributes 4 bytes
*** relative offset of local header 4 bytes
*/
typedef struct ZipfileCDS ZipfileCDS;
struct ZipfileCDS {
u16 iVersionMadeBy;
u16 iVersionExtract;
u16 flags;
u16 iCompression;
u16 mTime;
u16 mDate;
u32 crc32;
u32 szCompressed;
u32 szUncompressed;
u16 nFile;
u16 nExtra;
u16 nComment;
u16 iDiskStart;
u16 iInternalAttr;
u32 iExternalAttr;
u32 iOffset;
char *zFile; /* Filename (sqlite3_malloc()) */
};
/*
*** 4.3.7 Local file header:
***
*** local file header signature 4 bytes (0x04034b50)
*** version needed to extract 2 bytes
*** general purpose bit flag 2 bytes
*** compression method 2 bytes
*** last mod file time 2 bytes
*** last mod file date 2 bytes
*** crc-32 4 bytes
*** compressed size 4 bytes
*** uncompressed size 4 bytes
*** file name length 2 bytes
*** extra field length 2 bytes
***
*/
typedef struct ZipfileLFH ZipfileLFH;
struct ZipfileLFH {
u16 iVersionExtract;
u16 flags;
u16 iCompression;
u16 mTime;
u16 mDate;
u32 crc32;
u32 szCompressed;
u32 szUncompressed;
u16 nFile;
u16 nExtra;
};
typedef struct ZipfileEntry ZipfileEntry;
struct ZipfileEntry {
ZipfileCDS cds; /* Parsed CDS record */
u32 mUnixTime; /* Modification time, in UNIX format */
u8 *aExtra; /* cds.nExtra+cds.nComment bytes of extra data */
i64 iDataOff; /* Offset to data in file (if aData==0) */
u8 *aData; /* cds.szCompressed bytes of compressed data */
ZipfileEntry *pNext; /* Next element in in-memory CDS */
};
/*
** Cursor type for zipfile tables.
*/
typedef struct ZipfileCsr ZipfileCsr;
struct ZipfileCsr {
sqlite3_vtab_cursor base; /* Base class - must be first */
i64 iId; /* Cursor ID */
u8 bEof; /* True when at EOF */
u8 bNoop; /* If next xNext() call is no-op */
/* Used outside of write transactions */
FILE *pFile; /* Zip file */
i64 iNextOff; /* Offset of next record in central directory */
ZipfileEOCD eocd; /* Parse of central directory record */
ZipfileEntry *pFreeEntry; /* Free this list when cursor is closed or reset */
ZipfileEntry *pCurrent; /* Current entry */
ZipfileCsr *pCsrNext; /* Next cursor on same virtual table */
};
typedef struct ZipfileTab ZipfileTab;
struct ZipfileTab {
sqlite3_vtab base; /* Base class - must be first */
char *zFile; /* Zip file this table accesses (may be NULL) */
sqlite3 *db; /* Host database connection */
u8 *aBuffer; /* Temporary buffer used for various tasks */
ZipfileCsr *pCsrList; /* List of cursors */
i64 iNextCsrid;
/* The following are used by write transactions only */
ZipfileEntry *pFirstEntry; /* Linked list of all files (if pWriteFd!=0) */
ZipfileEntry *pLastEntry; /* Last element in pFirstEntry list */
FILE *pWriteFd; /* File handle open on zip archive */
i64 szCurrent; /* Current size of zip archive */
i64 szOrig; /* Size of archive at start of transaction */
};
/*
** Set the error message contained in context ctx to the results of
** vprintf(zFmt, ...).
*/
static void zipfileCtxErrorMsg(sqlite3_context *ctx, const char *zFmt, ...){
char *zMsg = 0;
va_list ap;
va_start(ap, zFmt);
zMsg = sqlite3_vmprintf(zFmt, ap);
sqlite3_result_error(ctx, zMsg, -1);
sqlite3_free(zMsg);
va_end(ap);
}
/*
** If string zIn is quoted, dequote it in place. Otherwise, if the string
** is not quoted, do nothing.
*/
static void zipfileDequote(char *zIn){
char q = zIn[0];
if( q=='"' || q=='\'' || q=='`' || q=='[' ){
int iIn = 1;
int iOut = 0;
if( q=='[' ) q = ']';
while( ALWAYS(zIn[iIn]) ){
char c = zIn[iIn++];
if( c==q && zIn[iIn++]!=q ) break;
zIn[iOut++] = c;
}
zIn[iOut] = '\0';
}
}
/*
** Construct a new ZipfileTab virtual table object.
**
** argv[0] -> module name ("zipfile")
** argv[1] -> database name
** argv[2] -> table name
** argv[...] -> "column name" and other module argument fields.
*/
static int zipfileConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
int nByte = sizeof(ZipfileTab) + ZIPFILE_BUFFER_SIZE;
int nFile = 0;
const char *zFile = 0;
ZipfileTab *pNew = 0;
int rc;
(void)pAux;
/* If the table name is not "zipfile", require that the argument be
** specified. This stops zipfile tables from being created as:
**
** CREATE VIRTUAL TABLE zzz USING zipfile();
**
** It does not prevent:
**
** CREATE VIRTUAL TABLE zipfile USING zipfile();
*/
assert( 0==sqlite3_stricmp(argv[0], "zipfile") );
if( (0!=sqlite3_stricmp(argv[2], "zipfile") && argc<4) || argc>4 ){
*pzErr = sqlite3_mprintf("zipfile constructor requires one argument");
return SQLITE_ERROR;
}
if( argc>3 ){
zFile = argv[3];
nFile = (int)strlen(zFile)+1;
}
rc = sqlite3_declare_vtab(db, ZIPFILE_SCHEMA);
if( rc==SQLITE_OK ){
pNew = (ZipfileTab*)sqlite3_malloc64((sqlite3_int64)nByte+nFile);
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, nByte+nFile);
pNew->db = db;
pNew->aBuffer = (u8*)&pNew[1];
if( zFile ){
pNew->zFile = (char*)&pNew->aBuffer[ZIPFILE_BUFFER_SIZE];
memcpy(pNew->zFile, zFile, nFile);
zipfileDequote(pNew->zFile);
}
}
sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
*ppVtab = (sqlite3_vtab*)pNew;
return rc;
}
/*
** Free the ZipfileEntry structure indicated by the only argument.
*/
static void zipfileEntryFree(ZipfileEntry *p){
if( p ){
sqlite3_free(p->cds.zFile);
sqlite3_free(p);
}
}
/*
** Release resources that should be freed at the end of a write
** transaction.
*/
static void zipfileCleanupTransaction(ZipfileTab *pTab){
ZipfileEntry *pEntry;
ZipfileEntry *pNext;
if( pTab->pWriteFd ){
fclose(pTab->pWriteFd);
pTab->pWriteFd = 0;
}
for(pEntry=pTab->pFirstEntry; pEntry; pEntry=pNext){
pNext = pEntry->pNext;
zipfileEntryFree(pEntry);
}
pTab->pFirstEntry = 0;
pTab->pLastEntry = 0;
pTab->szCurrent = 0;
pTab->szOrig = 0;
}
/*
** This method is the destructor for zipfile vtab objects.
*/
static int zipfileDisconnect(sqlite3_vtab *pVtab){
zipfileCleanupTransaction((ZipfileTab*)pVtab);
sqlite3_free(pVtab);
return SQLITE_OK;
}
/*
** Constructor for a new ZipfileCsr object.
*/
static int zipfileOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCsr){
ZipfileTab *pTab = (ZipfileTab*)p;
ZipfileCsr *pCsr;
pCsr = sqlite3_malloc(sizeof(*pCsr));
*ppCsr = (sqlite3_vtab_cursor*)pCsr;
if( pCsr==0 ){
return SQLITE_NOMEM;
}
memset(pCsr, 0, sizeof(*pCsr));
pCsr->iId = ++pTab->iNextCsrid;
pCsr->pCsrNext = pTab->pCsrList;
pTab->pCsrList = pCsr;
return SQLITE_OK;
}
/*
** Reset a cursor back to the state it was in when first returned
** by zipfileOpen().
*/
static void zipfileResetCursor(ZipfileCsr *pCsr){
ZipfileEntry *p;
ZipfileEntry *pNext;
pCsr->bEof = 0;
if( pCsr->pFile ){
fclose(pCsr->pFile);
pCsr->pFile = 0;
zipfileEntryFree(pCsr->pCurrent);
pCsr->pCurrent = 0;
}
for(p=pCsr->pFreeEntry; p; p=pNext){
pNext = p->pNext;
zipfileEntryFree(p);
}
}
/*
** Destructor for an ZipfileCsr.
*/
static int zipfileClose(sqlite3_vtab_cursor *cur){
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
ZipfileTab *pTab = (ZipfileTab*)(pCsr->base.pVtab);
ZipfileCsr **pp;
zipfileResetCursor(pCsr);
/* Remove this cursor from the ZipfileTab.pCsrList list. */
for(pp=&pTab->pCsrList; *pp!=pCsr; pp=&((*pp)->pCsrNext));
*pp = pCsr->pCsrNext;
sqlite3_free(pCsr);
return SQLITE_OK;
}
/*
** Set the error message for the virtual table associated with cursor
** pCsr to the results of vprintf(zFmt, ...).
*/
static void zipfileTableErr(ZipfileTab *pTab, const char *zFmt, ...){
va_list ap;
va_start(ap, zFmt);
sqlite3_free(pTab->base.zErrMsg);
pTab->base.zErrMsg = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
}
static void zipfileCursorErr(ZipfileCsr *pCsr, const char *zFmt, ...){
va_list ap;
va_start(ap, zFmt);
sqlite3_free(pCsr->base.pVtab->zErrMsg);
pCsr->base.pVtab->zErrMsg = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
}
/*
** Read nRead bytes of data from offset iOff of file pFile into buffer
** aRead[]. Return SQLITE_OK if successful, or an SQLite error code
** otherwise.
**
** If an error does occur, output variable (*pzErrmsg) may be set to point
** to an English language error message. It is the responsibility of the
** caller to eventually free this buffer using
** sqlite3_free().
*/
static int zipfileReadData(
FILE *pFile, /* Read from this file */
u8 *aRead, /* Read into this buffer */
int nRead, /* Number of bytes to read */
i64 iOff, /* Offset to read from */
char **pzErrmsg /* OUT: Error message (from sqlite3_malloc) */
){
size_t n;
fseek(pFile, (long)iOff, SEEK_SET);
n = fread(aRead, 1, nRead, pFile);
if( (int)n!=nRead ){
*pzErrmsg = sqlite3_mprintf("error in fread()");
return SQLITE_ERROR;
}
return SQLITE_OK;
}
static int zipfileAppendData(
ZipfileTab *pTab,
const u8 *aWrite,
int nWrite
){
if( nWrite>0 ){
size_t n = nWrite;
fseek(pTab->pWriteFd, (long)pTab->szCurrent, SEEK_SET);
n = fwrite(aWrite, 1, nWrite, pTab->pWriteFd);
if( (int)n!=nWrite ){
pTab->base.zErrMsg = sqlite3_mprintf("error in fwrite()");
return SQLITE_ERROR;
}
pTab->szCurrent += nWrite;
}
return SQLITE_OK;
}
/*
** Read and return a 16-bit little-endian unsigned integer from buffer aBuf.
*/
static u16 zipfileGetU16(const u8 *aBuf){
return (aBuf[1] << 8) + aBuf[0];
}
/*
** Read and return a 32-bit little-endian unsigned integer from buffer aBuf.
*/
static u32 zipfileGetU32(const u8 *aBuf){
if( aBuf==0 ) return 0;
return ((u32)(aBuf[3]) << 24)
+ ((u32)(aBuf[2]) << 16)
+ ((u32)(aBuf[1]) << 8)
+ ((u32)(aBuf[0]) << 0);
}
/*
** Write a 16-bit little endiate integer into buffer aBuf.
*/
static void zipfilePutU16(u8 *aBuf, u16 val){
aBuf[0] = val & 0xFF;
aBuf[1] = (val>>8) & 0xFF;
}
/*
** Write a 32-bit little endiate integer into buffer aBuf.
*/
static void zipfilePutU32(u8 *aBuf, u32 val){
aBuf[0] = val & 0xFF;
aBuf[1] = (val>>8) & 0xFF;
aBuf[2] = (val>>16) & 0xFF;
aBuf[3] = (val>>24) & 0xFF;
}
#define zipfileRead32(aBuf) ( aBuf+=4, zipfileGetU32(aBuf-4) )
#define zipfileRead16(aBuf) ( aBuf+=2, zipfileGetU16(aBuf-2) )
#define zipfileWrite32(aBuf,val) { zipfilePutU32(aBuf,val); aBuf+=4; }
#define zipfileWrite16(aBuf,val) { zipfilePutU16(aBuf,val); aBuf+=2; }
/*
** Magic numbers used to read CDS records.
*/
#define ZIPFILE_CDS_NFILE_OFF 28
#define ZIPFILE_CDS_SZCOMPRESSED_OFF 20
/*
** Decode the CDS record in buffer aBuf into (*pCDS). Return SQLITE_ERROR
** if the record is not well-formed, or SQLITE_OK otherwise.
*/
static int zipfileReadCDS(u8 *aBuf, ZipfileCDS *pCDS){
u8 *aRead = aBuf;
u32 sig = zipfileRead32(aRead);
int rc = SQLITE_OK;
if( sig!=ZIPFILE_SIGNATURE_CDS ){
rc = SQLITE_ERROR;
}else{
pCDS->iVersionMadeBy = zipfileRead16(aRead);
pCDS->iVersionExtract = zipfileRead16(aRead);
pCDS->flags = zipfileRead16(aRead);
pCDS->iCompression = zipfileRead16(aRead);
pCDS->mTime = zipfileRead16(aRead);
pCDS->mDate = zipfileRead16(aRead);
pCDS->crc32 = zipfileRead32(aRead);
pCDS->szCompressed = zipfileRead32(aRead);
pCDS->szUncompressed = zipfileRead32(aRead);
assert( aRead==&aBuf[ZIPFILE_CDS_NFILE_OFF] );
pCDS->nFile = zipfileRead16(aRead);
pCDS->nExtra = zipfileRead16(aRead);
pCDS->nComment = zipfileRead16(aRead);
pCDS->iDiskStart = zipfileRead16(aRead);
pCDS->iInternalAttr = zipfileRead16(aRead);
pCDS->iExternalAttr = zipfileRead32(aRead);
pCDS->iOffset = zipfileRead32(aRead);
assert( aRead==&aBuf[ZIPFILE_CDS_FIXED_SZ] );
}
return rc;
}
/*
** Decode the LFH record in buffer aBuf into (*pLFH). Return SQLITE_ERROR
** if the record is not well-formed, or SQLITE_OK otherwise.
*/
static int zipfileReadLFH(
u8 *aBuffer,
ZipfileLFH *pLFH
){
u8 *aRead = aBuffer;
int rc = SQLITE_OK;
u32 sig = zipfileRead32(aRead);
if( sig!=ZIPFILE_SIGNATURE_LFH ){
rc = SQLITE_ERROR;
}else{
pLFH->iVersionExtract = zipfileRead16(aRead);
pLFH->flags = zipfileRead16(aRead);
pLFH->iCompression = zipfileRead16(aRead);
pLFH->mTime = zipfileRead16(aRead);
pLFH->mDate = zipfileRead16(aRead);
pLFH->crc32 = zipfileRead32(aRead);
pLFH->szCompressed = zipfileRead32(aRead);
pLFH->szUncompressed = zipfileRead32(aRead);
pLFH->nFile = zipfileRead16(aRead);
pLFH->nExtra = zipfileRead16(aRead);
}
return rc;
}
/*
** Buffer aExtra (size nExtra bytes) contains zip archive "extra" fields.
** Scan through this buffer to find an "extra-timestamp" field. If one
** exists, extract the 32-bit modification-timestamp from it and store
** the value in output parameter *pmTime.
**
** Zero is returned if no extra-timestamp record could be found (and so
** *pmTime is left unchanged), or non-zero otherwise.
**
** The general format of an extra field is:
**
** Header ID 2 bytes
** Data Size 2 bytes
** Data N bytes
*/
static int zipfileScanExtra(u8 *aExtra, int nExtra, u32 *pmTime){
int ret = 0;
u8 *p = aExtra;
u8 *pEnd = &aExtra[nExtra];
while( p<pEnd ){
u16 id = zipfileRead16(p);
u16 nByte = zipfileRead16(p);
switch( id ){
case ZIPFILE_EXTRA_TIMESTAMP: {
u8 b = p[0];
if( b & 0x01 ){ /* 0x01 -> modtime is present */
*pmTime = zipfileGetU32(&p[1]);
ret = 1;
}
break;
}
}
p += nByte;
}
return ret;
}
/*
** Convert the standard MS-DOS timestamp stored in the mTime and mDate
** fields of the CDS structure passed as the only argument to a 32-bit
** UNIX seconds-since-the-epoch timestamp. Return the result.
**
** "Standard" MS-DOS time format:
**
** File modification time:
** Bits 00-04: seconds divided by 2
** Bits 05-10: minute
** Bits 11-15: hour
** File modification date:
** Bits 00-04: day
** Bits 05-08: month (1-12)
** Bits 09-15: years from 1980
**
** https://msdn.microsoft.com/en-us/library/9kkf9tah.aspx
*/
static u32 zipfileMtime(ZipfileCDS *pCDS){
int Y,M,D,X1,X2,A,B,sec,min,hr;
i64 JDsec;
Y = (1980 + ((pCDS->mDate >> 9) & 0x7F));
M = ((pCDS->mDate >> 5) & 0x0F);
D = (pCDS->mDate & 0x1F);
sec = (pCDS->mTime & 0x1F)*2;
min = (pCDS->mTime >> 5) & 0x3F;
hr = (pCDS->mTime >> 11) & 0x1F;
if( M<=2 ){
Y--;
M += 12;
}
X1 = 36525*(Y+4716)/100;
X2 = 306001*(M+1)/10000;
A = Y/100;
B = 2 - A + (A/4);
JDsec = (i64)((X1 + X2 + D + B - 1524.5)*86400) + hr*3600 + min*60 + sec;
return (u32)(JDsec - (i64)24405875*(i64)8640);
}
/*
** The opposite of zipfileMtime(). This function populates the mTime and
** mDate fields of the CDS structure passed as the first argument according
** to the UNIX timestamp value passed as the second.
*/
static void zipfileMtimeToDos(ZipfileCDS *pCds, u32 mUnixTime){
/* Convert unix timestamp to JD (2440588 is noon on 1/1/1970) */
i64 JD = (i64)2440588 + mUnixTime / (24*60*60);
int A, B, C, D, E;
int yr, mon, day;
int hr, min, sec;
A = (int)((JD - 1867216.25)/36524.25);
A = (int)(JD + 1 + A - (A/4));
B = A + 1524;
C = (int)((B - 122.1)/365.25);
D = (36525*(C&32767))/100;
E = (int)((B-D)/30.6001);
day = B - D - (int)(30.6001*E);
mon = (E<14 ? E-1 : E-13);
yr = mon>2 ? C-4716 : C-4715;
hr = (mUnixTime % (24*60*60)) / (60*60);
min = (mUnixTime % (60*60)) / 60;
sec = (mUnixTime % 60);
if( yr>=1980 ){
pCds->mDate = (u16)(day + (mon << 5) + ((yr-1980) << 9));
pCds->mTime = (u16)(sec/2 + (min<<5) + (hr<<11));
}else{
pCds->mDate = pCds->mTime = 0;
}
assert( mUnixTime<315507600
|| mUnixTime==zipfileMtime(pCds)
|| ((mUnixTime % 2) && mUnixTime-1==zipfileMtime(pCds))
/* || (mUnixTime % 2) */
);
}
/*
** If aBlob is not NULL, then it is a pointer to a buffer (nBlob bytes in
** size) containing an entire zip archive image. Or, if aBlob is NULL,
** then pFile is a file-handle open on a zip file. In either case, this
** function creates a ZipfileEntry object based on the zip archive entry
** for which the CDS record is at offset iOff.
**
** If successful, SQLITE_OK is returned and (*ppEntry) set to point to
** the new object. Otherwise, an SQLite error code is returned and the
** final value of (*ppEntry) undefined.
*/
static int zipfileGetEntry(
ZipfileTab *pTab, /* Store any error message here */
const u8 *aBlob, /* Pointer to in-memory file image */
int nBlob, /* Size of aBlob[] in bytes */
FILE *pFile, /* If aBlob==0, read from this file */
i64 iOff, /* Offset of CDS record */
ZipfileEntry **ppEntry /* OUT: Pointer to new object */
){
u8 *aRead;
char **pzErr = &pTab->base.zErrMsg;
int rc = SQLITE_OK;
(void)nBlob;
if( aBlob==0 ){
aRead = pTab->aBuffer;
rc = zipfileReadData(pFile, aRead, ZIPFILE_CDS_FIXED_SZ, iOff, pzErr);
}else{
aRead = (u8*)&aBlob[iOff];
}
if( rc==SQLITE_OK ){
sqlite3_int64 nAlloc;
ZipfileEntry *pNew;
int nFile = zipfileGetU16(&aRead[ZIPFILE_CDS_NFILE_OFF]);
int nExtra = zipfileGetU16(&aRead[ZIPFILE_CDS_NFILE_OFF+2]);
nExtra += zipfileGetU16(&aRead[ZIPFILE_CDS_NFILE_OFF+4]);
nAlloc = sizeof(ZipfileEntry) + nExtra;
if( aBlob ){
nAlloc += zipfileGetU32(&aRead[ZIPFILE_CDS_SZCOMPRESSED_OFF]);
}
pNew = (ZipfileEntry*)sqlite3_malloc64(nAlloc);
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pNew, 0, sizeof(ZipfileEntry));
rc = zipfileReadCDS(aRead, &pNew->cds);
if( rc!=SQLITE_OK ){
*pzErr = sqlite3_mprintf("failed to read CDS at offset %lld", iOff);
}else if( aBlob==0 ){
rc = zipfileReadData(
pFile, aRead, nExtra+nFile, iOff+ZIPFILE_CDS_FIXED_SZ, pzErr
);
}else{
aRead = (u8*)&aBlob[iOff + ZIPFILE_CDS_FIXED_SZ];
}
}
if( rc==SQLITE_OK ){
u32 *pt = &pNew->mUnixTime;
pNew->cds.zFile = sqlite3_mprintf("%.*s", nFile, aRead);
pNew->aExtra = (u8*)&pNew[1];
memcpy(pNew->aExtra, &aRead[nFile], nExtra);
if( pNew->cds.zFile==0 ){
rc = SQLITE_NOMEM;
}else if( 0==zipfileScanExtra(&aRead[nFile], pNew->cds.nExtra, pt) ){
pNew->mUnixTime = zipfileMtime(&pNew->cds);
}
}
if( rc==SQLITE_OK ){
static const int szFix = ZIPFILE_LFH_FIXED_SZ;
ZipfileLFH lfh;
if( pFile ){
rc = zipfileReadData(pFile, aRead, szFix, pNew->cds.iOffset, pzErr);
}else{
aRead = (u8*)&aBlob[pNew->cds.iOffset];
}
if( rc==SQLITE_OK ) rc = zipfileReadLFH(aRead, &lfh);
if( rc==SQLITE_OK ){
pNew->iDataOff = pNew->cds.iOffset + ZIPFILE_LFH_FIXED_SZ;
pNew->iDataOff += lfh.nFile + lfh.nExtra;
if( aBlob && pNew->cds.szCompressed ){
pNew->aData = &pNew->aExtra[nExtra];
memcpy(pNew->aData, &aBlob[pNew->iDataOff], pNew->cds.szCompressed);
}
}else{
*pzErr = sqlite3_mprintf("failed to read LFH at offset %d",
(int)pNew->cds.iOffset
);
}
}
if( rc!=SQLITE_OK ){
zipfileEntryFree(pNew);
}else{
*ppEntry = pNew;
}
}
return rc;
}
/*
** Advance an ZipfileCsr to its next row of output.
*/
static int zipfileNext(sqlite3_vtab_cursor *cur){
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
int rc = SQLITE_OK;
if( pCsr->pFile ){
i64 iEof = pCsr->eocd.iOffset + pCsr->eocd.nSize;
zipfileEntryFree(pCsr->pCurrent);
pCsr->pCurrent = 0;
if( pCsr->iNextOff>=iEof ){
pCsr->bEof = 1;
}else{
ZipfileEntry *p = 0;
ZipfileTab *pTab = (ZipfileTab*)(cur->pVtab);
rc = zipfileGetEntry(pTab, 0, 0, pCsr->pFile, pCsr->iNextOff, &p);
if( rc==SQLITE_OK ){
pCsr->iNextOff += ZIPFILE_CDS_FIXED_SZ;
pCsr->iNextOff += (int)p->cds.nExtra + p->cds.nFile + p->cds.nComment;
}
pCsr->pCurrent = p;
}
}else{
if( !pCsr->bNoop ){
pCsr->pCurrent = pCsr->pCurrent->pNext;
}
if( pCsr->pCurrent==0 ){
pCsr->bEof = 1;
}
}
pCsr->bNoop = 0;
return rc;
}
static void zipfileFree(void *p) {
sqlite3_free(p);
}
/*
** Buffer aIn (size nIn bytes) contains compressed data. Uncompressed, the
** size is nOut bytes. This function uncompresses the data and sets the
** return value in context pCtx to the result (a blob).
**
** If an error occurs, an error code is left in pCtx instead.
*/
static void zipfileInflate(
sqlite3_context *pCtx, /* Store result here */
const u8 *aIn, /* Compressed data */
int nIn, /* Size of buffer aIn[] in bytes */
int nOut /* Expected output size */
){
u8 *aRes = sqlite3_malloc(nOut);
if( aRes==0 ){
sqlite3_result_error_nomem(pCtx);
}else{
int err;
z_stream str;
memset(&str, 0, sizeof(str));
str.next_in = (Byte*)aIn;
str.avail_in = nIn;
str.next_out = (Byte*)aRes;
str.avail_out = nOut;
err = inflateInit2(&str, -15);
if( err!=Z_OK ){
zipfileCtxErrorMsg(pCtx, "inflateInit2() failed (%d)", err);
}else{
err = inflate(&str, Z_NO_FLUSH);
if( err!=Z_STREAM_END ){
zipfileCtxErrorMsg(pCtx, "inflate() failed (%d)", err);
}else{
sqlite3_result_blob(pCtx, aRes, nOut, zipfileFree);
aRes = 0;
}
}
sqlite3_free(aRes);
inflateEnd(&str);
}
}
/*
** Buffer aIn (size nIn bytes) contains uncompressed data. This function
** compresses it and sets (*ppOut) to point to a buffer containing the
** compressed data. The caller is responsible for eventually calling
** sqlite3_free() to release buffer (*ppOut). Before returning, (*pnOut)
** is set to the size of buffer (*ppOut) in bytes.
**
** If no error occurs, SQLITE_OK is returned. Otherwise, an SQLite error
** code is returned and an error message left in virtual-table handle
** pTab. The values of (*ppOut) and (*pnOut) are left unchanged in this
** case.
*/
static int zipfileDeflate(
const u8 *aIn, int nIn, /* Input */
u8 **ppOut, int *pnOut, /* Output */
char **pzErr /* OUT: Error message */
){
int rc = SQLITE_OK;
sqlite3_int64 nAlloc;
z_stream str;
u8 *aOut;
memset(&str, 0, sizeof(str));
str.next_in = (Bytef*)aIn;
str.avail_in = nIn;
deflateInit2(&str, 9, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
nAlloc = deflateBound(&str, nIn);
aOut = (u8*)sqlite3_malloc64(nAlloc);
if( aOut==0 ){
rc = SQLITE_NOMEM;
}else{
int res;
str.next_out = aOut;
str.avail_out = nAlloc;
res = deflate(&str, Z_FINISH);
if( res==Z_STREAM_END ){
*ppOut = aOut;
*pnOut = (int)str.total_out;
}else{
sqlite3_free(aOut);
*pzErr = sqlite3_mprintf("zipfile: deflate() error");
rc = SQLITE_ERROR;
}
deflateEnd(&str);
}
return rc;
}
/*
** Return values of columns for the row at which the series_cursor
** is currently pointing.
*/
static int zipfileColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int i /* Which column to return */
){
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
ZipfileCDS *pCDS = &pCsr->pCurrent->cds;
int rc = SQLITE_OK;
switch( i ){
case 0: /* name */
sqlite3_result_text(ctx, pCDS->zFile, -1, SQLITE_TRANSIENT);
break;
case 1: /* mode */
/* TODO: Whether or not the following is correct surely depends on
** the platform on which the archive was created. */
sqlite3_result_int(ctx, pCDS->iExternalAttr >> 16);
break;
case 2: { /* mtime */
sqlite3_result_int64(ctx, pCsr->pCurrent->mUnixTime);
break;
}
case 3: { /* sz */
if( sqlite3_vtab_nochange(ctx)==0 ){
sqlite3_result_int64(ctx, pCDS->szUncompressed);
}
break;
}
case 4: /* rawdata */
if( sqlite3_vtab_nochange(ctx) ) break;
case 5: { /* data */
if( i==4 || pCDS->iCompression==0 || pCDS->iCompression==8 ){
int sz = pCDS->szCompressed;
int szFinal = pCDS->szUncompressed;
if( szFinal>0 ){
u8 *aBuf;
u8 *aFree = 0;
if( pCsr->pCurrent->aData ){
aBuf = pCsr->pCurrent->aData;
}else{
aBuf = aFree = sqlite3_malloc64(sz);
if( aBuf==0 ){
rc = SQLITE_NOMEM;
}else{
FILE *pFile = pCsr->pFile;
if( pFile==0 ){
pFile = ((ZipfileTab*)(pCsr->base.pVtab))->pWriteFd;
}
rc = zipfileReadData(pFile, aBuf, sz, pCsr->pCurrent->iDataOff,
&pCsr->base.pVtab->zErrMsg
);
}
}
if( rc==SQLITE_OK ){
if( i==5 && pCDS->iCompression ){
zipfileInflate(ctx, aBuf, sz, szFinal);
}else{
sqlite3_result_blob(ctx, aBuf, sz, SQLITE_TRANSIENT);
}
}
sqlite3_free(aFree);
}else{
/* Figure out if this is a directory or a zero-sized file. Consider
** it to be a directory either if the mode suggests so, or if
** the final character in the name is '/'. */
u32 mode = pCDS->iExternalAttr >> 16;
if( !(mode & S_IFDIR)
&& pCDS->nFile>=1
&& pCDS->zFile[pCDS->nFile-1]!='/'
){
sqlite3_result_blob(ctx, "", 0, SQLITE_STATIC);
}
}
}
break;
}
case 6: /* method */
sqlite3_result_int(ctx, pCDS->iCompression);
break;
default: /* z */
assert( i==7 );
sqlite3_result_int64(ctx, pCsr->iId);
break;
}
return rc;
}
/*
** Return TRUE if the cursor is at EOF.
*/
static int zipfileEof(sqlite3_vtab_cursor *cur){
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
return pCsr->bEof;
}
/*
** If aBlob is not NULL, then it points to a buffer nBlob bytes in size
** containing an entire zip archive image. Or, if aBlob is NULL, then pFile
** is guaranteed to be a file-handle open on a zip file.
**
** This function attempts to locate the EOCD record within the zip archive
** and populate *pEOCD with the results of decoding it. SQLITE_OK is
** returned if successful. Otherwise, an SQLite error code is returned and
** an English language error message may be left in virtual-table pTab.
*/
static int zipfileReadEOCD(
ZipfileTab *pTab, /* Return errors here */
const u8 *aBlob, /* Pointer to in-memory file image */
int nBlob, /* Size of aBlob[] in bytes */
FILE *pFile, /* Read from this file if aBlob==0 */
ZipfileEOCD *pEOCD /* Object to populate */
){
u8 *aRead = pTab->aBuffer; /* Temporary buffer */
int nRead; /* Bytes to read from file */
int rc = SQLITE_OK;
memset(pEOCD, 0, sizeof(ZipfileEOCD));
if( aBlob==0 ){
i64 iOff; /* Offset to read from */
i64 szFile; /* Total size of file in bytes */
fseek(pFile, 0, SEEK_END);
szFile = (i64)ftell(pFile);
if( szFile==0 ){
return SQLITE_OK;
}
nRead = (int)(MIN(szFile, ZIPFILE_BUFFER_SIZE));
iOff = szFile - nRead;
rc = zipfileReadData(pFile, aRead, nRead, iOff, &pTab->base.zErrMsg);
}else{
nRead = (int)(MIN(nBlob, ZIPFILE_BUFFER_SIZE));
aRead = (u8*)&aBlob[nBlob-nRead];
}
if( rc==SQLITE_OK ){
int i;
/* Scan backwards looking for the signature bytes */
for(i=nRead-20; i>=0; i--){
if( aRead[i]==0x50 && aRead[i+1]==0x4b
&& aRead[i+2]==0x05 && aRead[i+3]==0x06
){
break;
}
}
if( i<0 ){
pTab->base.zErrMsg = sqlite3_mprintf(
"cannot find end of central directory record"
);
return SQLITE_ERROR;
}
aRead += i+4;
pEOCD->iDisk = zipfileRead16(aRead);
pEOCD->iFirstDisk = zipfileRead16(aRead);
pEOCD->nEntry = zipfileRead16(aRead);
pEOCD->nEntryTotal = zipfileRead16(aRead);
pEOCD->nSize = zipfileRead32(aRead);
pEOCD->iOffset = zipfileRead32(aRead);
}
return rc;
}
/*
** Add object pNew to the linked list that begins at ZipfileTab.pFirstEntry
** and ends with pLastEntry. If argument pBefore is NULL, then pNew is added
** to the end of the list. Otherwise, it is added to the list immediately
** before pBefore (which is guaranteed to be a part of said list).
*/
static void zipfileAddEntry(
ZipfileTab *pTab,
ZipfileEntry *pBefore,
ZipfileEntry *pNew
){
assert( (pTab->pFirstEntry==0)==(pTab->pLastEntry==0) );
assert( pNew->pNext==0 );
if( pBefore==0 ){
if( pTab->pFirstEntry==0 ){
pTab->pFirstEntry = pTab->pLastEntry = pNew;
}else{
assert( pTab->pLastEntry->pNext==0 );
pTab->pLastEntry->pNext = pNew;
pTab->pLastEntry = pNew;
}
}else{
ZipfileEntry **pp;
for(pp=&pTab->pFirstEntry; *pp!=pBefore; pp=&((*pp)->pNext));
pNew->pNext = pBefore;
*pp = pNew;
}
}
static int zipfileLoadDirectory(ZipfileTab *pTab, const u8 *aBlob, int nBlob){
ZipfileEOCD eocd;
int rc;
int i;
i64 iOff;
rc = zipfileReadEOCD(pTab, aBlob, nBlob, pTab->pWriteFd, &eocd);
iOff = eocd.iOffset;
for(i=0; rc==SQLITE_OK && i<eocd.nEntry; i++){
ZipfileEntry *pNew = 0;
rc = zipfileGetEntry(pTab, aBlob, nBlob, pTab->pWriteFd, iOff, &pNew);
if( rc==SQLITE_OK ){
zipfileAddEntry(pTab, 0, pNew);
iOff += ZIPFILE_CDS_FIXED_SZ;
iOff += (int)pNew->cds.nExtra + pNew->cds.nFile + pNew->cds.nComment;
}
}
return rc;
}
/*
** xFilter callback.
*/
static int zipfileFilter(
sqlite3_vtab_cursor *cur,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
ZipfileTab *pTab = (ZipfileTab*)cur->pVtab;
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
const char *zFile = 0; /* Zip file to scan */
int rc = SQLITE_OK; /* Return Code */
int bInMemory = 0; /* True for an in-memory zipfile */
(void)idxStr;
(void)argc;
zipfileResetCursor(pCsr);
if( pTab->zFile ){
zFile = pTab->zFile;
}else if( idxNum==0 ){
zipfileCursorErr(pCsr, "zipfile() function requires an argument");
return SQLITE_ERROR;
}else if( sqlite3_value_type(argv[0])==SQLITE_BLOB ){
static const u8 aEmptyBlob = 0;
const u8 *aBlob = (const u8*)sqlite3_value_blob(argv[0]);
int nBlob = sqlite3_value_bytes(argv[0]);
assert( pTab->pFirstEntry==0 );
if( aBlob==0 ){
aBlob = &aEmptyBlob;
nBlob = 0;
}
rc = zipfileLoadDirectory(pTab, aBlob, nBlob);
pCsr->pFreeEntry = pTab->pFirstEntry;
pTab->pFirstEntry = pTab->pLastEntry = 0;
if( rc!=SQLITE_OK ) return rc;
bInMemory = 1;
}else{
zFile = (const char*)sqlite3_value_text(argv[0]);
}
if( 0==pTab->pWriteFd && 0==bInMemory ){
pCsr->pFile = zFile ? fopen(zFile, "rb") : 0;
if( pCsr->pFile==0 ){
zipfileCursorErr(pCsr, "cannot open file: %s", zFile);
rc = SQLITE_ERROR;
}else{
rc = zipfileReadEOCD(pTab, 0, 0, pCsr->pFile, &pCsr->eocd);
if( rc==SQLITE_OK ){
if( pCsr->eocd.nEntry==0 ){
pCsr->bEof = 1;
}else{
pCsr->iNextOff = pCsr->eocd.iOffset;
rc = zipfileNext(cur);
}
}
}
}else{
pCsr->bNoop = 1;
pCsr->pCurrent = pCsr->pFreeEntry ? pCsr->pFreeEntry : pTab->pFirstEntry;
rc = zipfileNext(cur);
}
return rc;
}
/*
** xBestIndex callback.
*/
static int zipfileBestIndex(
sqlite3_vtab *tab,
sqlite3_index_info *pIdxInfo
){
int i;
int idx = -1;
int unusable = 0;
(void)tab;
for(i=0; i<pIdxInfo->nConstraint; i++){
const struct sqlite3_index_constraint *pCons = &pIdxInfo->aConstraint[i];
if( pCons->iColumn!=ZIPFILE_F_COLUMN_IDX ) continue;
if( pCons->usable==0 ){
unusable = 1;
}else if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){
idx = i;
}
}
pIdxInfo->estimatedCost = 1000.0;
if( idx>=0 ){
pIdxInfo->aConstraintUsage[idx].argvIndex = 1;
pIdxInfo->aConstraintUsage[idx].omit = 1;
pIdxInfo->idxNum = 1;
}else if( unusable ){
return SQLITE_CONSTRAINT;
}
return SQLITE_OK;
}
static ZipfileEntry *zipfileNewEntry(const char *zPath){
ZipfileEntry *pNew;
pNew = sqlite3_malloc(sizeof(ZipfileEntry));
if( pNew ){
memset(pNew, 0, sizeof(ZipfileEntry));
pNew->cds.zFile = sqlite3_mprintf("%s", zPath);
if( pNew->cds.zFile==0 ){
sqlite3_free(pNew);
pNew = 0;
}
}
return pNew;
}
static int zipfileSerializeLFH(ZipfileEntry *pEntry, u8 *aBuf){
ZipfileCDS *pCds = &pEntry->cds;
u8 *a = aBuf;
pCds->nExtra = 9;
/* Write the LFH itself */
zipfileWrite32(a, ZIPFILE_SIGNATURE_LFH);
zipfileWrite16(a, pCds->iVersionExtract);
zipfileWrite16(a, pCds->flags);
zipfileWrite16(a, pCds->iCompression);
zipfileWrite16(a, pCds->mTime);
zipfileWrite16(a, pCds->mDate);
zipfileWrite32(a, pCds->crc32);
zipfileWrite32(a, pCds->szCompressed);
zipfileWrite32(a, pCds->szUncompressed);
zipfileWrite16(a, (u16)pCds->nFile);
zipfileWrite16(a, pCds->nExtra);
assert( a==&aBuf[ZIPFILE_LFH_FIXED_SZ] );
/* Add the file name */
memcpy(a, pCds->zFile, (int)pCds->nFile);
a += (int)pCds->nFile;
/* The "extra" data */
zipfileWrite16(a, ZIPFILE_EXTRA_TIMESTAMP);
zipfileWrite16(a, 5);
*a++ = 0x01;
zipfileWrite32(a, pEntry->mUnixTime);
return a-aBuf;
}
static int zipfileAppendEntry(
ZipfileTab *pTab,
ZipfileEntry *pEntry,
const u8 *pData,
int nData
){
u8 *aBuf = pTab->aBuffer;
int nBuf;
int rc;
nBuf = zipfileSerializeLFH(pEntry, aBuf);
rc = zipfileAppendData(pTab, aBuf, nBuf);
if( rc==SQLITE_OK ){
pEntry->iDataOff = pTab->szCurrent;
rc = zipfileAppendData(pTab, pData, nData);
}
return rc;
}
static int zipfileGetMode(
sqlite3_value *pVal,
int bIsDir, /* If true, default to directory */
u32 *pMode, /* OUT: Mode value */
char **pzErr /* OUT: Error message */
){
const char *z = (const char*)sqlite3_value_text(pVal);
u32 mode = 0;
if( z==0 ){
mode = (bIsDir ? (S_IFDIR + 0755) : (S_IFREG + 0644));
}else if( z[0]>='0' && z[0]<='9' ){
mode = (unsigned int)sqlite3_value_int(pVal);
}else{
const char zTemplate[11] = "-rwxrwxrwx";
int i;
if( strlen(z)!=10 ) goto parse_error;
switch( z[0] ){
case '-': mode |= S_IFREG; break;
case 'd': mode |= S_IFDIR; break;
case 'l': mode |= S_IFLNK; break;
default: goto parse_error;
}
for(i=1; i<10; i++){
if( z[i]==zTemplate[i] ) mode |= 1 << (9-i);
else if( z[i]!='-' ) goto parse_error;
}
}
if( ((mode & S_IFDIR)==0)==bIsDir ){
/* The "mode" attribute is a directory, but data has been specified.
** Or vice-versa - no data but "mode" is a file or symlink. */
*pzErr = sqlite3_mprintf("zipfile: mode does not match data");
return SQLITE_CONSTRAINT;
}
*pMode = mode;
return SQLITE_OK;
parse_error:
*pzErr = sqlite3_mprintf("zipfile: parse error in mode: %s", z);
return SQLITE_ERROR;
}
/*
** Both (const char*) arguments point to nul-terminated strings. Argument
** nB is the value of strlen(zB). This function returns 0 if the strings are
** identical, ignoring any trailing '/' character in either path. */
static int zipfileComparePath(const char *zA, const char *zB, int nB){
int nA = (int)strlen(zA);
if( nA>0 && zA[nA-1]=='/' ) nA--;
if( nB>0 && zB[nB-1]=='/' ) nB--;
if( nA==nB && memcmp(zA, zB, nA)==0 ) return 0;
return 1;
}
static int zipfileBegin(sqlite3_vtab *pVtab){
ZipfileTab *pTab = (ZipfileTab*)pVtab;
int rc = SQLITE_OK;
assert( pTab->pWriteFd==0 );
if( pTab->zFile==0 || pTab->zFile[0]==0 ){
pTab->base.zErrMsg = sqlite3_mprintf("zipfile: missing filename");
return SQLITE_ERROR;
}
/* Open a write fd on the file. Also load the entire central directory
** structure into memory. During the transaction any new file data is
** appended to the archive file, but the central directory is accumulated
** in main-memory until the transaction is committed. */
pTab->pWriteFd = fopen(pTab->zFile, "ab+");
if( pTab->pWriteFd==0 ){
pTab->base.zErrMsg = sqlite3_mprintf(
"zipfile: failed to open file %s for writing", pTab->zFile
);
rc = SQLITE_ERROR;
}else{
fseek(pTab->pWriteFd, 0, SEEK_END);
pTab->szCurrent = pTab->szOrig = (i64)ftell(pTab->pWriteFd);
rc = zipfileLoadDirectory(pTab, 0, 0);
}
if( rc!=SQLITE_OK ){
zipfileCleanupTransaction(pTab);
}
return rc;
}
/*
** Return the current time as a 32-bit timestamp in UNIX epoch format (like
** time(2)).
*/
static u32 zipfileTime(void){
sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
u32 ret;
if( pVfs==0 ) return 0;
if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){
i64 ms;
pVfs->xCurrentTimeInt64(pVfs, &ms);
ret = (u32)((ms/1000) - ((i64)24405875 * 8640));
}else{
double day;
pVfs->xCurrentTime(pVfs, &day);
ret = (u32)((day - 2440587.5) * 86400);
}
return ret;
}
/*
** Return a 32-bit timestamp in UNIX epoch format.
**
** If the value passed as the only argument is either NULL or an SQL NULL,
** return the current time. Otherwise, return the value stored in (*pVal)
** cast to a 32-bit unsigned integer.
*/
static u32 zipfileGetTime(sqlite3_value *pVal){
if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){
return zipfileTime();
}
return (u32)sqlite3_value_int64(pVal);
}
/*
** Unless it is NULL, entry pOld is currently part of the pTab->pFirstEntry
** linked list. Remove it from the list and free the object.
*/
static void zipfileRemoveEntryFromList(ZipfileTab *pTab, ZipfileEntry *pOld){
if( pOld ){
if( pTab->pFirstEntry==pOld ){
pTab->pFirstEntry = pOld->pNext;
if( pTab->pLastEntry==pOld ) pTab->pLastEntry = 0;
}else{
ZipfileEntry *p;
for(p=pTab->pFirstEntry; p; p=p->pNext){
if( p->pNext==pOld ){
p->pNext = pOld->pNext;
if( pTab->pLastEntry==pOld ) pTab->pLastEntry = p;
break;
}
}
}
zipfileEntryFree(pOld);
}
}
/*
** xUpdate method.
*/
static int zipfileUpdate(
sqlite3_vtab *pVtab,
int nVal,
sqlite3_value **apVal,
sqlite_int64 *pRowid
){
ZipfileTab *pTab = (ZipfileTab*)pVtab;
int rc = SQLITE_OK; /* Return Code */
ZipfileEntry *pNew = 0; /* New in-memory CDS entry */
u32 mode = 0; /* Mode for new entry */
u32 mTime = 0; /* Modification time for new entry */
i64 sz = 0; /* Uncompressed size */
const char *zPath = 0; /* Path for new entry */
int nPath = 0; /* strlen(zPath) */
const u8 *pData = 0; /* Pointer to buffer containing content */
int nData = 0; /* Size of pData buffer in bytes */
int iMethod = 0; /* Compression method for new entry */
u8 *pFree = 0; /* Free this */
char *zFree = 0; /* Also free this */
ZipfileEntry *pOld = 0;
ZipfileEntry *pOld2 = 0;
int bUpdate = 0; /* True for an update that modifies "name" */
int bIsDir = 0;
u32 iCrc32 = 0;
(void)pRowid;
if( pTab->pWriteFd==0 ){
rc = zipfileBegin(pVtab);
if( rc!=SQLITE_OK ) return rc;
}
/* If this is a DELETE or UPDATE, find the archive entry to delete. */
if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
const char *zDelete = (const char*)sqlite3_value_text(apVal[0]);
int nDelete = (int)strlen(zDelete);
if( nVal>1 ){
const char *zUpdate = (const char*)sqlite3_value_text(apVal[1]);
if( zUpdate && zipfileComparePath(zUpdate, zDelete, nDelete)!=0 ){
bUpdate = 1;
}
}
for(pOld=pTab->pFirstEntry; 1; pOld=pOld->pNext){
if( zipfileComparePath(pOld->cds.zFile, zDelete, nDelete)==0 ){
break;
}
assert( pOld->pNext );
}
}
if( nVal>1 ){
/* Check that "sz" and "rawdata" are both NULL: */
if( sqlite3_value_type(apVal[5])!=SQLITE_NULL ){
zipfileTableErr(pTab, "sz must be NULL");
rc = SQLITE_CONSTRAINT;
}
if( sqlite3_value_type(apVal[6])!=SQLITE_NULL ){
zipfileTableErr(pTab, "rawdata must be NULL");
rc = SQLITE_CONSTRAINT;
}
if( rc==SQLITE_OK ){
if( sqlite3_value_type(apVal[7])==SQLITE_NULL ){
/* data=NULL. A directory */
bIsDir = 1;
}else{
/* Value specified for "data", and possibly "method". This must be
** a regular file or a symlink. */
const u8 *aIn = sqlite3_value_blob(apVal[7]);
int nIn = sqlite3_value_bytes(apVal[7]);
int bAuto = sqlite3_value_type(apVal[8])==SQLITE_NULL;
iMethod = sqlite3_value_int(apVal[8]);
sz = nIn;
pData = aIn;
nData = nIn;
if( iMethod!=0 && iMethod!=8 ){
zipfileTableErr(pTab, "unknown compression method: %d", iMethod);
rc = SQLITE_CONSTRAINT;
}else{
if( bAuto || iMethod ){
int nCmp;
rc = zipfileDeflate(aIn, nIn, &pFree, &nCmp, &pTab->base.zErrMsg);
if( rc==SQLITE_OK ){
if( iMethod || nCmp<nIn ){
iMethod = 8;
pData = pFree;
nData = nCmp;
}
}
}
iCrc32 = crc32(0, aIn, nIn);
}
}
}
if( rc==SQLITE_OK ){
rc = zipfileGetMode(apVal[3], bIsDir, &mode, &pTab->base.zErrMsg);
}
if( rc==SQLITE_OK ){
zPath = (const char*)sqlite3_value_text(apVal[2]);
if( zPath==0 ) zPath = "";
nPath = (int)strlen(zPath);
mTime = zipfileGetTime(apVal[4]);
}
if( rc==SQLITE_OK && bIsDir ){
/* For a directory, check that the last character in the path is a
** '/'. This appears to be required for compatibility with info-zip
** (the unzip command on unix). It does not create directories
** otherwise. */
if( nPath<=0 || zPath[nPath-1]!='/' ){
zFree = sqlite3_mprintf("%s/", zPath);
zPath = (const char*)zFree;
if( zFree==0 ){
rc = SQLITE_NOMEM;
nPath = 0;
}else{
nPath = (int)strlen(zPath);
}
}
}
/* Check that we're not inserting a duplicate entry -OR- updating an
** entry with a path, thereby making it into a duplicate. */
if( (pOld==0 || bUpdate) && rc==SQLITE_OK ){
ZipfileEntry *p;
for(p=pTab->pFirstEntry; p; p=p->pNext){
if( zipfileComparePath(p->cds.zFile, zPath, nPath)==0 ){
switch( sqlite3_vtab_on_conflict(pTab->db) ){
case SQLITE_IGNORE: {
goto zipfile_update_done;
}
case SQLITE_REPLACE: {
pOld2 = p;
break;
}
default: {
zipfileTableErr(pTab, "duplicate name: \"%s\"", zPath);
rc = SQLITE_CONSTRAINT;
break;
}
}
break;
}
}
}
if( rc==SQLITE_OK ){
/* Create the new CDS record. */
pNew = zipfileNewEntry(zPath);
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
pNew->cds.iVersionMadeBy = ZIPFILE_NEWENTRY_MADEBY;
pNew->cds.iVersionExtract = ZIPFILE_NEWENTRY_REQUIRED;
pNew->cds.flags = ZIPFILE_NEWENTRY_FLAGS;
pNew->cds.iCompression = (u16)iMethod;
zipfileMtimeToDos(&pNew->cds, mTime);
pNew->cds.crc32 = iCrc32;
pNew->cds.szCompressed = nData;
pNew->cds.szUncompressed = (u32)sz;
pNew->cds.iExternalAttr = (mode<<16);
pNew->cds.iOffset = (u32)pTab->szCurrent;
pNew->cds.nFile = (u16)nPath;
pNew->mUnixTime = (u32)mTime;
rc = zipfileAppendEntry(pTab, pNew, pData, nData);
zipfileAddEntry(pTab, pOld, pNew);
}
}
}
if( rc==SQLITE_OK && (pOld || pOld2) ){
ZipfileCsr *pCsr;
for(pCsr=pTab->pCsrList; pCsr; pCsr=pCsr->pCsrNext){
if( pCsr->pCurrent && (pCsr->pCurrent==pOld || pCsr->pCurrent==pOld2) ){
pCsr->pCurrent = pCsr->pCurrent->pNext;
pCsr->bNoop = 1;
}
}
zipfileRemoveEntryFromList(pTab, pOld);
zipfileRemoveEntryFromList(pTab, pOld2);
}
zipfile_update_done:
sqlite3_free(pFree);
sqlite3_free(zFree);
return rc;
}
static int zipfileSerializeEOCD(ZipfileEOCD *p, u8 *aBuf){
u8 *a = aBuf;
zipfileWrite32(a, ZIPFILE_SIGNATURE_EOCD);
zipfileWrite16(a, p->iDisk);
zipfileWrite16(a, p->iFirstDisk);
zipfileWrite16(a, p->nEntry);
zipfileWrite16(a, p->nEntryTotal);
zipfileWrite32(a, p->nSize);
zipfileWrite32(a, p->iOffset);
zipfileWrite16(a, 0); /* Size of trailing comment in bytes*/
return a-aBuf;
}
static int zipfileAppendEOCD(ZipfileTab *pTab, ZipfileEOCD *p){
int nBuf = zipfileSerializeEOCD(p, pTab->aBuffer);
assert( nBuf==ZIPFILE_EOCD_FIXED_SZ );
return zipfileAppendData(pTab, pTab->aBuffer, nBuf);
}
/*
** Serialize the CDS structure into buffer aBuf[]. Return the number
** of bytes written.
*/
static int zipfileSerializeCDS(ZipfileEntry *pEntry, u8 *aBuf){
u8 *a = aBuf;
ZipfileCDS *pCDS = &pEntry->cds;
if( pEntry->aExtra==0 ){
pCDS->nExtra = 9;
}
zipfileWrite32(a, ZIPFILE_SIGNATURE_CDS);
zipfileWrite16(a, pCDS->iVersionMadeBy);
zipfileWrite16(a, pCDS->iVersionExtract);
zipfileWrite16(a, pCDS->flags);
zipfileWrite16(a, pCDS->iCompression);
zipfileWrite16(a, pCDS->mTime);
zipfileWrite16(a, pCDS->mDate);
zipfileWrite32(a, pCDS->crc32);
zipfileWrite32(a, pCDS->szCompressed);
zipfileWrite32(a, pCDS->szUncompressed);
assert( a==&aBuf[ZIPFILE_CDS_NFILE_OFF] );
zipfileWrite16(a, pCDS->nFile);
zipfileWrite16(a, pCDS->nExtra);
zipfileWrite16(a, pCDS->nComment);
zipfileWrite16(a, pCDS->iDiskStart);
zipfileWrite16(a, pCDS->iInternalAttr);
zipfileWrite32(a, pCDS->iExternalAttr);
zipfileWrite32(a, pCDS->iOffset);
memcpy(a, pCDS->zFile, pCDS->nFile);
a += pCDS->nFile;
if( pEntry->aExtra ){
int n = (int)pCDS->nExtra + (int)pCDS->nComment;
memcpy(a, pEntry->aExtra, n);
a += n;
}else{
assert( pCDS->nExtra==9 );
zipfileWrite16(a, ZIPFILE_EXTRA_TIMESTAMP);
zipfileWrite16(a, 5);
*a++ = 0x01;
zipfileWrite32(a, pEntry->mUnixTime);
}
return a-aBuf;
}
static int zipfileCommit(sqlite3_vtab *pVtab){
ZipfileTab *pTab = (ZipfileTab*)pVtab;
int rc = SQLITE_OK;
if( pTab->pWriteFd ){
i64 iOffset = pTab->szCurrent;
ZipfileEntry *p;
ZipfileEOCD eocd;
int nEntry = 0;
/* Write out all entries */
for(p=pTab->pFirstEntry; rc==SQLITE_OK && p; p=p->pNext){
int n = zipfileSerializeCDS(p, pTab->aBuffer);
rc = zipfileAppendData(pTab, pTab->aBuffer, n);
nEntry++;
}
/* Write out the EOCD record */
eocd.iDisk = 0;
eocd.iFirstDisk = 0;
eocd.nEntry = (u16)nEntry;
eocd.nEntryTotal = (u16)nEntry;
eocd.nSize = (u32)(pTab->szCurrent - iOffset);
eocd.iOffset = (u32)iOffset;
rc = zipfileAppendEOCD(pTab, &eocd);
zipfileCleanupTransaction(pTab);
}
return rc;
}
static int zipfileRollback(sqlite3_vtab *pVtab){
return zipfileCommit(pVtab);
}
static ZipfileCsr *zipfileFindCursor(ZipfileTab *pTab, i64 iId){
ZipfileCsr *pCsr;
for(pCsr=pTab->pCsrList; pCsr; pCsr=pCsr->pCsrNext){
if( iId==pCsr->iId ) break;
}
return pCsr;
}
static void zipfileFunctionCds(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
ZipfileCsr *pCsr;
ZipfileTab *pTab = (ZipfileTab*)sqlite3_user_data(context);
assert( argc>0 );
pCsr = zipfileFindCursor(pTab, sqlite3_value_int64(argv[0]));
if( pCsr ){
ZipfileCDS *p = &pCsr->pCurrent->cds;
char *zRes = sqlite3_mprintf("{"
"\"version-made-by\" : %u, "
"\"version-to-extract\" : %u, "
"\"flags\" : %u, "
"\"compression\" : %u, "
"\"time\" : %u, "
"\"date\" : %u, "
"\"crc32\" : %u, "
"\"compressed-size\" : %u, "
"\"uncompressed-size\" : %u, "
"\"file-name-length\" : %u, "
"\"extra-field-length\" : %u, "
"\"file-comment-length\" : %u, "
"\"disk-number-start\" : %u, "
"\"internal-attr\" : %u, "
"\"external-attr\" : %u, "
"\"offset\" : %u }",
(u32)p->iVersionMadeBy, (u32)p->iVersionExtract,
(u32)p->flags, (u32)p->iCompression,
(u32)p->mTime, (u32)p->mDate,
(u32)p->crc32, (u32)p->szCompressed,
(u32)p->szUncompressed, (u32)p->nFile,
(u32)p->nExtra, (u32)p->nComment,
(u32)p->iDiskStart, (u32)p->iInternalAttr,
(u32)p->iExternalAttr, (u32)p->iOffset
);
if( zRes==0 ){
sqlite3_result_error_nomem(context);
}else{
sqlite3_result_text(context, zRes, -1, SQLITE_TRANSIENT);
sqlite3_free(zRes);
}
}
}
/*
** xFindFunction method.
*/
static int zipfileFindFunction(
sqlite3_vtab *pVtab, /* Virtual table handle */
int nArg, /* Number of SQL function arguments */
const char *zName, /* Name of SQL function */
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
void **ppArg /* OUT: User data for *pxFunc */
){
(void)nArg;
if( sqlite3_stricmp("zipfile_cds", zName)==0 ){
*pxFunc = zipfileFunctionCds;
*ppArg = (void*)pVtab;
return 1;
}
return 0;
}
typedef struct ZipfileBuffer ZipfileBuffer;
struct ZipfileBuffer {
u8 *a; /* Pointer to buffer */
int n; /* Size of buffer in bytes */
int nAlloc; /* Byte allocated at a[] */
};
typedef struct ZipfileCtx ZipfileCtx;
struct ZipfileCtx {
int nEntry;
ZipfileBuffer body;
ZipfileBuffer cds;
};
static int zipfileBufferGrow(ZipfileBuffer *pBuf, int nByte){
if( pBuf->n+nByte>pBuf->nAlloc ){
u8 *aNew;
sqlite3_int64 nNew = pBuf->n ? pBuf->n*2 : 512;
int nReq = pBuf->n + nByte;
while( nNew<nReq ) nNew = nNew*2;
aNew = sqlite3_realloc64(pBuf->a, nNew);
if( aNew==0 ) return SQLITE_NOMEM;
pBuf->a = aNew;
pBuf->nAlloc = (int)nNew;
}
return SQLITE_OK;
}
/*
** xStep() callback for the zipfile() aggregate. This can be called in
** any of the following ways:
**
** SELECT zipfile(name,data) ...
** SELECT zipfile(name,mode,mtime,data) ...
** SELECT zipfile(name,mode,mtime,data,method) ...
*/
static void zipfileStep(sqlite3_context *pCtx, int nVal, sqlite3_value **apVal){
ZipfileCtx *p; /* Aggregate function context */
ZipfileEntry e; /* New entry to add to zip archive */
sqlite3_value *pName = 0;
sqlite3_value *pMode = 0;
sqlite3_value *pMtime = 0;
sqlite3_value *pData = 0;
sqlite3_value *pMethod = 0;
int bIsDir = 0;
u32 mode;
int rc = SQLITE_OK;
char *zErr = 0;
int iMethod = -1; /* Compression method to use (0 or 8) */
const u8 *aData = 0; /* Possibly compressed data for new entry */
int nData = 0; /* Size of aData[] in bytes */
int szUncompressed = 0; /* Size of data before compression */
u8 *aFree = 0; /* Free this before returning */
u32 iCrc32 = 0; /* crc32 of uncompressed data */
char *zName = 0; /* Path (name) of new entry */
int nName = 0; /* Size of zName in bytes */
char *zFree = 0; /* Free this before returning */
int nByte;
memset(&e, 0, sizeof(e));
p = (ZipfileCtx*)sqlite3_aggregate_context(pCtx, sizeof(ZipfileCtx));
if( p==0 ) return;
/* Martial the arguments into stack variables */
if( nVal!=2 && nVal!=4 && nVal!=5 ){
zErr = sqlite3_mprintf("wrong number of arguments to function zipfile()");
rc = SQLITE_ERROR;
goto zipfile_step_out;
}
pName = apVal[0];
if( nVal==2 ){
pData = apVal[1];
}else{
pMode = apVal[1];
pMtime = apVal[2];
pData = apVal[3];
if( nVal==5 ){
pMethod = apVal[4];
}
}
/* Check that the 'name' parameter looks ok. */
zName = (char*)sqlite3_value_text(pName);
nName = sqlite3_value_bytes(pName);
if( zName==0 ){
zErr = sqlite3_mprintf("first argument to zipfile() must be non-NULL");
rc = SQLITE_ERROR;
goto zipfile_step_out;
}
/* Inspect the 'method' parameter. This must be either 0 (store), 8 (use
** deflate compression) or NULL (choose automatically). */
if( pMethod && SQLITE_NULL!=sqlite3_value_type(pMethod) ){
iMethod = (int)sqlite3_value_int64(pMethod);
if( iMethod!=0 && iMethod!=8 ){
zErr = sqlite3_mprintf("illegal method value: %d", iMethod);
rc = SQLITE_ERROR;
goto zipfile_step_out;
}
}
/* Now inspect the data. If this is NULL, then the new entry must be a
** directory. Otherwise, figure out whether or not the data should
** be deflated or simply stored in the zip archive. */
if( sqlite3_value_type(pData)==SQLITE_NULL ){
bIsDir = 1;
iMethod = 0;
}else{
aData = sqlite3_value_blob(pData);
szUncompressed = nData = sqlite3_value_bytes(pData);
iCrc32 = crc32(0, aData, nData);
if( iMethod<0 || iMethod==8 ){
int nOut = 0;
rc = zipfileDeflate(aData, nData, &aFree, &nOut, &zErr);
if( rc!=SQLITE_OK ){
goto zipfile_step_out;
}
if( iMethod==8 || nOut<nData ){
aData = aFree;
nData = nOut;
iMethod = 8;
}else{
iMethod = 0;
}
}
}
/* Decode the "mode" argument. */
rc = zipfileGetMode(pMode, bIsDir, &mode, &zErr);
if( rc ) goto zipfile_step_out;
/* Decode the "mtime" argument. */
e.mUnixTime = zipfileGetTime(pMtime);
/* If this is a directory entry, ensure that there is exactly one '/'
** at the end of the path. Or, if this is not a directory and the path
** ends in '/' it is an error. */
if( bIsDir==0 ){
if( nName>0 && zName[nName-1]=='/' ){
zErr = sqlite3_mprintf("non-directory name must not end with /");
rc = SQLITE_ERROR;
goto zipfile_step_out;
}
}else{
if( nName==0 || zName[nName-1]!='/' ){
zName = zFree = sqlite3_mprintf("%s/", zName);
if( zName==0 ){
rc = SQLITE_NOMEM;
goto zipfile_step_out;
}
nName = (int)strlen(zName);
}else{
while( nName>1 && zName[nName-2]=='/' ) nName--;
}
}
/* Assemble the ZipfileEntry object for the new zip archive entry */
e.cds.iVersionMadeBy = ZIPFILE_NEWENTRY_MADEBY;
e.cds.iVersionExtract = ZIPFILE_NEWENTRY_REQUIRED;
e.cds.flags = ZIPFILE_NEWENTRY_FLAGS;
e.cds.iCompression = (u16)iMethod;
zipfileMtimeToDos(&e.cds, (u32)e.mUnixTime);
e.cds.crc32 = iCrc32;
e.cds.szCompressed = nData;
e.cds.szUncompressed = szUncompressed;
e.cds.iExternalAttr = (mode<<16);
e.cds.iOffset = p->body.n;
e.cds.nFile = (u16)nName;
e.cds.zFile = zName;
/* Append the LFH to the body of the new archive */
nByte = ZIPFILE_LFH_FIXED_SZ + e.cds.nFile + 9;
if( (rc = zipfileBufferGrow(&p->body, nByte)) ) goto zipfile_step_out;
p->body.n += zipfileSerializeLFH(&e, &p->body.a[p->body.n]);
/* Append the data to the body of the new archive */
if( nData>0 ){
if( (rc = zipfileBufferGrow(&p->body, nData)) ) goto zipfile_step_out;
memcpy(&p->body.a[p->body.n], aData, nData);
p->body.n += nData;
}
/* Append the CDS record to the directory of the new archive */
nByte = ZIPFILE_CDS_FIXED_SZ + e.cds.nFile + 9;
if( (rc = zipfileBufferGrow(&p->cds, nByte)) ) goto zipfile_step_out;
p->cds.n += zipfileSerializeCDS(&e, &p->cds.a[p->cds.n]);
/* Increment the count of entries in the archive */
p->nEntry++;
zipfile_step_out:
sqlite3_free(aFree);
sqlite3_free(zFree);
if( rc ){
if( zErr ){
sqlite3_result_error(pCtx, zErr, -1);
}else{
sqlite3_result_error_code(pCtx, rc);
}
}
sqlite3_free(zErr);
}
/*
** xFinalize() callback for zipfile aggregate function.
*/
static void zipfileFinal(sqlite3_context *pCtx){
ZipfileCtx *p;
ZipfileEOCD eocd;
sqlite3_int64 nZip;
u8 *aZip;
p = (ZipfileCtx*)sqlite3_aggregate_context(pCtx, sizeof(ZipfileCtx));
if( p==0 ) return;
if( p->nEntry>0 ){
memset(&eocd, 0, sizeof(eocd));
eocd.nEntry = (u16)p->nEntry;
eocd.nEntryTotal = (u16)p->nEntry;
eocd.nSize = p->cds.n;
eocd.iOffset = p->body.n;
nZip = p->body.n + p->cds.n + ZIPFILE_EOCD_FIXED_SZ;
aZip = (u8*)sqlite3_malloc64(nZip);
if( aZip==0 ){
sqlite3_result_error_nomem(pCtx);
}else{
memcpy(aZip, p->body.a, p->body.n);
memcpy(&aZip[p->body.n], p->cds.a, p->cds.n);
zipfileSerializeEOCD(&eocd, &aZip[p->body.n + p->cds.n]);
sqlite3_result_blob(pCtx, aZip, (int)nZip, zipfileFree);
}
}
sqlite3_free(p->body.a);
sqlite3_free(p->cds.a);
}
/*
** Register the "zipfile" virtual table.
*/
static int zipfileRegister(sqlite3 *db){
static sqlite3_module zipfileModule = {
1, /* iVersion */
zipfileConnect, /* xCreate */
zipfileConnect, /* xConnect */
zipfileBestIndex, /* xBestIndex */
zipfileDisconnect, /* xDisconnect */
zipfileDisconnect, /* xDestroy */
zipfileOpen, /* xOpen - open a cursor */
zipfileClose, /* xClose - close a cursor */
zipfileFilter, /* xFilter - configure scan constraints */
zipfileNext, /* xNext - advance a cursor */
zipfileEof, /* xEof - check for end of scan */
zipfileColumn, /* xColumn - read data */
0, /* xRowid - read data */
zipfileUpdate, /* xUpdate */
zipfileBegin, /* xBegin */
0, /* xSync */
zipfileCommit, /* xCommit */
zipfileRollback, /* xRollback */
zipfileFindFunction, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollback */
0 /* xShadowName */
};
int rc = sqlite3_create_module(db, "zipfile" , &zipfileModule, 0);
if( rc==SQLITE_OK ) rc = sqlite3_overload_function(db, "zipfile_cds", -1);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "zipfile", -1, SQLITE_UTF8, 0, 0,
zipfileStep, zipfileFinal
);
}
assert( sizeof(i64)==8 );
assert( sizeof(u32)==4 );
assert( sizeof(u16)==2 );
assert( sizeof(u8)==1 );
return rc;
}
#else /* SQLITE_OMIT_VIRTUALTABLE */
# define zipfileRegister(x) SQLITE_OK
#endif
#ifdef _WIN32
#endif
int sqlite3_zipfile_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
return zipfileRegister(db);
}
/************************* End ../ext/misc/zipfile.c ********************/
/************************* Begin ../ext/misc/sqlar.c ******************/
/*
** 2017-12-17
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** Utility functions sqlar_compress() and sqlar_uncompress(). Useful
** for working with sqlar archives and used by the shell tool's built-in
** sqlar support.
*/
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1
#include <zlib.h>
#include <assert.h>
/*
** Implementation of the "sqlar_compress(X)" SQL function.
**
** If the type of X is SQLITE_BLOB, and compressing that blob using
** zlib utility function compress() yields a smaller blob, return the
** compressed blob. Otherwise, return a copy of X.
**
** SQLar uses the "zlib format" for compressed content. The zlib format
** contains a two-byte identification header and a four-byte checksum at
** the end. This is different from ZIP which uses the raw deflate format.
**
** Future enhancements to SQLar might add support for new compression formats.
** If so, those new formats will be identified by alternative headers in the
** compressed data.
*/
static void sqlarCompressFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
assert( argc==1 );
if( sqlite3_value_type(argv[0])==SQLITE_BLOB ){
const Bytef *pData = sqlite3_value_blob(argv[0]);
uLong nData = sqlite3_value_bytes(argv[0]);
uLongf nOut = compressBound(nData);
Bytef *pOut;
pOut = (Bytef*)sqlite3_malloc(nOut);
if( pOut==0 ){
sqlite3_result_error_nomem(context);
return;
}else{
if( Z_OK!=compress(pOut, &nOut, pData, nData) ){
sqlite3_result_error(context, "error in compress()", -1);
}else if( nOut<nData ){
sqlite3_result_blob(context, pOut, nOut, SQLITE_TRANSIENT);
}else{
sqlite3_result_value(context, argv[0]);
}
sqlite3_free(pOut);
}
}else{
sqlite3_result_value(context, argv[0]);
}
}
/*
** Implementation of the "sqlar_uncompress(X,SZ)" SQL function
**
** Parameter SZ is interpreted as an integer. If it is less than or
** equal to zero, then this function returns a copy of X. Or, if
** SZ is equal to the size of X when interpreted as a blob, also
** return a copy of X. Otherwise, decompress blob X using zlib
** utility function uncompress() and return the results (another
** blob).
*/
static void sqlarUncompressFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
uLong nData;
uLongf sz;
assert( argc==2 );
sz = sqlite3_value_int(argv[1]);
if( sz<=0 || sz==(nData = sqlite3_value_bytes(argv[0])) ){
sqlite3_result_value(context, argv[0]);
}else{
const Bytef *pData= sqlite3_value_blob(argv[0]);
Bytef *pOut = sqlite3_malloc(sz);
if( pOut==0 ){
sqlite3_result_error_nomem(context);
}else if( Z_OK!=uncompress(pOut, &sz, pData, nData) ){
sqlite3_result_error(context, "error in uncompress()", -1);
}else{
sqlite3_result_blob(context, pOut, sz, SQLITE_TRANSIENT);
}
sqlite3_free(pOut);
}
}
#ifdef _WIN32
#endif
int sqlite3_sqlar_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
rc = sqlite3_create_function(db, "sqlar_compress", 1,
SQLITE_UTF8|SQLITE_INNOCUOUS, 0,
sqlarCompressFunc, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sqlar_uncompress", 2,
SQLITE_UTF8|SQLITE_INNOCUOUS, 0,
sqlarUncompressFunc, 0, 0);
}
return rc;
}
/************************* End ../ext/misc/sqlar.c ********************/
#endif
/************************* Begin ../ext/expert/sqlite3expert.h ******************/
/*
** 2017 April 07
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
*/
#if !defined(SQLITEEXPERT_H)
#define SQLITEEXPERT_H 1
/* #include "sqlite3.h" */
typedef struct sqlite3expert sqlite3expert;
/*
** Create a new sqlite3expert object.
**
** If successful, a pointer to the new object is returned and (*pzErr) set
** to NULL. Or, if an error occurs, NULL is returned and (*pzErr) set to
** an English-language error message. In this case it is the responsibility
** of the caller to eventually free the error message buffer using
** sqlite3_free().
*/
sqlite3expert *sqlite3_expert_new(sqlite3 *db, char **pzErr);
/*
** Configure an sqlite3expert object.
**
** EXPERT_CONFIG_SAMPLE:
** By default, sqlite3_expert_analyze() generates sqlite_stat1 data for
** each candidate index. This involves scanning and sorting the entire
** contents of each user database table once for each candidate index
** associated with the table. For large databases, this can be
** prohibitively slow. This option allows the sqlite3expert object to
** be configured so that sqlite_stat1 data is instead generated based on a
** subset of each table, or so that no sqlite_stat1 data is used at all.
**
** A single integer argument is passed to this option. If the value is less
** than or equal to zero, then no sqlite_stat1 data is generated or used by
** the analysis - indexes are recommended based on the database schema only.
** Or, if the value is 100 or greater, complete sqlite_stat1 data is
** generated for each candidate index (this is the default). Finally, if the
** value falls between 0 and 100, then it represents the percentage of user
** table rows that should be considered when generating sqlite_stat1 data.
**
** Examples:
**
** // Do not generate any sqlite_stat1 data
** sqlite3_expert_config(pExpert, EXPERT_CONFIG_SAMPLE, 0);
**
** // Generate sqlite_stat1 data based on 10% of the rows in each table.
** sqlite3_expert_config(pExpert, EXPERT_CONFIG_SAMPLE, 10);
*/
int sqlite3_expert_config(sqlite3expert *p, int op, ...);
#define EXPERT_CONFIG_SAMPLE 1 /* int */
/*
** Specify zero or more SQL statements to be included in the analysis.
**
** Buffer zSql must contain zero or more complete SQL statements. This
** function parses all statements contained in the buffer and adds them
** to the internal list of statements to analyze. If successful, SQLITE_OK
** is returned and (*pzErr) set to NULL. Or, if an error occurs - for example
** due to a error in the SQL - an SQLite error code is returned and (*pzErr)
** may be set to point to an English language error message. In this case
** the caller is responsible for eventually freeing the error message buffer
** using sqlite3_free().
**
** If an error does occur while processing one of the statements in the
** buffer passed as the second argument, none of the statements in the
** buffer are added to the analysis.
**
** This function must be called before sqlite3_expert_analyze(). If a call
** to this function is made on an sqlite3expert object that has already
** been passed to sqlite3_expert_analyze() SQLITE_MISUSE is returned
** immediately and no statements are added to the analysis.
*/
int sqlite3_expert_sql(
sqlite3expert *p, /* From a successful sqlite3_expert_new() */
const char *zSql, /* SQL statement(s) to add */
char **pzErr /* OUT: Error message (if any) */
);
/*
** This function is called after the sqlite3expert object has been configured
** with all SQL statements using sqlite3_expert_sql() to actually perform
** the analysis. Once this function has been called, it is not possible to
** add further SQL statements to the analysis.
**
** If successful, SQLITE_OK is returned and (*pzErr) is set to NULL. Or, if
** an error occurs, an SQLite error code is returned and (*pzErr) set to
** point to a buffer containing an English language error message. In this
** case it is the responsibility of the caller to eventually free the buffer
** using sqlite3_free().
**
** If an error does occur within this function, the sqlite3expert object
** is no longer useful for any purpose. At that point it is no longer
** possible to add further SQL statements to the object or to re-attempt
** the analysis. The sqlite3expert object must still be freed using a call
** sqlite3_expert_destroy().
*/
int sqlite3_expert_analyze(sqlite3expert *p, char **pzErr);
/*
** Return the total number of statements loaded using sqlite3_expert_sql().
** The total number of SQL statements may be different from the total number
** to calls to sqlite3_expert_sql().
*/
int sqlite3_expert_count(sqlite3expert*);
/*
** Return a component of the report.
**
** This function is called after sqlite3_expert_analyze() to extract the
** results of the analysis. Each call to this function returns either a
** NULL pointer or a pointer to a buffer containing a nul-terminated string.
** The value passed as the third argument must be one of the EXPERT_REPORT_*
** #define constants defined below.
**
** For some EXPERT_REPORT_* parameters, the buffer returned contains
** information relating to a specific SQL statement. In these cases that
** SQL statement is identified by the value passed as the second argument.
** SQL statements are numbered from 0 in the order in which they are parsed.
** If an out-of-range value (less than zero or equal to or greater than the
** value returned by sqlite3_expert_count()) is passed as the second argument
** along with such an EXPERT_REPORT_* parameter, NULL is always returned.
**
** EXPERT_REPORT_SQL:
** Return the text of SQL statement iStmt.
**
** EXPERT_REPORT_INDEXES:
** Return a buffer containing the CREATE INDEX statements for all recommended
** indexes for statement iStmt. If there are no new recommeded indexes, NULL
** is returned.
**
** EXPERT_REPORT_PLAN:
** Return a buffer containing the EXPLAIN QUERY PLAN output for SQL query
** iStmt after the proposed indexes have been added to the database schema.
**
** EXPERT_REPORT_CANDIDATES:
** Return a pointer to a buffer containing the CREATE INDEX statements
** for all indexes that were tested (for all SQL statements). The iStmt
** parameter is ignored for EXPERT_REPORT_CANDIDATES calls.
*/
const char *sqlite3_expert_report(sqlite3expert*, int iStmt, int eReport);
/*
** Values for the third argument passed to sqlite3_expert_report().
*/
#define EXPERT_REPORT_SQL 1
#define EXPERT_REPORT_INDEXES 2
#define EXPERT_REPORT_PLAN 3
#define EXPERT_REPORT_CANDIDATES 4
/*
** Free an (sqlite3expert*) handle and all associated resources. There
** should be one call to this function for each successful call to
** sqlite3-expert_new().
*/
void sqlite3_expert_destroy(sqlite3expert*);
#endif /* !defined(SQLITEEXPERT_H) */
/************************* End ../ext/expert/sqlite3expert.h ********************/
/************************* Begin ../ext/expert/sqlite3expert.c ******************/
/*
** 2017 April 09
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
*/
/* #include "sqlite3expert.h" */
#include <assert.h>
#include <string.h>
#include <stdio.h>
#if !defined(SQLITE_AMALGAMATION)
#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
#endif
#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
# define ALWAYS(X) (1)
# define NEVER(X) (0)
#elif !defined(NDEBUG)
# define ALWAYS(X) ((X)?1:(assert(0),0))
# define NEVER(X) ((X)?(assert(0),1):0)
#else
# define ALWAYS(X) (X)
# define NEVER(X) (X)
#endif
#endif /* !defined(SQLITE_AMALGAMATION) */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* typedef sqlite3_int64 i64; */
/* typedef sqlite3_uint64 u64; */
typedef struct IdxColumn IdxColumn;
typedef struct IdxConstraint IdxConstraint;
typedef struct IdxScan IdxScan;
typedef struct IdxStatement IdxStatement;
typedef struct IdxTable IdxTable;
typedef struct IdxWrite IdxWrite;
#define STRLEN (int)strlen
/*
** A temp table name that we assume no user database will actually use.
** If this assumption proves incorrect triggers on the table with the
** conflicting name will be ignored.
*/
#define UNIQUE_TABLE_NAME "t592690916721053953805701627921227776"
/*
** A single constraint. Equivalent to either "col = ?" or "col < ?" (or
** any other type of single-ended range constraint on a column).
**
** pLink:
** Used to temporarily link IdxConstraint objects into lists while
** creating candidate indexes.
*/
struct IdxConstraint {
char *zColl; /* Collation sequence */
int bRange; /* True for range, false for eq */
int iCol; /* Constrained table column */
int bFlag; /* Used by idxFindCompatible() */
int bDesc; /* True if ORDER BY <expr> DESC */
IdxConstraint *pNext; /* Next constraint in pEq or pRange list */
IdxConstraint *pLink; /* See above */
};
/*
** A single scan of a single table.
*/
struct IdxScan {
IdxTable *pTab; /* Associated table object */
int iDb; /* Database containing table zTable */
i64 covering; /* Mask of columns required for cov. index */
IdxConstraint *pOrder; /* ORDER BY columns */
IdxConstraint *pEq; /* List of == constraints */
IdxConstraint *pRange; /* List of < constraints */
IdxScan *pNextScan; /* Next IdxScan object for same analysis */
};
/*
** Information regarding a single database table. Extracted from
** "PRAGMA table_info" by function idxGetTableInfo().
*/
struct IdxColumn {
char *zName;
char *zColl;
int iPk;
};
struct IdxTable {
int nCol;
char *zName; /* Table name */
IdxColumn *aCol;
IdxTable *pNext; /* Next table in linked list of all tables */
};
/*
** An object of the following type is created for each unique table/write-op
** seen. The objects are stored in a singly-linked list beginning at
** sqlite3expert.pWrite.
*/
struct IdxWrite {
IdxTable *pTab;
int eOp; /* SQLITE_UPDATE, DELETE or INSERT */
IdxWrite *pNext;
};
/*
** Each statement being analyzed is represented by an instance of this
** structure.
*/
struct IdxStatement {
int iId; /* Statement number */
char *zSql; /* SQL statement */
char *zIdx; /* Indexes */
char *zEQP; /* Plan */
IdxStatement *pNext;
};
/*
** A hash table for storing strings. With space for a payload string
** with each entry. Methods are:
**
** idxHashInit()
** idxHashClear()
** idxHashAdd()
** idxHashSearch()
*/
#define IDX_HASH_SIZE 1023
typedef struct IdxHashEntry IdxHashEntry;
typedef struct IdxHash IdxHash;
struct IdxHashEntry {
char *zKey; /* nul-terminated key */
char *zVal; /* nul-terminated value string */
char *zVal2; /* nul-terminated value string 2 */
IdxHashEntry *pHashNext; /* Next entry in same hash bucket */
IdxHashEntry *pNext; /* Next entry in hash */
};
struct IdxHash {
IdxHashEntry *pFirst;
IdxHashEntry *aHash[IDX_HASH_SIZE];
};
/*
** sqlite3expert object.
*/
struct sqlite3expert {
int iSample; /* Percentage of tables to sample for stat1 */
sqlite3 *db; /* User database */
sqlite3 *dbm; /* In-memory db for this analysis */
sqlite3 *dbv; /* Vtab schema for this analysis */
IdxTable *pTable; /* List of all IdxTable objects */
IdxScan *pScan; /* List of scan objects */
IdxWrite *pWrite; /* List of write objects */
IdxStatement *pStatement; /* List of IdxStatement objects */
int bRun; /* True once analysis has run */
char **pzErrmsg;
int rc; /* Error code from whereinfo hook */
IdxHash hIdx; /* Hash containing all candidate indexes */
char *zCandidates; /* For EXPERT_REPORT_CANDIDATES */
};
/*
** Allocate and return nByte bytes of zeroed memory using sqlite3_malloc().
** If the allocation fails, set *pRc to SQLITE_NOMEM and return NULL.
*/
static void *idxMalloc(int *pRc, int nByte){
void *pRet;
assert( *pRc==SQLITE_OK );
assert( nByte>0 );
pRet = sqlite3_malloc(nByte);
if( pRet ){
memset(pRet, 0, nByte);
}else{
*pRc = SQLITE_NOMEM;
}
return pRet;
}
/*
** Initialize an IdxHash hash table.
*/
static void idxHashInit(IdxHash *pHash){
memset(pHash, 0, sizeof(IdxHash));
}
/*
** Reset an IdxHash hash table.
*/
static void idxHashClear(IdxHash *pHash){
int i;
for(i=0; i<IDX_HASH_SIZE; i++){
IdxHashEntry *pEntry;
IdxHashEntry *pNext;
for(pEntry=pHash->aHash[i]; pEntry; pEntry=pNext){
pNext = pEntry->pHashNext;
sqlite3_free(pEntry->zVal2);
sqlite3_free(pEntry);
}
}
memset(pHash, 0, sizeof(IdxHash));
}
/*
** Return the index of the hash bucket that the string specified by the
** arguments to this function belongs.
*/
static int idxHashString(const char *z, int n){
unsigned int ret = 0;
int i;
for(i=0; i<n; i++){
ret += (ret<<3) + (unsigned char)(z[i]);
}
return (int)(ret % IDX_HASH_SIZE);
}
/*
** If zKey is already present in the hash table, return non-zero and do
** nothing. Otherwise, add an entry with key zKey and payload string zVal to
** the hash table passed as the second argument.
*/
static int idxHashAdd(
int *pRc,
IdxHash *pHash,
const char *zKey,
const char *zVal
){
int nKey = STRLEN(zKey);
int iHash = idxHashString(zKey, nKey);
int nVal = (zVal ? STRLEN(zVal) : 0);
IdxHashEntry *pEntry;
assert( iHash>=0 );
for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){
if( STRLEN(pEntry->zKey)==nKey && 0==memcmp(pEntry->zKey, zKey, nKey) ){
return 1;
}
}
pEntry = idxMalloc(pRc, sizeof(IdxHashEntry) + nKey+1 + nVal+1);
if( pEntry ){
pEntry->zKey = (char*)&pEntry[1];
memcpy(pEntry->zKey, zKey, nKey);
if( zVal ){
pEntry->zVal = &pEntry->zKey[nKey+1];
memcpy(pEntry->zVal, zVal, nVal);
}
pEntry->pHashNext = pHash->aHash[iHash];
pHash->aHash[iHash] = pEntry;
pEntry->pNext = pHash->pFirst;
pHash->pFirst = pEntry;
}
return 0;
}
/*
** If zKey/nKey is present in the hash table, return a pointer to the
** hash-entry object.
*/
static IdxHashEntry *idxHashFind(IdxHash *pHash, const char *zKey, int nKey){
int iHash;
IdxHashEntry *pEntry;
if( nKey<0 ) nKey = STRLEN(zKey);
iHash = idxHashString(zKey, nKey);
assert( iHash>=0 );
for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){
if( STRLEN(pEntry->zKey)==nKey && 0==memcmp(pEntry->zKey, zKey, nKey) ){
return pEntry;
}
}
return 0;
}
/*
** If the hash table contains an entry with a key equal to the string
** passed as the final two arguments to this function, return a pointer
** to the payload string. Otherwise, if zKey/nKey is not present in the
** hash table, return NULL.
*/
static const char *idxHashSearch(IdxHash *pHash, const char *zKey, int nKey){
IdxHashEntry *pEntry = idxHashFind(pHash, zKey, nKey);
if( pEntry ) return pEntry->zVal;
return 0;
}
/*
** Allocate and return a new IdxConstraint object. Set the IdxConstraint.zColl
** variable to point to a copy of nul-terminated string zColl.
*/
static IdxConstraint *idxNewConstraint(int *pRc, const char *zColl){
IdxConstraint *pNew;
int nColl = STRLEN(zColl);
assert( *pRc==SQLITE_OK );
pNew = (IdxConstraint*)idxMalloc(pRc, sizeof(IdxConstraint) * nColl + 1);
if( pNew ){
pNew->zColl = (char*)&pNew[1];
memcpy(pNew->zColl, zColl, nColl+1);
}
return pNew;
}
/*
** An error associated with database handle db has just occurred. Pass
** the error message to callback function xOut.
*/
static void idxDatabaseError(
sqlite3 *db, /* Database handle */
char **pzErrmsg /* Write error here */
){
*pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
}
/*
** Prepare an SQL statement.
*/
static int idxPrepareStmt(
sqlite3 *db, /* Database handle to compile against */
sqlite3_stmt **ppStmt, /* OUT: Compiled SQL statement */
char **pzErrmsg, /* OUT: sqlite3_malloc()ed error message */
const char *zSql /* SQL statement to compile */
){
int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0);
if( rc!=SQLITE_OK ){
*ppStmt = 0;
idxDatabaseError(db, pzErrmsg);
}
return rc;
}
/*
** Prepare an SQL statement using the results of a printf() formatting.
*/
static int idxPrintfPrepareStmt(
sqlite3 *db, /* Database handle to compile against */
sqlite3_stmt **ppStmt, /* OUT: Compiled SQL statement */
char **pzErrmsg, /* OUT: sqlite3_malloc()ed error message */
const char *zFmt, /* printf() format of SQL statement */
... /* Trailing printf() arguments */
){
va_list ap;
int rc;
char *zSql;
va_start(ap, zFmt);
zSql = sqlite3_vmprintf(zFmt, ap);
if( zSql==0 ){
rc = SQLITE_NOMEM;
}else{
rc = idxPrepareStmt(db, ppStmt, pzErrmsg, zSql);
sqlite3_free(zSql);
}
va_end(ap);
return rc;
}
/*************************************************************************
** Beginning of virtual table implementation.
*/
typedef struct ExpertVtab ExpertVtab;
struct ExpertVtab {
sqlite3_vtab base;
IdxTable *pTab;
sqlite3expert *pExpert;
};
typedef struct ExpertCsr ExpertCsr;
struct ExpertCsr {
sqlite3_vtab_cursor base;
sqlite3_stmt *pData;
};
static char *expertDequote(const char *zIn){
int n = STRLEN(zIn);
char *zRet = sqlite3_malloc(n);
assert( zIn[0]=='\'' );
assert( zIn[n-1]=='\'' );
if( zRet ){
int iOut = 0;
int iIn = 0;
for(iIn=1; iIn<(n-1); iIn++){
if( zIn[iIn]=='\'' ){
assert( zIn[iIn+1]=='\'' );
iIn++;
}
zRet[iOut++] = zIn[iIn];
}
zRet[iOut] = '\0';
}
return zRet;
}
/*
** This function is the implementation of both the xConnect and xCreate
** methods of the r-tree virtual table.
**
** argv[0] -> module name
** argv[1] -> database name
** argv[2] -> table name
** argv[...] -> column names...
*/
static int expertConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
sqlite3expert *pExpert = (sqlite3expert*)pAux;
ExpertVtab *p = 0;
int rc;
if( argc!=4 ){
*pzErr = sqlite3_mprintf("internal error!");
rc = SQLITE_ERROR;
}else{
char *zCreateTable = expertDequote(argv[3]);
if( zCreateTable ){
rc = sqlite3_declare_vtab(db, zCreateTable);
if( rc==SQLITE_OK ){
p = idxMalloc(&rc, sizeof(ExpertVtab));
}
if( rc==SQLITE_OK ){
p->pExpert = pExpert;
p->pTab = pExpert->pTable;
assert( sqlite3_stricmp(p->pTab->zName, argv[2])==0 );
}
sqlite3_free(zCreateTable);
}else{
rc = SQLITE_NOMEM;
}
}
*ppVtab = (sqlite3_vtab*)p;
return rc;
}
static int expertDisconnect(sqlite3_vtab *pVtab){
ExpertVtab *p = (ExpertVtab*)pVtab;
sqlite3_free(p);
return SQLITE_OK;
}
static int expertBestIndex(sqlite3_vtab *pVtab, sqlite3_index_info *pIdxInfo){
ExpertVtab *p = (ExpertVtab*)pVtab;
int rc = SQLITE_OK;
int n = 0;
IdxScan *pScan;
const int opmask =
SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_GT |
SQLITE_INDEX_CONSTRAINT_LT | SQLITE_INDEX_CONSTRAINT_GE |
SQLITE_INDEX_CONSTRAINT_LE;
pScan = idxMalloc(&rc, sizeof(IdxScan));
if( pScan ){
int i;
/* Link the new scan object into the list */
pScan->pTab = p->pTab;
pScan->pNextScan = p->pExpert->pScan;
p->pExpert->pScan = pScan;
/* Add the constraints to the IdxScan object */
for(i=0; i<pIdxInfo->nConstraint; i++){
struct sqlite3_index_constraint *pCons = &pIdxInfo->aConstraint[i];
if( pCons->usable
&& pCons->iColumn>=0
&& p->pTab->aCol[pCons->iColumn].iPk==0
&& (pCons->op & opmask)
){
IdxConstraint *pNew;
const char *zColl = sqlite3_vtab_collation(pIdxInfo, i);
pNew = idxNewConstraint(&rc, zColl);
if( pNew ){
pNew->iCol = pCons->iColumn;
if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){
pNew->pNext = pScan->pEq;
pScan->pEq = pNew;
}else{
pNew->bRange = 1;
pNew->pNext = pScan->pRange;
pScan->pRange = pNew;
}
}
n++;
pIdxInfo->aConstraintUsage[i].argvIndex = n;
}
}
/* Add the ORDER BY to the IdxScan object */
for(i=pIdxInfo->nOrderBy-1; i>=0; i--){
int iCol = pIdxInfo->aOrderBy[i].iColumn;
if( iCol>=0 ){
IdxConstraint *pNew = idxNewConstraint(&rc, p->pTab->aCol[iCol].zColl);
if( pNew ){
pNew->iCol = iCol;
pNew->bDesc = pIdxInfo->aOrderBy[i].desc;
pNew->pNext = pScan->pOrder;
pNew->pLink = pScan->pOrder;
pScan->pOrder = pNew;
n++;
}
}
}
}
pIdxInfo->estimatedCost = 1000000.0 / (n+1);
return rc;
}
static int expertUpdate(
sqlite3_vtab *pVtab,
int nData,
sqlite3_value **azData,
sqlite_int64 *pRowid
){
(void)pVtab;
(void)nData;
(void)azData;
(void)pRowid;
return SQLITE_OK;
}
/*
** Virtual table module xOpen method.
*/
static int expertOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
int rc = SQLITE_OK;
ExpertCsr *pCsr;
(void)pVTab;
pCsr = idxMalloc(&rc, sizeof(ExpertCsr));
*ppCursor = (sqlite3_vtab_cursor*)pCsr;
return rc;
}
/*
** Virtual table module xClose method.
*/
static int expertClose(sqlite3_vtab_cursor *cur){
ExpertCsr *pCsr = (ExpertCsr*)cur;
sqlite3_finalize(pCsr->pData);
sqlite3_free(pCsr);
return SQLITE_OK;
}
/*
** Virtual table module xEof method.
**
** Return non-zero if the cursor does not currently point to a valid
** record (i.e if the scan has finished), or zero otherwise.
*/
static int expertEof(sqlite3_vtab_cursor *cur){
ExpertCsr *pCsr = (ExpertCsr*)cur;
return pCsr->pData==0;
}
/*
** Virtual table module xNext method.
*/
static int expertNext(sqlite3_vtab_cursor *cur){
ExpertCsr *pCsr = (ExpertCsr*)cur;
int rc = SQLITE_OK;
assert( pCsr->pData );
rc = sqlite3_step(pCsr->pData);
if( rc!=SQLITE_ROW ){
rc = sqlite3_finalize(pCsr->pData);
pCsr->pData = 0;
}else{
rc = SQLITE_OK;
}
return rc;
}
/*
** Virtual table module xRowid method.
*/
static int expertRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
(void)cur;
*pRowid = 0;
return SQLITE_OK;
}
/*
** Virtual table module xColumn method.
*/
static int expertColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
ExpertCsr *pCsr = (ExpertCsr*)cur;
sqlite3_value *pVal;
pVal = sqlite3_column_value(pCsr->pData, i);
if( pVal ){
sqlite3_result_value(ctx, pVal);
}
return SQLITE_OK;
}
/*
** Virtual table module xFilter method.
*/
static int expertFilter(
sqlite3_vtab_cursor *cur,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
ExpertCsr *pCsr = (ExpertCsr*)cur;
ExpertVtab *pVtab = (ExpertVtab*)(cur->pVtab);
sqlite3expert *pExpert = pVtab->pExpert;
int rc;
(void)idxNum;
(void)idxStr;
(void)argc;
(void)argv;
rc = sqlite3_finalize(pCsr->pData);
pCsr->pData = 0;
if( rc==SQLITE_OK ){
rc = idxPrintfPrepareStmt(pExpert->db, &pCsr->pData, &pVtab->base.zErrMsg,
"SELECT * FROM main.%Q WHERE sample()", pVtab->pTab->zName
);
}
if( rc==SQLITE_OK ){
rc = expertNext(cur);
}
return rc;
}
static int idxRegisterVtab(sqlite3expert *p){
static sqlite3_module expertModule = {
2, /* iVersion */
expertConnect, /* xCreate - create a table */
expertConnect, /* xConnect - connect to an existing table */
expertBestIndex, /* xBestIndex - Determine search strategy */
expertDisconnect, /* xDisconnect - Disconnect from a table */
expertDisconnect, /* xDestroy - Drop a table */
expertOpen, /* xOpen - open a cursor */
expertClose, /* xClose - close a cursor */
expertFilter, /* xFilter - configure scan constraints */
expertNext, /* xNext - advance a cursor */
expertEof, /* xEof */
expertColumn, /* xColumn - read data */
expertRowid, /* xRowid - read data */
expertUpdate, /* xUpdate - write data */
0, /* xBegin - begin transaction */
0, /* xSync - sync transaction */
0, /* xCommit - commit transaction */
0, /* xRollback - rollback transaction */
0, /* xFindFunction - function overloading */
0, /* xRename - rename the table */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadowName */
};
return sqlite3_create_module(p->dbv, "expert", &expertModule, (void*)p);
}
/*
** End of virtual table implementation.
*************************************************************************/
/*
** Finalize SQL statement pStmt. If (*pRc) is SQLITE_OK when this function
** is called, set it to the return value of sqlite3_finalize() before
** returning. Otherwise, discard the sqlite3_finalize() return value.
*/
static void idxFinalize(int *pRc, sqlite3_stmt *pStmt){
int rc = sqlite3_finalize(pStmt);
if( *pRc==SQLITE_OK ) *pRc = rc;
}
/*
** Attempt to allocate an IdxTable structure corresponding to table zTab
** in the main database of connection db. If successful, set (*ppOut) to
** point to the new object and return SQLITE_OK. Otherwise, return an
** SQLite error code and set (*ppOut) to NULL. In this case *pzErrmsg may be
** set to point to an error string.
**
** It is the responsibility of the caller to eventually free either the
** IdxTable object or error message using sqlite3_free().
*/
static int idxGetTableInfo(
sqlite3 *db, /* Database connection to read details from */
const char *zTab, /* Table name */
IdxTable **ppOut, /* OUT: New object (if successful) */
char **pzErrmsg /* OUT: Error message (if not) */
){
sqlite3_stmt *p1 = 0;
int nCol = 0;
int nTab;
int nByte;
IdxTable *pNew = 0;
int rc, rc2;
char *pCsr = 0;
int nPk = 0;
*ppOut = 0;
if( zTab==0 ) return SQLITE_ERROR;
nTab = STRLEN(zTab);
nByte = sizeof(IdxTable) + nTab + 1;
rc = idxPrintfPrepareStmt(db, &p1, pzErrmsg, "PRAGMA table_xinfo=%Q", zTab);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(p1) ){
const char *zCol = (const char*)sqlite3_column_text(p1, 1);
const char *zColSeq = 0;
if( zCol==0 ){
rc = SQLITE_ERROR;
break;
}
nByte += 1 + STRLEN(zCol);
rc = sqlite3_table_column_metadata(
db, "main", zTab, zCol, 0, &zColSeq, 0, 0, 0
);
if( zColSeq==0 ) zColSeq = "binary";
nByte += 1 + STRLEN(zColSeq);
nCol++;
nPk += (sqlite3_column_int(p1, 5)>0);
}
rc2 = sqlite3_reset(p1);
if( rc==SQLITE_OK ) rc = rc2;
nByte += sizeof(IdxColumn) * nCol;
if( rc==SQLITE_OK ){
pNew = idxMalloc(&rc, nByte);
}
if( rc==SQLITE_OK ){
pNew->aCol = (IdxColumn*)&pNew[1];
pNew->nCol = nCol;
pCsr = (char*)&pNew->aCol[nCol];
}
nCol = 0;
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(p1) ){
const char *zCol = (const char*)sqlite3_column_text(p1, 1);
const char *zColSeq = 0;
int nCopy;
if( zCol==0 ) continue;
nCopy = STRLEN(zCol) + 1;
pNew->aCol[nCol].zName = pCsr;
pNew->aCol[nCol].iPk = (sqlite3_column_int(p1, 5)==1 && nPk==1);
memcpy(pCsr, zCol, nCopy);
pCsr += nCopy;
rc = sqlite3_table_column_metadata(
db, "main", zTab, zCol, 0, &zColSeq, 0, 0, 0
);
if( rc==SQLITE_OK ){
if( zColSeq==0 ) zColSeq = "binary";
nCopy = STRLEN(zColSeq) + 1;
pNew->aCol[nCol].zColl = pCsr;
memcpy(pCsr, zColSeq, nCopy);
pCsr += nCopy;
}
nCol++;
}
idxFinalize(&rc, p1);
if( rc!=SQLITE_OK ){
sqlite3_free(pNew);
pNew = 0;
}else if( ALWAYS(pNew!=0) ){
pNew->zName = pCsr;
if( ALWAYS(pNew->zName!=0) ) memcpy(pNew->zName, zTab, nTab+1);
}
*ppOut = pNew;
return rc;
}
/*
** This function is a no-op if *pRc is set to anything other than
** SQLITE_OK when it is called.
**
** If *pRc is initially set to SQLITE_OK, then the text specified by
** the printf() style arguments is appended to zIn and the result returned
** in a buffer allocated by sqlite3_malloc(). sqlite3_free() is called on
** zIn before returning.
*/
static char *idxAppendText(int *pRc, char *zIn, const char *zFmt, ...){
va_list ap;
char *zAppend = 0;
char *zRet = 0;
int nIn = zIn ? STRLEN(zIn) : 0;
int nAppend = 0;
va_start(ap, zFmt);
if( *pRc==SQLITE_OK ){
zAppend = sqlite3_vmprintf(zFmt, ap);
if( zAppend ){
nAppend = STRLEN(zAppend);
zRet = (char*)sqlite3_malloc(nIn + nAppend + 1);
}
if( zAppend && zRet ){
if( nIn ) memcpy(zRet, zIn, nIn);
memcpy(&zRet[nIn], zAppend, nAppend+1);
}else{
sqlite3_free(zRet);
zRet = 0;
*pRc = SQLITE_NOMEM;
}
sqlite3_free(zAppend);
sqlite3_free(zIn);
}
va_end(ap);
return zRet;
}
/*
** Return true if zId must be quoted in order to use it as an SQL
** identifier, or false otherwise.
*/
static int idxIdentifierRequiresQuotes(const char *zId){
int i;
int nId = STRLEN(zId);
if( sqlite3_keyword_check(zId, nId) ) return 1;
for(i=0; zId[i]; i++){
if( !(zId[i]=='_')
&& !(zId[i]>='0' && zId[i]<='9')
&& !(zId[i]>='a' && zId[i]<='z')
&& !(zId[i]>='A' && zId[i]<='Z')
){
return 1;
}
}
return 0;
}
/*
** This function appends an index column definition suitable for constraint
** pCons to the string passed as zIn and returns the result.
*/
static char *idxAppendColDefn(
int *pRc, /* IN/OUT: Error code */
char *zIn, /* Column defn accumulated so far */
IdxTable *pTab, /* Table index will be created on */
IdxConstraint *pCons
){
char *zRet = zIn;
IdxColumn *p = &pTab->aCol[pCons->iCol];
if( zRet ) zRet = idxAppendText(pRc, zRet, ", ");
if( idxIdentifierRequiresQuotes(p->zName) ){
zRet = idxAppendText(pRc, zRet, "%Q", p->zName);
}else{
zRet = idxAppendText(pRc, zRet, "%s", p->zName);
}
if( sqlite3_stricmp(p->zColl, pCons->zColl) ){
if( idxIdentifierRequiresQuotes(pCons->zColl) ){
zRet = idxAppendText(pRc, zRet, " COLLATE %Q", pCons->zColl);
}else{
zRet = idxAppendText(pRc, zRet, " COLLATE %s", pCons->zColl);
}
}
if( pCons->bDesc ){
zRet = idxAppendText(pRc, zRet, " DESC");
}
return zRet;
}
/*
** Search database dbm for an index compatible with the one idxCreateFromCons()
** would create from arguments pScan, pEq and pTail. If no error occurs and
** such an index is found, return non-zero. Or, if no such index is found,
** return zero.
**
** If an error occurs, set *pRc to an SQLite error code and return zero.
*/
static int idxFindCompatible(
int *pRc, /* OUT: Error code */
sqlite3* dbm, /* Database to search */
IdxScan *pScan, /* Scan for table to search for index on */
IdxConstraint *pEq, /* List of == constraints */
IdxConstraint *pTail /* List of range constraints */
){
const char *zTbl = pScan->pTab->zName;
sqlite3_stmt *pIdxList = 0;
IdxConstraint *pIter;
int nEq = 0; /* Number of elements in pEq */
int rc;
/* Count the elements in list pEq */
for(pIter=pEq; pIter; pIter=pIter->pLink) nEq++;
rc = idxPrintfPrepareStmt(dbm, &pIdxList, 0, "PRAGMA index_list=%Q", zTbl);
while( rc==SQLITE_OK && sqlite3_step(pIdxList)==SQLITE_ROW ){
int bMatch = 1;
IdxConstraint *pT = pTail;
sqlite3_stmt *pInfo = 0;
const char *zIdx = (const char*)sqlite3_column_text(pIdxList, 1);
if( zIdx==0 ) continue;
/* Zero the IdxConstraint.bFlag values in the pEq list */
for(pIter=pEq; pIter; pIter=pIter->pLink) pIter->bFlag = 0;
rc = idxPrintfPrepareStmt(dbm, &pInfo, 0, "PRAGMA index_xInfo=%Q", zIdx);
while( rc==SQLITE_OK && sqlite3_step(pInfo)==SQLITE_ROW ){
int iIdx = sqlite3_column_int(pInfo, 0);
int iCol = sqlite3_column_int(pInfo, 1);
const char *zColl = (const char*)sqlite3_column_text(pInfo, 4);
if( iIdx<nEq ){
for(pIter=pEq; pIter; pIter=pIter->pLink){
if( pIter->bFlag ) continue;
if( pIter->iCol!=iCol ) continue;
if( sqlite3_stricmp(pIter->zColl, zColl) ) continue;
pIter->bFlag = 1;
break;
}
if( pIter==0 ){
bMatch = 0;
break;
}
}else{
if( pT ){
if( pT->iCol!=iCol || sqlite3_stricmp(pT->zColl, zColl) ){
bMatch = 0;
break;
}
pT = pT->pLink;
}
}
}
idxFinalize(&rc, pInfo);
if( rc==SQLITE_OK && bMatch ){
sqlite3_finalize(pIdxList);
return 1;
}
}
idxFinalize(&rc, pIdxList);
*pRc = rc;
return 0;
}
/* Callback for sqlite3_exec() with query with leading count(*) column.
* The first argument is expected to be an int*, referent to be incremented
* if that leading column is not exactly '0'.
*/
static int countNonzeros(void* pCount, int nc,
char* azResults[], char* azColumns[]){
(void)azColumns; /* Suppress unused parameter warning */
if( nc>0 && (azResults[0][0]!='0' || azResults[0][1]!=0) ){
*((int *)pCount) += 1;
}
return 0;
}
static int idxCreateFromCons(
sqlite3expert *p,
IdxScan *pScan,
IdxConstraint *pEq,
IdxConstraint *pTail
){
sqlite3 *dbm = p->dbm;
int rc = SQLITE_OK;
if( (pEq || pTail) && 0==idxFindCompatible(&rc, dbm, pScan, pEq, pTail) ){
IdxTable *pTab = pScan->pTab;
char *zCols = 0;
char *zIdx = 0;
IdxConstraint *pCons;
unsigned int h = 0;
const char *zFmt;
for(pCons=pEq; pCons; pCons=pCons->pLink){
zCols = idxAppendColDefn(&rc, zCols, pTab, pCons);
}
for(pCons=pTail; pCons; pCons=pCons->pLink){
zCols = idxAppendColDefn(&rc, zCols, pTab, pCons);
}
if( rc==SQLITE_OK ){
/* Hash the list of columns to come up with a name for the index */
const char *zTable = pScan->pTab->zName;
int quoteTable = idxIdentifierRequiresQuotes(zTable);
char *zName = 0; /* Index name */
int collisions = 0;
do{
int i;
char *zFind;
for(i=0; zCols[i]; i++){
h += ((h<<3) + zCols[i]);
}
sqlite3_free(zName);
zName = sqlite3_mprintf("%s_idx_%08x", zTable, h);
if( zName==0 ) break;
/* Is is unique among table, view and index names? */
zFmt = "SELECT count(*) FROM sqlite_schema WHERE name=%Q"
" AND type in ('index','table','view')";
zFind = sqlite3_mprintf(zFmt, zName);
i = 0;
rc = sqlite3_exec(dbm, zFind, countNonzeros, &i, 0);
assert(rc==SQLITE_OK);
sqlite3_free(zFind);
if( i==0 ){
collisions = 0;
break;
}
++collisions;
}while( collisions<50 && zName!=0 );
if( collisions ){
/* This return means "Gave up trying to find a unique index name." */
rc = SQLITE_BUSY_TIMEOUT;
}else if( zName==0 ){
rc = SQLITE_NOMEM;
}else{
if( quoteTable ){
zFmt = "CREATE INDEX \"%w\" ON \"%w\"(%s)";
}else{
zFmt = "CREATE INDEX %s ON %s(%s)";
}
zIdx = sqlite3_mprintf(zFmt, zName, zTable, zCols);
if( !zIdx ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_exec(dbm, zIdx, 0, 0, p->pzErrmsg);
if( rc!=SQLITE_OK ){
rc = SQLITE_BUSY_TIMEOUT;
}else{
idxHashAdd(&rc, &p->hIdx, zName, zIdx);
}
}
sqlite3_free(zName);
sqlite3_free(zIdx);
}
}
sqlite3_free(zCols);
}
return rc;
}
/*
** Return true if list pList (linked by IdxConstraint.pLink) contains
** a constraint compatible with *p. Otherwise return false.
*/
static int idxFindConstraint(IdxConstraint *pList, IdxConstraint *p){
IdxConstraint *pCmp;
for(pCmp=pList; pCmp; pCmp=pCmp->pLink){
if( p->iCol==pCmp->iCol ) return 1;
}
return 0;
}
static int idxCreateFromWhere(
sqlite3expert *p,
IdxScan *pScan, /* Create indexes for this scan */
IdxConstraint *pTail /* range/ORDER BY constraints for inclusion */
){
IdxConstraint *p1 = 0;
IdxConstraint *pCon;
int rc;
/* Gather up all the == constraints. */
for(pCon=pScan->pEq; pCon; pCon=pCon->pNext){
if( !idxFindConstraint(p1, pCon) && !idxFindConstraint(pTail, pCon) ){
pCon->pLink = p1;
p1 = pCon;
}
}
/* Create an index using the == constraints collected above. And the
** range constraint/ORDER BY terms passed in by the caller, if any. */
rc = idxCreateFromCons(p, pScan, p1, pTail);
/* If no range/ORDER BY passed by the caller, create a version of the
** index for each range constraint. */
if( pTail==0 ){
for(pCon=pScan->pRange; rc==SQLITE_OK && pCon; pCon=pCon->pNext){
assert( pCon->pLink==0 );
if( !idxFindConstraint(p1, pCon) && !idxFindConstraint(pTail, pCon) ){
rc = idxCreateFromCons(p, pScan, p1, pCon);
}
}
}
return rc;
}
/*
** Create candidate indexes in database [dbm] based on the data in
** linked-list pScan.
*/
static int idxCreateCandidates(sqlite3expert *p){
int rc = SQLITE_OK;
IdxScan *pIter;
for(pIter=p->pScan; pIter && rc==SQLITE_OK; pIter=pIter->pNextScan){
rc = idxCreateFromWhere(p, pIter, 0);
if( rc==SQLITE_OK && pIter->pOrder ){
rc = idxCreateFromWhere(p, pIter, pIter->pOrder);
}
}
return rc;
}
/*
** Free all elements of the linked list starting at pConstraint.
*/
static void idxConstraintFree(IdxConstraint *pConstraint){
IdxConstraint *pNext;
IdxConstraint *p;
for(p=pConstraint; p; p=pNext){
pNext = p->pNext;
sqlite3_free(p);
}
}
/*
** Free all elements of the linked list starting from pScan up until pLast
** (pLast is not freed).
*/
static void idxScanFree(IdxScan *pScan, IdxScan *pLast){
IdxScan *p;
IdxScan *pNext;
for(p=pScan; p!=pLast; p=pNext){
pNext = p->pNextScan;
idxConstraintFree(p->pOrder);
idxConstraintFree(p->pEq);
idxConstraintFree(p->pRange);
sqlite3_free(p);
}
}
/*
** Free all elements of the linked list starting from pStatement up
** until pLast (pLast is not freed).
*/
static void idxStatementFree(IdxStatement *pStatement, IdxStatement *pLast){
IdxStatement *p;
IdxStatement *pNext;
for(p=pStatement; p!=pLast; p=pNext){
pNext = p->pNext;
sqlite3_free(p->zEQP);
sqlite3_free(p->zIdx);
sqlite3_free(p);
}
}
/*
** Free the linked list of IdxTable objects starting at pTab.
*/
static void idxTableFree(IdxTable *pTab){
IdxTable *pIter;
IdxTable *pNext;
for(pIter=pTab; pIter; pIter=pNext){
pNext = pIter->pNext;
sqlite3_free(pIter);
}
}
/*
** Free the linked list of IdxWrite objects starting at pTab.
*/
static void idxWriteFree(IdxWrite *pTab){
IdxWrite *pIter;
IdxWrite *pNext;
for(pIter=pTab; pIter; pIter=pNext){
pNext = pIter->pNext;
sqlite3_free(pIter);
}
}
/*
** This function is called after candidate indexes have been created. It
** runs all the queries to see which indexes they prefer, and populates
** IdxStatement.zIdx and IdxStatement.zEQP with the results.
*/
static int idxFindIndexes(
sqlite3expert *p,
char **pzErr /* OUT: Error message (sqlite3_malloc) */
){
IdxStatement *pStmt;
sqlite3 *dbm = p->dbm;
int rc = SQLITE_OK;
IdxHash hIdx;
idxHashInit(&hIdx);
for(pStmt=p->pStatement; rc==SQLITE_OK && pStmt; pStmt=pStmt->pNext){
IdxHashEntry *pEntry;
sqlite3_stmt *pExplain = 0;
idxHashClear(&hIdx);
rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr,
"EXPLAIN QUERY PLAN %s", pStmt->zSql
);
while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){
/* int iId = sqlite3_column_int(pExplain, 0); */
/* int iParent = sqlite3_column_int(pExplain, 1); */
/* int iNotUsed = sqlite3_column_int(pExplain, 2); */
const char *zDetail = (const char*)sqlite3_column_text(pExplain, 3);
int nDetail;
int i;
if( !zDetail ) continue;
nDetail = STRLEN(zDetail);
for(i=0; i<nDetail; i++){
const char *zIdx = 0;
if( i+13<nDetail && memcmp(&zDetail[i], " USING INDEX ", 13)==0 ){
zIdx = &zDetail[i+13];
}else if( i+22<nDetail
&& memcmp(&zDetail[i], " USING COVERING INDEX ", 22)==0
){
zIdx = &zDetail[i+22];
}
if( zIdx ){
const char *zSql;
int nIdx = 0;
while( zIdx[nIdx]!='\0' && (zIdx[nIdx]!=' ' || zIdx[nIdx+1]!='(') ){
nIdx++;
}
zSql = idxHashSearch(&p->hIdx, zIdx, nIdx);
if( zSql ){
idxHashAdd(&rc, &hIdx, zSql, 0);
if( rc ) goto find_indexes_out;
}
break;
}
}
if( zDetail[0]!='-' ){
pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%s\n", zDetail);
}
}
for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){
pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey);
}
idxFinalize(&rc, pExplain);
}
find_indexes_out:
idxHashClear(&hIdx);
return rc;
}
static int idxAuthCallback(
void *pCtx,
int eOp,
const char *z3,
const char *z4,
const char *zDb,
const char *zTrigger
){
int rc = SQLITE_OK;
(void)z4;
(void)zTrigger;
if( eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE || eOp==SQLITE_DELETE ){
if( sqlite3_stricmp(zDb, "main")==0 ){
sqlite3expert *p = (sqlite3expert*)pCtx;
IdxTable *pTab;
for(pTab=p->pTable; pTab; pTab=pTab->pNext){
if( 0==sqlite3_stricmp(z3, pTab->zName) ) break;
}
if( pTab ){
IdxWrite *pWrite;
for(pWrite=p->pWrite; pWrite; pWrite=pWrite->pNext){
if( pWrite->pTab==pTab && pWrite->eOp==eOp ) break;
}
if( pWrite==0 ){
pWrite = idxMalloc(&rc, sizeof(IdxWrite));
if( rc==SQLITE_OK ){
pWrite->pTab = pTab;
pWrite->eOp = eOp;
pWrite->pNext = p->pWrite;
p->pWrite = pWrite;
}
}
}
}
}
return rc;
}
static int idxProcessOneTrigger(
sqlite3expert *p,
IdxWrite *pWrite,
char **pzErr
){
static const char *zInt = UNIQUE_TABLE_NAME;
static const char *zDrop = "DROP TABLE " UNIQUE_TABLE_NAME;
IdxTable *pTab = pWrite->pTab;
const char *zTab = pTab->zName;
const char *zSql =
"SELECT 'CREATE TEMP' || substr(sql, 7) FROM sqlite_schema "
"WHERE tbl_name = %Q AND type IN ('table', 'trigger') "
"ORDER BY type;";
sqlite3_stmt *pSelect = 0;
int rc = SQLITE_OK;
char *zWrite = 0;
/* Create the table and its triggers in the temp schema */
rc = idxPrintfPrepareStmt(p->db, &pSelect, pzErr, zSql, zTab, zTab);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSelect) ){
const char *zCreate = (const char*)sqlite3_column_text(pSelect, 0);
if( zCreate==0 ) continue;
rc = sqlite3_exec(p->dbv, zCreate, 0, 0, pzErr);
}
idxFinalize(&rc, pSelect);
/* Rename the table in the temp schema to zInt */
if( rc==SQLITE_OK ){
char *z = sqlite3_mprintf("ALTER TABLE temp.%Q RENAME TO %Q", zTab, zInt);
if( z==0 ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_exec(p->dbv, z, 0, 0, pzErr);
sqlite3_free(z);
}
}
switch( pWrite->eOp ){
case SQLITE_INSERT: {
int i;
zWrite = idxAppendText(&rc, zWrite, "INSERT INTO %Q VALUES(", zInt);
for(i=0; i<pTab->nCol; i++){
zWrite = idxAppendText(&rc, zWrite, "%s?", i==0 ? "" : ", ");
}
zWrite = idxAppendText(&rc, zWrite, ")");
break;
}
case SQLITE_UPDATE: {
int i;
zWrite = idxAppendText(&rc, zWrite, "UPDATE %Q SET ", zInt);
for(i=0; i<pTab->nCol; i++){
zWrite = idxAppendText(&rc, zWrite, "%s%Q=?", i==0 ? "" : ", ",
pTab->aCol[i].zName
);
}
break;
}
default: {
assert( pWrite->eOp==SQLITE_DELETE );
if( rc==SQLITE_OK ){
zWrite = sqlite3_mprintf("DELETE FROM %Q", zInt);
if( zWrite==0 ) rc = SQLITE_NOMEM;
}
}
}
if( rc==SQLITE_OK ){
sqlite3_stmt *pX = 0;
rc = sqlite3_prepare_v2(p->dbv, zWrite, -1, &pX, 0);
idxFinalize(&rc, pX);
if( rc!=SQLITE_OK ){
idxDatabaseError(p->dbv, pzErr);
}
}
sqlite3_free(zWrite);
if( rc==SQLITE_OK ){
rc = sqlite3_exec(p->dbv, zDrop, 0, 0, pzErr);
}
return rc;
}
static int idxProcessTriggers(sqlite3expert *p, char **pzErr){
int rc = SQLITE_OK;
IdxWrite *pEnd = 0;
IdxWrite *pFirst = p->pWrite;
while( rc==SQLITE_OK && pFirst!=pEnd ){
IdxWrite *pIter;
for(pIter=pFirst; rc==SQLITE_OK && pIter!=pEnd; pIter=pIter->pNext){
rc = idxProcessOneTrigger(p, pIter, pzErr);
}
pEnd = pFirst;
pFirst = p->pWrite;
}
return rc;
}
static int idxCreateVtabSchema(sqlite3expert *p, char **pzErrmsg){
int rc = idxRegisterVtab(p);
sqlite3_stmt *pSchema = 0;
/* For each table in the main db schema:
**
** 1) Add an entry to the p->pTable list, and
** 2) Create the equivalent virtual table in dbv.
*/
rc = idxPrepareStmt(p->db, &pSchema, pzErrmsg,
"SELECT type, name, sql, 1 FROM sqlite_schema "
"WHERE type IN ('table','view') AND name NOT LIKE 'sqlite_%%' "
" UNION ALL "
"SELECT type, name, sql, 2 FROM sqlite_schema "
"WHERE type = 'trigger'"
" AND tbl_name IN(SELECT name FROM sqlite_schema WHERE type = 'view') "
"ORDER BY 4, 1"
);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSchema) ){
const char *zType = (const char*)sqlite3_column_text(pSchema, 0);
const char *zName = (const char*)sqlite3_column_text(pSchema, 1);
const char *zSql = (const char*)sqlite3_column_text(pSchema, 2);
if( zType==0 || zName==0 ) continue;
if( zType[0]=='v' || zType[1]=='r' ){
if( zSql ) rc = sqlite3_exec(p->dbv, zSql, 0, 0, pzErrmsg);
}else{
IdxTable *pTab;
rc = idxGetTableInfo(p->db, zName, &pTab, pzErrmsg);
if( rc==SQLITE_OK ){
int i;
char *zInner = 0;
char *zOuter = 0;
pTab->pNext = p->pTable;
p->pTable = pTab;
/* The statement the vtab will pass to sqlite3_declare_vtab() */
zInner = idxAppendText(&rc, 0, "CREATE TABLE x(");
for(i=0; i<pTab->nCol; i++){
zInner = idxAppendText(&rc, zInner, "%s%Q COLLATE %s",
(i==0 ? "" : ", "), pTab->aCol[i].zName, pTab->aCol[i].zColl
);
}
zInner = idxAppendText(&rc, zInner, ")");
/* The CVT statement to create the vtab */
zOuter = idxAppendText(&rc, 0,
"CREATE VIRTUAL TABLE %Q USING expert(%Q)", zName, zInner
);
if( rc==SQLITE_OK ){
rc = sqlite3_exec(p->dbv, zOuter, 0, 0, pzErrmsg);
}
sqlite3_free(zInner);
sqlite3_free(zOuter);
}
}
}
idxFinalize(&rc, pSchema);
return rc;
}
struct IdxSampleCtx {
int iTarget;
double target; /* Target nRet/nRow value */
double nRow; /* Number of rows seen */
double nRet; /* Number of rows returned */
};
static void idxSampleFunc(
sqlite3_context *pCtx,
int argc,
sqlite3_value **argv
){
struct IdxSampleCtx *p = (struct IdxSampleCtx*)sqlite3_user_data(pCtx);
int bRet;
(void)argv;
assert( argc==0 );
if( p->nRow==0.0 ){
bRet = 1;
}else{
bRet = (p->nRet / p->nRow) <= p->target;
if( bRet==0 ){
unsigned short rnd;
sqlite3_randomness(2, (void*)&rnd);
bRet = ((int)rnd % 100) <= p->iTarget;
}
}
sqlite3_result_int(pCtx, bRet);
p->nRow += 1.0;
p->nRet += (double)bRet;
}
struct IdxRemCtx {
int nSlot;
struct IdxRemSlot {
int eType; /* SQLITE_NULL, INTEGER, REAL, TEXT, BLOB */
i64 iVal; /* SQLITE_INTEGER value */
double rVal; /* SQLITE_FLOAT value */
int nByte; /* Bytes of space allocated at z */
int n; /* Size of buffer z */
char *z; /* SQLITE_TEXT/BLOB value */
} aSlot[1];
};
/*
** Implementation of scalar function rem().
*/
static void idxRemFunc(
sqlite3_context *pCtx,
int argc,
sqlite3_value **argv
){
struct IdxRemCtx *p = (struct IdxRemCtx*)sqlite3_user_data(pCtx);
struct IdxRemSlot *pSlot;
int iSlot;
assert( argc==2 );
iSlot = sqlite3_value_int(argv[0]);
assert( iSlot<=p->nSlot );
pSlot = &p->aSlot[iSlot];
switch( pSlot->eType ){
case SQLITE_NULL:
/* no-op */
break;
case SQLITE_INTEGER:
sqlite3_result_int64(pCtx, pSlot->iVal);
break;
case SQLITE_FLOAT:
sqlite3_result_double(pCtx, pSlot->rVal);
break;
case SQLITE_BLOB:
sqlite3_result_blob(pCtx, pSlot->z, pSlot->n, SQLITE_TRANSIENT);
break;
case SQLITE_TEXT:
sqlite3_result_text(pCtx, pSlot->z, pSlot->n, SQLITE_TRANSIENT);
break;
}
pSlot->eType = sqlite3_value_type(argv[1]);
switch( pSlot->eType ){
case SQLITE_NULL:
/* no-op */
break;
case SQLITE_INTEGER:
pSlot->iVal = sqlite3_value_int64(argv[1]);
break;
case SQLITE_FLOAT:
pSlot->rVal = sqlite3_value_double(argv[1]);
break;
case SQLITE_BLOB:
case SQLITE_TEXT: {
int nByte = sqlite3_value_bytes(argv[1]);
const void *pData = 0;
if( nByte>pSlot->nByte ){
char *zNew = (char*)sqlite3_realloc(pSlot->z, nByte*2);
if( zNew==0 ){
sqlite3_result_error_nomem(pCtx);
return;
}
pSlot->nByte = nByte*2;
pSlot->z = zNew;
}
pSlot->n = nByte;
if( pSlot->eType==SQLITE_BLOB ){
pData = sqlite3_value_blob(argv[1]);
if( pData ) memcpy(pSlot->z, pData, nByte);
}else{
pData = sqlite3_value_text(argv[1]);
memcpy(pSlot->z, pData, nByte);
}
break;
}
}
}
static int idxLargestIndex(sqlite3 *db, int *pnMax, char **pzErr){
int rc = SQLITE_OK;
const char *zMax =
"SELECT max(i.seqno) FROM "
" sqlite_schema AS s, "
" pragma_index_list(s.name) AS l, "
" pragma_index_info(l.name) AS i "
"WHERE s.type = 'table'";
sqlite3_stmt *pMax = 0;
*pnMax = 0;
rc = idxPrepareStmt(db, &pMax, pzErr, zMax);
if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){
*pnMax = sqlite3_column_int(pMax, 0) + 1;
}
idxFinalize(&rc, pMax);
return rc;
}
static int idxPopulateOneStat1(
sqlite3expert *p,
sqlite3_stmt *pIndexXInfo,
sqlite3_stmt *pWriteStat,
const char *zTab,
const char *zIdx,
char **pzErr
){
char *zCols = 0;
char *zOrder = 0;
char *zQuery = 0;
int nCol = 0;
int i;
sqlite3_stmt *pQuery = 0;
int *aStat = 0;
int rc = SQLITE_OK;
assert( p->iSample>0 );
/* Formulate the query text */
sqlite3_bind_text(pIndexXInfo, 1, zIdx, -1, SQLITE_STATIC);
while( SQLITE_OK==rc && SQLITE_ROW==sqlite3_step(pIndexXInfo) ){
const char *zComma = zCols==0 ? "" : ", ";
const char *zName = (const char*)sqlite3_column_text(pIndexXInfo, 0);
const char *zColl = (const char*)sqlite3_column_text(pIndexXInfo, 1);
zCols = idxAppendText(&rc, zCols,
"%sx.%Q IS rem(%d, x.%Q) COLLATE %s", zComma, zName, nCol, zName, zColl
);
zOrder = idxAppendText(&rc, zOrder, "%s%d", zComma, ++nCol);
}
sqlite3_reset(pIndexXInfo);
if( rc==SQLITE_OK ){
if( p->iSample==100 ){
zQuery = sqlite3_mprintf(
"SELECT %s FROM %Q x ORDER BY %s", zCols, zTab, zOrder
);
}else{
zQuery = sqlite3_mprintf(
"SELECT %s FROM temp."UNIQUE_TABLE_NAME" x ORDER BY %s", zCols, zOrder
);
}
}
sqlite3_free(zCols);
sqlite3_free(zOrder);
/* Formulate the query text */
if( rc==SQLITE_OK ){
sqlite3 *dbrem = (p->iSample==100 ? p->db : p->dbv);
rc = idxPrepareStmt(dbrem, &pQuery, pzErr, zQuery);
}
sqlite3_free(zQuery);
if( rc==SQLITE_OK ){
aStat = (int*)idxMalloc(&rc, sizeof(int)*(nCol+1));
}
if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pQuery) ){
IdxHashEntry *pEntry;
char *zStat = 0;
for(i=0; i<=nCol; i++) aStat[i] = 1;
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pQuery) ){
aStat[0]++;
for(i=0; i<nCol; i++){
if( sqlite3_column_int(pQuery, i)==0 ) break;
}
for(/*no-op*/; i<nCol; i++){
aStat[i+1]++;
}
}
if( rc==SQLITE_OK ){
int s0 = aStat[0];
zStat = sqlite3_mprintf("%d", s0);
if( zStat==0 ) rc = SQLITE_NOMEM;
for(i=1; rc==SQLITE_OK && i<=nCol; i++){
zStat = idxAppendText(&rc, zStat, " %d", (s0+aStat[i]/2) / aStat[i]);
}
}
if( rc==SQLITE_OK ){
sqlite3_bind_text(pWriteStat, 1, zTab, -1, SQLITE_STATIC);
sqlite3_bind_text(pWriteStat, 2, zIdx, -1, SQLITE_STATIC);
sqlite3_bind_text(pWriteStat, 3, zStat, -1, SQLITE_STATIC);
sqlite3_step(pWriteStat);
rc = sqlite3_reset(pWriteStat);
}
pEntry = idxHashFind(&p->hIdx, zIdx, STRLEN(zIdx));
if( pEntry ){
assert( pEntry->zVal2==0 );
pEntry->zVal2 = zStat;
}else{
sqlite3_free(zStat);
}
}
sqlite3_free(aStat);
idxFinalize(&rc, pQuery);
return rc;
}
static int idxBuildSampleTable(sqlite3expert *p, const char *zTab){
int rc;
char *zSql;
rc = sqlite3_exec(p->dbv,"DROP TABLE IF EXISTS temp."UNIQUE_TABLE_NAME,0,0,0);
if( rc!=SQLITE_OK ) return rc;
zSql = sqlite3_mprintf(
"CREATE TABLE temp." UNIQUE_TABLE_NAME " AS SELECT * FROM %Q", zTab
);
if( zSql==0 ) return SQLITE_NOMEM;
rc = sqlite3_exec(p->dbv, zSql, 0, 0, 0);
sqlite3_free(zSql);
return rc;
}
/*
** This function is called as part of sqlite3_expert_analyze(). Candidate
** indexes have already been created in database sqlite3expert.dbm, this
** function populates sqlite_stat1 table in the same database.
**
** The stat1 data is generated by querying the
*/
static int idxPopulateStat1(sqlite3expert *p, char **pzErr){
int rc = SQLITE_OK;
int nMax =0;
struct IdxRemCtx *pCtx = 0;
struct IdxSampleCtx samplectx;
int i;
i64 iPrev = -100000;
sqlite3_stmt *pAllIndex = 0;
sqlite3_stmt *pIndexXInfo = 0;
sqlite3_stmt *pWrite = 0;
const char *zAllIndex =
"SELECT s.rowid, s.name, l.name FROM "
" sqlite_schema AS s, "
" pragma_index_list(s.name) AS l "
"WHERE s.type = 'table'";
const char *zIndexXInfo =
"SELECT name, coll FROM pragma_index_xinfo(?) WHERE key";
const char *zWrite = "INSERT INTO sqlite_stat1 VALUES(?, ?, ?)";
/* If iSample==0, no sqlite_stat1 data is required. */
if( p->iSample==0 ) return SQLITE_OK;
rc = idxLargestIndex(p->dbm, &nMax, pzErr);
if( nMax<=0 || rc!=SQLITE_OK ) return rc;
rc = sqlite3_exec(p->dbm, "ANALYZE; PRAGMA writable_schema=1", 0, 0, 0);
if( rc==SQLITE_OK ){
int nByte = sizeof(struct IdxRemCtx) + (sizeof(struct IdxRemSlot) * nMax);
pCtx = (struct IdxRemCtx*)idxMalloc(&rc, nByte);
}
if( rc==SQLITE_OK ){
sqlite3 *dbrem = (p->iSample==100 ? p->db : p->dbv);
rc = sqlite3_create_function(
dbrem, "rem", 2, SQLITE_UTF8, (void*)pCtx, idxRemFunc, 0, 0
);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(
p->db, "sample", 0, SQLITE_UTF8, (void*)&samplectx, idxSampleFunc, 0, 0
);
}
if( rc==SQLITE_OK ){
pCtx->nSlot = nMax+1;
rc = idxPrepareStmt(p->dbm, &pAllIndex, pzErr, zAllIndex);
}
if( rc==SQLITE_OK ){
rc = idxPrepareStmt(p->dbm, &pIndexXInfo, pzErr, zIndexXInfo);
}
if( rc==SQLITE_OK ){
rc = idxPrepareStmt(p->dbm, &pWrite, pzErr, zWrite);
}
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pAllIndex) ){
i64 iRowid = sqlite3_column_int64(pAllIndex, 0);
const char *zTab = (const char*)sqlite3_column_text(pAllIndex, 1);
const char *zIdx = (const char*)sqlite3_column_text(pAllIndex, 2);
if( zTab==0 || zIdx==0 ) continue;
if( p->iSample<100 && iPrev!=iRowid ){
samplectx.target = (double)p->iSample / 100.0;
samplectx.iTarget = p->iSample;
samplectx.nRow = 0.0;
samplectx.nRet = 0.0;
rc = idxBuildSampleTable(p, zTab);
if( rc!=SQLITE_OK ) break;
}
rc = idxPopulateOneStat1(p, pIndexXInfo, pWrite, zTab, zIdx, pzErr);
iPrev = iRowid;
}
if( rc==SQLITE_OK && p->iSample<100 ){
rc = sqlite3_exec(p->dbv,
"DROP TABLE IF EXISTS temp." UNIQUE_TABLE_NAME, 0,0,0
);
}
idxFinalize(&rc, pAllIndex);
idxFinalize(&rc, pIndexXInfo);
idxFinalize(&rc, pWrite);
if( pCtx ){
for(i=0; i<pCtx->nSlot; i++){
sqlite3_free(pCtx->aSlot[i].z);
}
sqlite3_free(pCtx);
}
if( rc==SQLITE_OK ){
rc = sqlite3_exec(p->dbm, "ANALYZE sqlite_schema", 0, 0, 0);
}
sqlite3_exec(p->db, "DROP TABLE IF EXISTS temp."UNIQUE_TABLE_NAME,0,0,0);
return rc;
}
/*
** Allocate a new sqlite3expert object.
*/
sqlite3expert *sqlite3_expert_new(sqlite3 *db, char **pzErrmsg){
int rc = SQLITE_OK;
sqlite3expert *pNew;
pNew = (sqlite3expert*)idxMalloc(&rc, sizeof(sqlite3expert));
/* Open two in-memory databases to work with. The "vtab database" (dbv)
** will contain a virtual table corresponding to each real table in
** the user database schema, and a copy of each view. It is used to
** collect information regarding the WHERE, ORDER BY and other clauses
** of the user's query.
*/
if( rc==SQLITE_OK ){
pNew->db = db;
pNew->iSample = 100;
rc = sqlite3_open(":memory:", &pNew->dbv);
}
if( rc==SQLITE_OK ){
rc = sqlite3_open(":memory:", &pNew->dbm);
if( rc==SQLITE_OK ){
sqlite3_db_config(pNew->dbm, SQLITE_DBCONFIG_TRIGGER_EQP, 1, (int*)0);
}
}
/* Copy the entire schema of database [db] into [dbm]. */
if( rc==SQLITE_OK ){
sqlite3_stmt *pSql = 0;
rc = idxPrintfPrepareStmt(pNew->db, &pSql, pzErrmsg,
"SELECT sql FROM sqlite_schema WHERE name NOT LIKE 'sqlite_%%'"
" AND sql NOT LIKE 'CREATE VIRTUAL %%'"
);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSql) ){
const char *zSql = (const char*)sqlite3_column_text(pSql, 0);
if( zSql ) rc = sqlite3_exec(pNew->dbm, zSql, 0, 0, pzErrmsg);
}
idxFinalize(&rc, pSql);
}
/* Create the vtab schema */
if( rc==SQLITE_OK ){
rc = idxCreateVtabSchema(pNew, pzErrmsg);
}
/* Register the auth callback with dbv */
if( rc==SQLITE_OK ){
sqlite3_set_authorizer(pNew->dbv, idxAuthCallback, (void*)pNew);
}
/* If an error has occurred, free the new object and reutrn NULL. Otherwise,
** return the new sqlite3expert handle. */
if( rc!=SQLITE_OK ){
sqlite3_expert_destroy(pNew);
pNew = 0;
}
return pNew;
}
/*
** Configure an sqlite3expert object.
*/
int sqlite3_expert_config(sqlite3expert *p, int op, ...){
int rc = SQLITE_OK;
va_list ap;
va_start(ap, op);
switch( op ){
case EXPERT_CONFIG_SAMPLE: {
int iVal = va_arg(ap, int);
if( iVal<0 ) iVal = 0;
if( iVal>100 ) iVal = 100;
p->iSample = iVal;
break;
}
default:
rc = SQLITE_NOTFOUND;
break;
}
va_end(ap);
return rc;
}
/*
** Add an SQL statement to the analysis.
*/
int sqlite3_expert_sql(
sqlite3expert *p, /* From sqlite3_expert_new() */
const char *zSql, /* SQL statement to add */
char **pzErr /* OUT: Error message (if any) */
){
IdxScan *pScanOrig = p->pScan;
IdxStatement *pStmtOrig = p->pStatement;
int rc = SQLITE_OK;
const char *zStmt = zSql;
if( p->bRun ) return SQLITE_MISUSE;
while( rc==SQLITE_OK && zStmt && zStmt[0] ){
sqlite3_stmt *pStmt = 0;
rc = sqlite3_prepare_v2(p->dbv, zStmt, -1, &pStmt, &zStmt);
if( rc==SQLITE_OK ){
if( pStmt ){
IdxStatement *pNew;
const char *z = sqlite3_sql(pStmt);
int n = STRLEN(z);
pNew = (IdxStatement*)idxMalloc(&rc, sizeof(IdxStatement) + n+1);
if( rc==SQLITE_OK ){
pNew->zSql = (char*)&pNew[1];
memcpy(pNew->zSql, z, n+1);
pNew->pNext = p->pStatement;
if( p->pStatement ) pNew->iId = p->pStatement->iId+1;
p->pStatement = pNew;
}
sqlite3_finalize(pStmt);
}
}else{
idxDatabaseError(p->dbv, pzErr);
}
}
if( rc!=SQLITE_OK ){
idxScanFree(p->pScan, pScanOrig);
idxStatementFree(p->pStatement, pStmtOrig);
p->pScan = pScanOrig;
p->pStatement = pStmtOrig;
}
return rc;
}
int sqlite3_expert_analyze(sqlite3expert *p, char **pzErr){
int rc;
IdxHashEntry *pEntry;
/* Do trigger processing to collect any extra IdxScan structures */
rc = idxProcessTriggers(p, pzErr);
/* Create candidate indexes within the in-memory database file */
if( rc==SQLITE_OK ){
rc = idxCreateCandidates(p);
}else if ( rc==SQLITE_BUSY_TIMEOUT ){
if( pzErr )
*pzErr = sqlite3_mprintf("Cannot find a unique index name to propose.");
return rc;
}
/* Generate the stat1 data */
if( rc==SQLITE_OK ){
rc = idxPopulateStat1(p, pzErr);
}
/* Formulate the EXPERT_REPORT_CANDIDATES text */
for(pEntry=p->hIdx.pFirst; pEntry; pEntry=pEntry->pNext){
p->zCandidates = idxAppendText(&rc, p->zCandidates,
"%s;%s%s\n", pEntry->zVal,
pEntry->zVal2 ? " -- stat1: " : "", pEntry->zVal2
);
}
/* Figure out which of the candidate indexes are preferred by the query
** planner and report the results to the user. */
if( rc==SQLITE_OK ){
rc = idxFindIndexes(p, pzErr);
}
if( rc==SQLITE_OK ){
p->bRun = 1;
}
return rc;
}
/*
** Return the total number of statements that have been added to this
** sqlite3expert using sqlite3_expert_sql().
*/
int sqlite3_expert_count(sqlite3expert *p){
int nRet = 0;
if( p->pStatement ) nRet = p->pStatement->iId+1;
return nRet;
}
/*
** Return a component of the report.
*/
const char *sqlite3_expert_report(sqlite3expert *p, int iStmt, int eReport){
const char *zRet = 0;
IdxStatement *pStmt;
if( p->bRun==0 ) return 0;
for(pStmt=p->pStatement; pStmt && pStmt->iId!=iStmt; pStmt=pStmt->pNext);
switch( eReport ){
case EXPERT_REPORT_SQL:
if( pStmt ) zRet = pStmt->zSql;
break;
case EXPERT_REPORT_INDEXES:
if( pStmt ) zRet = pStmt->zIdx;
break;
case EXPERT_REPORT_PLAN:
if( pStmt ) zRet = pStmt->zEQP;
break;
case EXPERT_REPORT_CANDIDATES:
zRet = p->zCandidates;
break;
}
return zRet;
}
/*
** Free an sqlite3expert object.
*/
void sqlite3_expert_destroy(sqlite3expert *p){
if( p ){
sqlite3_close(p->dbm);
sqlite3_close(p->dbv);
idxScanFree(p->pScan, 0);
idxStatementFree(p->pStatement, 0);
idxTableFree(p->pTable);
idxWriteFree(p->pWrite);
idxHashClear(&p->hIdx);
sqlite3_free(p->zCandidates);
sqlite3_free(p);
}
}
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
/************************* End ../ext/expert/sqlite3expert.c ********************/
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_ENABLE_DBPAGE_VTAB)
#define SQLITE_SHELL_HAVE_RECOVER 1
#else
#define SQLITE_SHELL_HAVE_RECOVER 0
#endif
#if SQLITE_SHELL_HAVE_RECOVER
/************************* Begin ../ext/recover/sqlite3recover.h ******************/
/*
** 2022-08-27
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the public interface to the "recover" extension -
** an SQLite extension designed to recover data from corrupted database
** files.
*/
/*
** OVERVIEW:
**
** To use the API to recover data from a corrupted database, an
** application:
**
** 1) Creates an sqlite3_recover handle by calling either
** sqlite3_recover_init() or sqlite3_recover_init_sql().
**
** 2) Configures the new handle using one or more calls to
** sqlite3_recover_config().
**
** 3) Executes the recovery by repeatedly calling sqlite3_recover_step() on
** the handle until it returns something other than SQLITE_OK. If it
** returns SQLITE_DONE, then the recovery operation completed without
** error. If it returns some other non-SQLITE_OK value, then an error
** has occurred.
**
** 4) Retrieves any error code and English language error message using the
** sqlite3_recover_errcode() and sqlite3_recover_errmsg() APIs,
** respectively.
**
** 5) Destroys the sqlite3_recover handle and frees all resources
** using sqlite3_recover_finish().
**
** The application may abandon the recovery operation at any point
** before it is finished by passing the sqlite3_recover handle to
** sqlite3_recover_finish(). This is not an error, but the final state
** of the output database, or the results of running the partial script
** delivered to the SQL callback, are undefined.
*/
#ifndef _SQLITE_RECOVER_H
#define _SQLITE_RECOVER_H
/* #include "sqlite3.h" */
#ifdef __cplusplus
extern "C" {
#endif
/*
** An instance of the sqlite3_recover object represents a recovery
** operation in progress.
**
** Constructors:
**
** sqlite3_recover_init()
** sqlite3_recover_init_sql()
**
** Destructor:
**
** sqlite3_recover_finish()
**
** Methods:
**
** sqlite3_recover_config()
** sqlite3_recover_errcode()
** sqlite3_recover_errmsg()
** sqlite3_recover_run()
** sqlite3_recover_step()
*/
typedef struct sqlite3_recover sqlite3_recover;
/*
** These two APIs attempt to create and return a new sqlite3_recover object.
** In both cases the first two arguments identify the (possibly
** corrupt) database to recover data from. The first argument is an open
** database handle and the second the name of a database attached to that
** handle (i.e. "main", "temp" or the name of an attached database).
**
** If sqlite3_recover_init() is used to create the new sqlite3_recover
** handle, then data is recovered into a new database, identified by
** string parameter zUri. zUri may be an absolute or relative file path,
** or may be an SQLite URI. If the identified database file already exists,
** it is overwritten.
**
** If sqlite3_recover_init_sql() is invoked, then any recovered data will
** be returned to the user as a series of SQL statements. Executing these
** SQL statements results in the same database as would have been created
** had sqlite3_recover_init() been used. For each SQL statement in the
** output, the callback function passed as the third argument (xSql) is
** invoked once. The first parameter is a passed a copy of the fourth argument
** to this function (pCtx) as its first parameter, and a pointer to a
** nul-terminated buffer containing the SQL statement formated as UTF-8 as
** the second. If the xSql callback returns any value other than SQLITE_OK,
** then processing is immediately abandoned and the value returned used as
** the recover handle error code (see below).
**
** If an out-of-memory error occurs, NULL may be returned instead of
** a valid handle. In all other cases, it is the responsibility of the
** application to avoid resource leaks by ensuring that
** sqlite3_recover_finish() is called on all allocated handles.
*/
sqlite3_recover *sqlite3_recover_init(
sqlite3* db,
const char *zDb,
const char *zUri
);
sqlite3_recover *sqlite3_recover_init_sql(
sqlite3* db,
const char *zDb,
int (*xSql)(void*, const char*),
void *pCtx
);
/*
** Configure an sqlite3_recover object that has just been created using
** sqlite3_recover_init() or sqlite3_recover_init_sql(). This function
** may only be called before the first call to sqlite3_recover_step()
** or sqlite3_recover_run() on the object.
**
** The second argument passed to this function must be one of the
** SQLITE_RECOVER_* symbols defined below. Valid values for the third argument
** depend on the specific SQLITE_RECOVER_* symbol in use.
**
** SQLITE_OK is returned if the configuration operation was successful,
** or an SQLite error code otherwise.
*/
int sqlite3_recover_config(sqlite3_recover*, int op, void *pArg);
/*
** SQLITE_RECOVER_LOST_AND_FOUND:
** The pArg argument points to a string buffer containing the name
** of a "lost-and-found" table in the output database, or NULL. If
** the argument is non-NULL and the database contains seemingly
** valid pages that cannot be associated with any table in the
** recovered part of the schema, data is extracted from these
** pages to add to the lost-and-found table.
**
** SQLITE_RECOVER_FREELIST_CORRUPT:
** The pArg value must actually be a pointer to a value of type
** int containing value 0 or 1 cast as a (void*). If this option is set
** (argument is 1) and a lost-and-found table has been configured using
** SQLITE_RECOVER_LOST_AND_FOUND, then is assumed that the freelist is
** corrupt and an attempt is made to recover records from pages that
** appear to be linked into the freelist. Otherwise, pages on the freelist
** are ignored. Setting this option can recover more data from the
** database, but often ends up "recovering" deleted records. The default
** value is 0 (clear).
**
** SQLITE_RECOVER_ROWIDS:
** The pArg value must actually be a pointer to a value of type
** int containing value 0 or 1 cast as a (void*). If this option is set
** (argument is 1), then an attempt is made to recover rowid values
** that are not also INTEGER PRIMARY KEY values. If this option is
** clear, then new rowids are assigned to all recovered rows. The
** default value is 1 (set).
**
** SQLITE_RECOVER_SLOWINDEXES:
** The pArg value must actually be a pointer to a value of type
** int containing value 0 or 1 cast as a (void*). If this option is clear
** (argument is 0), then when creating an output database, the recover
** module creates and populates non-UNIQUE indexes right at the end of the
** recovery operation - after all recoverable data has been inserted
** into the new database. This is faster overall, but means that the
** final call to sqlite3_recover_step() for a recovery operation may
** be need to create a large number of indexes, which may be very slow.
**
** Or, if this option is set (argument is 1), then non-UNIQUE indexes
** are created in the output database before it is populated with
** recovered data. This is slower overall, but avoids the slow call
** to sqlite3_recover_step() at the end of the recovery operation.
**
** The default option value is 0.
*/
#define SQLITE_RECOVER_LOST_AND_FOUND 1
#define SQLITE_RECOVER_FREELIST_CORRUPT 2
#define SQLITE_RECOVER_ROWIDS 3
#define SQLITE_RECOVER_SLOWINDEXES 4
/*
** Perform a unit of work towards the recovery operation. This function
** must normally be called multiple times to complete database recovery.
**
** If no error occurs but the recovery operation is not completed, this
** function returns SQLITE_OK. If recovery has been completed successfully
** then SQLITE_DONE is returned. If an error has occurred, then an SQLite
** error code (e.g. SQLITE_IOERR or SQLITE_NOMEM) is returned. It is not
** considered an error if some or all of the data cannot be recovered
** due to database corruption.
**
** Once sqlite3_recover_step() has returned a value other than SQLITE_OK,
** all further such calls on the same recover handle are no-ops that return
** the same non-SQLITE_OK value.
*/
int sqlite3_recover_step(sqlite3_recover*);
/*
** Run the recovery operation to completion. Return SQLITE_OK if successful,
** or an SQLite error code otherwise. Calling this function is the same
** as executing:
**
** while( SQLITE_OK==sqlite3_recover_step(p) );
** return sqlite3_recover_errcode(p);
*/
int sqlite3_recover_run(sqlite3_recover*);
/*
** If an error has been encountered during a prior call to
** sqlite3_recover_step(), then this function attempts to return a
** pointer to a buffer containing an English language explanation of
** the error. If no error message is available, or if an out-of memory
** error occurs while attempting to allocate a buffer in which to format
** the error message, NULL is returned.
**
** The returned buffer remains valid until the sqlite3_recover handle is
** destroyed using sqlite3_recover_finish().
*/
const char *sqlite3_recover_errmsg(sqlite3_recover*);
/*
** If this function is called on an sqlite3_recover handle after
** an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK.
*/
int sqlite3_recover_errcode(sqlite3_recover*);
/*
** Clean up a recovery object created by a call to sqlite3_recover_init().
** The results of using a recovery object with any API after it has been
** passed to this function are undefined.
**
** This function returns the same value as sqlite3_recover_errcode().
*/
int sqlite3_recover_finish(sqlite3_recover*);
#ifdef __cplusplus
} /* end of the 'extern "C"' block */
#endif
#endif /* ifndef _SQLITE_RECOVER_H */
/************************* End ../ext/recover/sqlite3recover.h ********************/
# ifndef SQLITE_HAVE_SQLITE3R
/************************* Begin ../ext/recover/dbdata.c ******************/
/*
** 2019-04-17
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains an implementation of two eponymous virtual tables,
** "sqlite_dbdata" and "sqlite_dbptr". Both modules require that the
** "sqlite_dbpage" eponymous virtual table be available.
**
** SQLITE_DBDATA:
** sqlite_dbdata is used to extract data directly from a database b-tree
** page and its associated overflow pages, bypassing the b-tree layer.
** The table schema is equivalent to:
**
** CREATE TABLE sqlite_dbdata(
** pgno INTEGER,
** cell INTEGER,
** field INTEGER,
** value ANY,
** schema TEXT HIDDEN
** );
**
** IMPORTANT: THE VIRTUAL TABLE SCHEMA ABOVE IS SUBJECT TO CHANGE. IN THE
** FUTURE NEW NON-HIDDEN COLUMNS MAY BE ADDED BETWEEN "value" AND
** "schema".
**
** Each page of the database is inspected. If it cannot be interpreted as
** a b-tree page, or if it is a b-tree page containing 0 entries, the
** sqlite_dbdata table contains no rows for that page. Otherwise, the
** table contains one row for each field in the record associated with
** each cell on the page. For intkey b-trees, the key value is stored in
** field -1.
**
** For example, for the database:
**
** CREATE TABLE t1(a, b); -- root page is page 2
** INSERT INTO t1(rowid, a, b) VALUES(5, 'v', 'five');
** INSERT INTO t1(rowid, a, b) VALUES(10, 'x', 'ten');
**
** the sqlite_dbdata table contains, as well as from entries related to
** page 1, content equivalent to:
**
** INSERT INTO sqlite_dbdata(pgno, cell, field, value) VALUES
** (2, 0, -1, 5 ),
** (2, 0, 0, 'v' ),
** (2, 0, 1, 'five'),
** (2, 1, -1, 10 ),
** (2, 1, 0, 'x' ),
** (2, 1, 1, 'ten' );
**
** If database corruption is encountered, this module does not report an
** error. Instead, it attempts to extract as much data as possible and
** ignores the corruption.
**
** SQLITE_DBPTR:
** The sqlite_dbptr table has the following schema:
**
** CREATE TABLE sqlite_dbptr(
** pgno INTEGER,
** child INTEGER,
** schema TEXT HIDDEN
** );
**
** It contains one entry for each b-tree pointer between a parent and
** child page in the database.
*/
#if !defined(SQLITEINT_H)
/* #include "sqlite3ext.h" */
/* typedef unsigned char u8; */
/* typedef unsigned int u32; */
#endif
SQLITE_EXTENSION_INIT1
#include <string.h>
#include <assert.h>
#ifndef SQLITE_OMIT_VIRTUALTABLE
#define DBDATA_PADDING_BYTES 100
typedef struct DbdataTable DbdataTable;
typedef struct DbdataCursor DbdataCursor;
/* Cursor object */
struct DbdataCursor {
sqlite3_vtab_cursor base; /* Base class. Must be first */
sqlite3_stmt *pStmt; /* For fetching database pages */
int iPgno; /* Current page number */
u8 *aPage; /* Buffer containing page */
int nPage; /* Size of aPage[] in bytes */
int nCell; /* Number of cells on aPage[] */
int iCell; /* Current cell number */
int bOnePage; /* True to stop after one page */
int szDb;
sqlite3_int64 iRowid;
/* Only for the sqlite_dbdata table */
u8 *pRec; /* Buffer containing current record */
sqlite3_int64 nRec; /* Size of pRec[] in bytes */
sqlite3_int64 nHdr; /* Size of header in bytes */
int iField; /* Current field number */
u8 *pHdrPtr;
u8 *pPtr;
u32 enc; /* Text encoding */
sqlite3_int64 iIntkey; /* Integer key value */
};
/* Table object */
struct DbdataTable {
sqlite3_vtab base; /* Base class. Must be first */
sqlite3 *db; /* The database connection */
sqlite3_stmt *pStmt; /* For fetching database pages */
int bPtr; /* True for sqlite3_dbptr table */
};
/* Column and schema definitions for sqlite_dbdata */
#define DBDATA_COLUMN_PGNO 0
#define DBDATA_COLUMN_CELL 1
#define DBDATA_COLUMN_FIELD 2
#define DBDATA_COLUMN_VALUE 3
#define DBDATA_COLUMN_SCHEMA 4
#define DBDATA_SCHEMA \
"CREATE TABLE x(" \
" pgno INTEGER," \
" cell INTEGER," \
" field INTEGER," \
" value ANY," \
" schema TEXT HIDDEN" \
")"
/* Column and schema definitions for sqlite_dbptr */
#define DBPTR_COLUMN_PGNO 0
#define DBPTR_COLUMN_CHILD 1
#define DBPTR_COLUMN_SCHEMA 2
#define DBPTR_SCHEMA \
"CREATE TABLE x(" \
" pgno INTEGER," \
" child INTEGER," \
" schema TEXT HIDDEN" \
")"
/*
** Connect to an sqlite_dbdata (pAux==0) or sqlite_dbptr (pAux!=0) virtual
** table.
*/
static int dbdataConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
DbdataTable *pTab = 0;
int rc = sqlite3_declare_vtab(db, pAux ? DBPTR_SCHEMA : DBDATA_SCHEMA);
(void)argc;
(void)argv;
(void)pzErr;
sqlite3_vtab_config(db, SQLITE_VTAB_USES_ALL_SCHEMAS);
if( rc==SQLITE_OK ){
pTab = (DbdataTable*)sqlite3_malloc64(sizeof(DbdataTable));
if( pTab==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pTab, 0, sizeof(DbdataTable));
pTab->db = db;
pTab->bPtr = (pAux!=0);
}
}
*ppVtab = (sqlite3_vtab*)pTab;
return rc;
}
/*
** Disconnect from or destroy a sqlite_dbdata or sqlite_dbptr virtual table.
*/
static int dbdataDisconnect(sqlite3_vtab *pVtab){
DbdataTable *pTab = (DbdataTable*)pVtab;
if( pTab ){
sqlite3_finalize(pTab->pStmt);
sqlite3_free(pVtab);
}
return SQLITE_OK;
}
/*
** This function interprets two types of constraints:
**
** schema=?
** pgno=?
**
** If neither are present, idxNum is set to 0. If schema=? is present,
** the 0x01 bit in idxNum is set. If pgno=? is present, the 0x02 bit
** in idxNum is set.
**
** If both parameters are present, schema is in position 0 and pgno in
** position 1.
*/
static int dbdataBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdx){
DbdataTable *pTab = (DbdataTable*)tab;
int i;
int iSchema = -1;
int iPgno = -1;
int colSchema = (pTab->bPtr ? DBPTR_COLUMN_SCHEMA : DBDATA_COLUMN_SCHEMA);
for(i=0; i<pIdx->nConstraint; i++){
struct sqlite3_index_constraint *p = &pIdx->aConstraint[i];
if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
if( p->iColumn==colSchema ){
if( p->usable==0 ) return SQLITE_CONSTRAINT;
iSchema = i;
}
if( p->iColumn==DBDATA_COLUMN_PGNO && p->usable ){
iPgno = i;
}
}
}
if( iSchema>=0 ){
pIdx->aConstraintUsage[iSchema].argvIndex = 1;
pIdx->aConstraintUsage[iSchema].omit = 1;
}
if( iPgno>=0 ){
pIdx->aConstraintUsage[iPgno].argvIndex = 1 + (iSchema>=0);
pIdx->aConstraintUsage[iPgno].omit = 1;
pIdx->estimatedCost = 100;
pIdx->estimatedRows = 50;
if( pTab->bPtr==0 && pIdx->nOrderBy && pIdx->aOrderBy[0].desc==0 ){
int iCol = pIdx->aOrderBy[0].iColumn;
if( pIdx->nOrderBy==1 ){
pIdx->orderByConsumed = (iCol==0 || iCol==1);
}else if( pIdx->nOrderBy==2 && pIdx->aOrderBy[1].desc==0 && iCol==0 ){
pIdx->orderByConsumed = (pIdx->aOrderBy[1].iColumn==1);
}
}
}else{
pIdx->estimatedCost = 100000000;
pIdx->estimatedRows = 1000000000;
}
pIdx->idxNum = (iSchema>=0 ? 0x01 : 0x00) | (iPgno>=0 ? 0x02 : 0x00);
return SQLITE_OK;
}
/*
** Open a new sqlite_dbdata or sqlite_dbptr cursor.
*/
static int dbdataOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
DbdataCursor *pCsr;
pCsr = (DbdataCursor*)sqlite3_malloc64(sizeof(DbdataCursor));
if( pCsr==0 ){
return SQLITE_NOMEM;
}else{
memset(pCsr, 0, sizeof(DbdataCursor));
pCsr->base.pVtab = pVTab;
}
*ppCursor = (sqlite3_vtab_cursor *)pCsr;
return SQLITE_OK;
}
/*
** Restore a cursor object to the state it was in when first allocated
** by dbdataOpen().
*/
static void dbdataResetCursor(DbdataCursor *pCsr){
DbdataTable *pTab = (DbdataTable*)(pCsr->base.pVtab);
if( pTab->pStmt==0 ){
pTab->pStmt = pCsr->pStmt;
}else{
sqlite3_finalize(pCsr->pStmt);
}
pCsr->pStmt = 0;
pCsr->iPgno = 1;
pCsr->iCell = 0;
pCsr->iField = 0;
pCsr->bOnePage = 0;
sqlite3_free(pCsr->aPage);
sqlite3_free(pCsr->pRec);
pCsr->pRec = 0;
pCsr->aPage = 0;
}
/*
** Close an sqlite_dbdata or sqlite_dbptr cursor.
*/
static int dbdataClose(sqlite3_vtab_cursor *pCursor){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
dbdataResetCursor(pCsr);
sqlite3_free(pCsr);
return SQLITE_OK;
}
/*
** Utility methods to decode 16 and 32-bit big-endian unsigned integers.
*/
static u32 get_uint16(unsigned char *a){
return (a[0]<<8)|a[1];
}
static u32 get_uint32(unsigned char *a){
return ((u32)a[0]<<24)
| ((u32)a[1]<<16)
| ((u32)a[2]<<8)
| ((u32)a[3]);
}
/*
** Load page pgno from the database via the sqlite_dbpage virtual table.
** If successful, set (*ppPage) to point to a buffer containing the page
** data, (*pnPage) to the size of that buffer in bytes and return
** SQLITE_OK. In this case it is the responsibility of the caller to
** eventually free the buffer using sqlite3_free().
**
** Or, if an error occurs, set both (*ppPage) and (*pnPage) to 0 and
** return an SQLite error code.
*/
static int dbdataLoadPage(
DbdataCursor *pCsr, /* Cursor object */
u32 pgno, /* Page number of page to load */
u8 **ppPage, /* OUT: pointer to page buffer */
int *pnPage /* OUT: Size of (*ppPage) in bytes */
){
int rc2;
int rc = SQLITE_OK;
sqlite3_stmt *pStmt = pCsr->pStmt;
*ppPage = 0;
*pnPage = 0;
if( pgno>0 ){
sqlite3_bind_int64(pStmt, 2, pgno);
if( SQLITE_ROW==sqlite3_step(pStmt) ){
int nCopy = sqlite3_column_bytes(pStmt, 0);
if( nCopy>0 ){
u8 *pPage;
pPage = (u8*)sqlite3_malloc64(nCopy + DBDATA_PADDING_BYTES);
if( pPage==0 ){
rc = SQLITE_NOMEM;
}else{
const u8 *pCopy = sqlite3_column_blob(pStmt, 0);
memcpy(pPage, pCopy, nCopy);
memset(&pPage[nCopy], 0, DBDATA_PADDING_BYTES);
}
*ppPage = pPage;
*pnPage = nCopy;
}
}
rc2 = sqlite3_reset(pStmt);
if( rc==SQLITE_OK ) rc = rc2;
}
return rc;
}
/*
** Read a varint. Put the value in *pVal and return the number of bytes.
*/
static int dbdataGetVarint(const u8 *z, sqlite3_int64 *pVal){
sqlite3_uint64 u = 0;
int i;
for(i=0; i<8; i++){
u = (u<<7) + (z[i]&0x7f);
if( (z[i]&0x80)==0 ){ *pVal = (sqlite3_int64)u; return i+1; }
}
u = (u<<8) + (z[i]&0xff);
*pVal = (sqlite3_int64)u;
return 9;
}
/*
** Like dbdataGetVarint(), but set the output to 0 if it is less than 0
** or greater than 0xFFFFFFFF. This can be used for all varints in an
** SQLite database except for key values in intkey tables.
*/
static int dbdataGetVarintU32(const u8 *z, sqlite3_int64 *pVal){
sqlite3_int64 val;
int nRet = dbdataGetVarint(z, &val);
if( val<0 || val>0xFFFFFFFF ) val = 0;
*pVal = val;
return nRet;
}
/*
** Return the number of bytes of space used by an SQLite value of type
** eType.
*/
static int dbdataValueBytes(int eType){
switch( eType ){
case 0: case 8: case 9:
case 10: case 11:
return 0;
case 1:
return 1;
case 2:
return 2;
case 3:
return 3;
case 4:
return 4;
case 5:
return 6;
case 6:
case 7:
return 8;
default:
if( eType>0 ){
return ((eType-12) / 2);
}
return 0;
}
}
/*
** Load a value of type eType from buffer pData and use it to set the
** result of context object pCtx.
*/
static void dbdataValue(
sqlite3_context *pCtx,
u32 enc,
int eType,
u8 *pData,
sqlite3_int64 nData
){
if( eType>=0 && dbdataValueBytes(eType)<=nData ){
switch( eType ){
case 0:
case 10:
case 11:
sqlite3_result_null(pCtx);
break;
case 8:
sqlite3_result_int(pCtx, 0);
break;
case 9:
sqlite3_result_int(pCtx, 1);
break;
case 1: case 2: case 3: case 4: case 5: case 6: case 7: {
sqlite3_uint64 v = (signed char)pData[0];
pData++;
switch( eType ){
case 7:
case 6: v = (v<<16) + (pData[0]<<8) + pData[1]; pData += 2;
case 5: v = (v<<16) + (pData[0]<<8) + pData[1]; pData += 2;
case 4: v = (v<<8) + pData[0]; pData++;
case 3: v = (v<<8) + pData[0]; pData++;
case 2: v = (v<<8) + pData[0]; pData++;
}
if( eType==7 ){
double r;
memcpy(&r, &v, sizeof(r));
sqlite3_result_double(pCtx, r);
}else{
sqlite3_result_int64(pCtx, (sqlite3_int64)v);
}
break;
}
default: {
int n = ((eType-12) / 2);
if( eType % 2 ){
switch( enc ){
#ifndef SQLITE_OMIT_UTF16
case SQLITE_UTF16BE:
sqlite3_result_text16be(pCtx, (void*)pData, n, SQLITE_TRANSIENT);
break;
case SQLITE_UTF16LE:
sqlite3_result_text16le(pCtx, (void*)pData, n, SQLITE_TRANSIENT);
break;
#endif
default:
sqlite3_result_text(pCtx, (char*)pData, n, SQLITE_TRANSIENT);
break;
}
}else{
sqlite3_result_blob(pCtx, pData, n, SQLITE_TRANSIENT);
}
}
}
}
}
/*
** Move an sqlite_dbdata or sqlite_dbptr cursor to the next entry.
*/
static int dbdataNext(sqlite3_vtab_cursor *pCursor){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
DbdataTable *pTab = (DbdataTable*)pCursor->pVtab;
pCsr->iRowid++;
while( 1 ){
int rc;
int iOff = (pCsr->iPgno==1 ? 100 : 0);
int bNextPage = 0;
if( pCsr->aPage==0 ){
while( 1 ){
if( pCsr->bOnePage==0 && pCsr->iPgno>pCsr->szDb ) return SQLITE_OK;
rc = dbdataLoadPage(pCsr, pCsr->iPgno, &pCsr->aPage, &pCsr->nPage);
if( rc!=SQLITE_OK ) return rc;
if( pCsr->aPage && pCsr->nPage>=256 ) break;
sqlite3_free(pCsr->aPage);
pCsr->aPage = 0;
if( pCsr->bOnePage ) return SQLITE_OK;
pCsr->iPgno++;
}
assert( iOff+3+2<=pCsr->nPage );
pCsr->iCell = pTab->bPtr ? -2 : 0;
pCsr->nCell = get_uint16(&pCsr->aPage[iOff+3]);
}
if( pTab->bPtr ){
if( pCsr->aPage[iOff]!=0x02 && pCsr->aPage[iOff]!=0x05 ){
pCsr->iCell = pCsr->nCell;
}
pCsr->iCell++;
if( pCsr->iCell>=pCsr->nCell ){
sqlite3_free(pCsr->aPage);
pCsr->aPage = 0;
if( pCsr->bOnePage ) return SQLITE_OK;
pCsr->iPgno++;
}else{
return SQLITE_OK;
}
}else{
/* If there is no record loaded, load it now. */
if( pCsr->pRec==0 ){
int bHasRowid = 0;
int nPointer = 0;
sqlite3_int64 nPayload = 0;
sqlite3_int64 nHdr = 0;
int iHdr;
int U, X;
int nLocal;
switch( pCsr->aPage[iOff] ){
case 0x02:
nPointer = 4;
break;
case 0x0a:
break;
case 0x0d:
bHasRowid = 1;
break;
default:
/* This is not a b-tree page with records on it. Continue. */
pCsr->iCell = pCsr->nCell;
break;
}
if( pCsr->iCell>=pCsr->nCell ){
bNextPage = 1;
}else{
iOff += 8 + nPointer + pCsr->iCell*2;
if( iOff>pCsr->nPage ){
bNextPage = 1;
}else{
iOff = get_uint16(&pCsr->aPage[iOff]);
}
/* For an interior node cell, skip past the child-page number */
iOff += nPointer;
/* Load the "byte of payload including overflow" field */
if( bNextPage || iOff>pCsr->nPage ){
bNextPage = 1;
}else{
iOff += dbdataGetVarintU32(&pCsr->aPage[iOff], &nPayload);
}
/* If this is a leaf intkey cell, load the rowid */
if( bHasRowid && !bNextPage && iOff<pCsr->nPage ){
iOff += dbdataGetVarint(&pCsr->aPage[iOff], &pCsr->iIntkey);
}
/* Figure out how much data to read from the local page */
U = pCsr->nPage;
if( bHasRowid ){
X = U-35;
}else{
X = ((U-12)*64/255)-23;
}
if( nPayload<=X ){
nLocal = nPayload;
}else{
int M, K;
M = ((U-12)*32/255)-23;
K = M+((nPayload-M)%(U-4));
if( K<=X ){
nLocal = K;
}else{
nLocal = M;
}
}
if( bNextPage || nLocal+iOff>pCsr->nPage ){
bNextPage = 1;
}else{
/* Allocate space for payload. And a bit more to catch small buffer
** overruns caused by attempting to read a varint or similar from
** near the end of a corrupt record. */
pCsr->pRec = (u8*)sqlite3_malloc64(nPayload+DBDATA_PADDING_BYTES);
if( pCsr->pRec==0 ) return SQLITE_NOMEM;
memset(pCsr->pRec, 0, nPayload+DBDATA_PADDING_BYTES);
pCsr->nRec = nPayload;
/* Load the nLocal bytes of payload */
memcpy(pCsr->pRec, &pCsr->aPage[iOff], nLocal);
iOff += nLocal;
/* Load content from overflow pages */
if( nPayload>nLocal ){
sqlite3_int64 nRem = nPayload - nLocal;
u32 pgnoOvfl = get_uint32(&pCsr->aPage[iOff]);
while( nRem>0 ){
u8 *aOvfl = 0;
int nOvfl = 0;
int nCopy;
rc = dbdataLoadPage(pCsr, pgnoOvfl, &aOvfl, &nOvfl);
assert( rc!=SQLITE_OK || aOvfl==0 || nOvfl==pCsr->nPage );
if( rc!=SQLITE_OK ) return rc;
if( aOvfl==0 ) break;
nCopy = U-4;
if( nCopy>nRem ) nCopy = nRem;
memcpy(&pCsr->pRec[nPayload-nRem], &aOvfl[4], nCopy);
nRem -= nCopy;
pgnoOvfl = get_uint32(aOvfl);
sqlite3_free(aOvfl);
}
}
iHdr = dbdataGetVarintU32(pCsr->pRec, &nHdr);
if( nHdr>nPayload ) nHdr = 0;
pCsr->nHdr = nHdr;
pCsr->pHdrPtr = &pCsr->pRec[iHdr];
pCsr->pPtr = &pCsr->pRec[pCsr->nHdr];
pCsr->iField = (bHasRowid ? -1 : 0);
}
}
}else{
pCsr->iField++;
if( pCsr->iField>0 ){
sqlite3_int64 iType;
if( pCsr->pHdrPtr>&pCsr->pRec[pCsr->nRec] ){
bNextPage = 1;
}else{
pCsr->pHdrPtr += dbdataGetVarintU32(pCsr->pHdrPtr, &iType);
pCsr->pPtr += dbdataValueBytes(iType);
}
}
}
if( bNextPage ){
sqlite3_free(pCsr->aPage);
sqlite3_free(pCsr->pRec);
pCsr->aPage = 0;
pCsr->pRec = 0;
if( pCsr->bOnePage ) return SQLITE_OK;
pCsr->iPgno++;
}else{
if( pCsr->iField<0 || pCsr->pHdrPtr<&pCsr->pRec[pCsr->nHdr] ){
return SQLITE_OK;
}
/* Advance to the next cell. The next iteration of the loop will load
** the record and so on. */
sqlite3_free(pCsr->pRec);
pCsr->pRec = 0;
pCsr->iCell++;
}
}
}
assert( !"can't get here" );
return SQLITE_OK;
}
/*
** Return true if the cursor is at EOF.
*/
static int dbdataEof(sqlite3_vtab_cursor *pCursor){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
return pCsr->aPage==0;
}
/*
** Return true if nul-terminated string zSchema ends in "()". Or false
** otherwise.
*/
static int dbdataIsFunction(const char *zSchema){
size_t n = strlen(zSchema);
if( n>2 && zSchema[n-2]=='(' && zSchema[n-1]==')' ){
return (int)n-2;
}
return 0;
}
/*
** Determine the size in pages of database zSchema (where zSchema is
** "main", "temp" or the name of an attached database) and set
** pCsr->szDb accordingly. If successful, return SQLITE_OK. Otherwise,
** an SQLite error code.
*/
static int dbdataDbsize(DbdataCursor *pCsr, const char *zSchema){
DbdataTable *pTab = (DbdataTable*)pCsr->base.pVtab;
char *zSql = 0;
int rc, rc2;
int nFunc = 0;
sqlite3_stmt *pStmt = 0;
if( (nFunc = dbdataIsFunction(zSchema))>0 ){
zSql = sqlite3_mprintf("SELECT %.*s(0)", nFunc, zSchema);
}else{
zSql = sqlite3_mprintf("PRAGMA %Q.page_count", zSchema);
}
if( zSql==0 ) return SQLITE_NOMEM;
rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW ){
pCsr->szDb = sqlite3_column_int(pStmt, 0);
}
rc2 = sqlite3_finalize(pStmt);
if( rc==SQLITE_OK ) rc = rc2;
return rc;
}
/*
** Attempt to figure out the encoding of the database by retrieving page 1
** and inspecting the header field. If successful, set the pCsr->enc variable
** and return SQLITE_OK. Otherwise, return an SQLite error code.
*/
static int dbdataGetEncoding(DbdataCursor *pCsr){
int rc = SQLITE_OK;
int nPg1 = 0;
u8 *aPg1 = 0;
rc = dbdataLoadPage(pCsr, 1, &aPg1, &nPg1);
if( rc==SQLITE_OK && nPg1>=(56+4) ){
pCsr->enc = get_uint32(&aPg1[56]);
}
sqlite3_free(aPg1);
return rc;
}
/*
** xFilter method for sqlite_dbdata and sqlite_dbptr.
*/
static int dbdataFilter(
sqlite3_vtab_cursor *pCursor,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
DbdataTable *pTab = (DbdataTable*)pCursor->pVtab;
int rc = SQLITE_OK;
const char *zSchema = "main";
(void)idxStr;
(void)argc;
dbdataResetCursor(pCsr);
assert( pCsr->iPgno==1 );
if( idxNum & 0x01 ){
zSchema = (const char*)sqlite3_value_text(argv[0]);
if( zSchema==0 ) zSchema = "";
}
if( idxNum & 0x02 ){
pCsr->iPgno = sqlite3_value_int(argv[(idxNum & 0x01)]);
pCsr->bOnePage = 1;
}else{
rc = dbdataDbsize(pCsr, zSchema);
}
if( rc==SQLITE_OK ){
int nFunc = 0;
if( pTab->pStmt ){
pCsr->pStmt = pTab->pStmt;
pTab->pStmt = 0;
}else if( (nFunc = dbdataIsFunction(zSchema))>0 ){
char *zSql = sqlite3_mprintf("SELECT %.*s(?2)", nFunc, zSchema);
if( zSql==0 ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
sqlite3_free(zSql);
}
}else{
rc = sqlite3_prepare_v2(pTab->db,
"SELECT data FROM sqlite_dbpage(?) WHERE pgno=?", -1,
&pCsr->pStmt, 0
);
}
}
if( rc==SQLITE_OK ){
rc = sqlite3_bind_text(pCsr->pStmt, 1, zSchema, -1, SQLITE_TRANSIENT);
}
/* Try to determine the encoding of the db by inspecting the header
** field on page 1. */
if( rc==SQLITE_OK ){
rc = dbdataGetEncoding(pCsr);
}
if( rc!=SQLITE_OK ){
pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
}
if( rc==SQLITE_OK ){
rc = dbdataNext(pCursor);
}
return rc;
}
/*
** Return a column for the sqlite_dbdata or sqlite_dbptr table.
*/
static int dbdataColumn(
sqlite3_vtab_cursor *pCursor,
sqlite3_context *ctx,
int i
){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
DbdataTable *pTab = (DbdataTable*)pCursor->pVtab;
if( pTab->bPtr ){
switch( i ){
case DBPTR_COLUMN_PGNO:
sqlite3_result_int64(ctx, pCsr->iPgno);
break;
case DBPTR_COLUMN_CHILD: {
int iOff = pCsr->iPgno==1 ? 100 : 0;
if( pCsr->iCell<0 ){
iOff += 8;
}else{
iOff += 12 + pCsr->iCell*2;
if( iOff>pCsr->nPage ) return SQLITE_OK;
iOff = get_uint16(&pCsr->aPage[iOff]);
}
if( iOff<=pCsr->nPage ){
sqlite3_result_int64(ctx, get_uint32(&pCsr->aPage[iOff]));
}
break;
}
}
}else{
switch( i ){
case DBDATA_COLUMN_PGNO:
sqlite3_result_int64(ctx, pCsr->iPgno);
break;
case DBDATA_COLUMN_CELL:
sqlite3_result_int(ctx, pCsr->iCell);
break;
case DBDATA_COLUMN_FIELD:
sqlite3_result_int(ctx, pCsr->iField);
break;
case DBDATA_COLUMN_VALUE: {
if( pCsr->iField<0 ){
sqlite3_result_int64(ctx, pCsr->iIntkey);
}else if( &pCsr->pRec[pCsr->nRec] >= pCsr->pPtr ){
sqlite3_int64 iType;
dbdataGetVarintU32(pCsr->pHdrPtr, &iType);
dbdataValue(
ctx, pCsr->enc, iType, pCsr->pPtr,
&pCsr->pRec[pCsr->nRec] - pCsr->pPtr
);
}
break;
}
}
}
return SQLITE_OK;
}
/*
** Return the rowid for an sqlite_dbdata or sqlite_dptr table.
*/
static int dbdataRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
DbdataCursor *pCsr = (DbdataCursor*)pCursor;
*pRowid = pCsr->iRowid;
return SQLITE_OK;
}
/*
** Invoke this routine to register the "sqlite_dbdata" virtual table module
*/
static int sqlite3DbdataRegister(sqlite3 *db){
static sqlite3_module dbdata_module = {
0, /* iVersion */
0, /* xCreate */
dbdataConnect, /* xConnect */
dbdataBestIndex, /* xBestIndex */
dbdataDisconnect, /* xDisconnect */
0, /* xDestroy */
dbdataOpen, /* xOpen - open a cursor */
dbdataClose, /* xClose - close a cursor */
dbdataFilter, /* xFilter - configure scan constraints */
dbdataNext, /* xNext - advance a cursor */
dbdataEof, /* xEof - check for end of scan */
dbdataColumn, /* xColumn - read data */
dbdataRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0 /* xShadowName */
};
int rc = sqlite3_create_module(db, "sqlite_dbdata", &dbdata_module, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_module(db, "sqlite_dbptr", &dbdata_module, (void*)1);
}
return rc;
}
#ifdef _WIN32
#endif
int sqlite3_dbdata_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg;
return sqlite3DbdataRegister(db);
}
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
/************************* End ../ext/recover/dbdata.c ********************/
/************************* Begin ../ext/recover/sqlite3recover.c ******************/
/*
** 2022-08-27
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
*/
/* #include "sqlite3recover.h" */
#include <assert.h>
#include <string.h>
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Declaration for public API function in file dbdata.c. This may be called
** with NULL as the final two arguments to register the sqlite_dbptr and
** sqlite_dbdata virtual tables with a database handle.
*/
#ifdef _WIN32
#endif
int sqlite3_dbdata_init(sqlite3*, char**, const sqlite3_api_routines*);
/* typedef unsigned int u32; */
/* typedef unsigned char u8; */
/* typedef sqlite3_int64 i64; */
typedef struct RecoverTable RecoverTable;
typedef struct RecoverColumn RecoverColumn;
/*
** When recovering rows of data that can be associated with table
** definitions recovered from the sqlite_schema table, each table is
** represented by an instance of the following object.
**
** iRoot:
** The root page in the original database. Not necessarily (and usually
** not) the same in the recovered database.
**
** zTab:
** Name of the table.
**
** nCol/aCol[]:
** aCol[] is an array of nCol columns. In the order in which they appear
** in the table.
**
** bIntkey:
** Set to true for intkey tables, false for WITHOUT ROWID.
**
** iRowidBind:
** Each column in the aCol[] array has associated with it the index of
** the bind parameter its values will be bound to in the INSERT statement
** used to construct the output database. If the table does has a rowid
** but not an INTEGER PRIMARY KEY column, then iRowidBind contains the
** index of the bind paramater to which the rowid value should be bound.
** Otherwise, it contains -1. If the table does contain an INTEGER PRIMARY
** KEY column, then the rowid value should be bound to the index associated
** with the column.
**
** pNext:
** All RecoverTable objects used by the recovery operation are allocated
** and populated as part of creating the recovered database schema in
** the output database, before any non-schema data are recovered. They
** are then stored in a singly-linked list linked by this variable beginning
** at sqlite3_recover.pTblList.
*/
struct RecoverTable {
u32 iRoot; /* Root page in original database */
char *zTab; /* Name of table */
int nCol; /* Number of columns in table */
RecoverColumn *aCol; /* Array of columns */
int bIntkey; /* True for intkey, false for without rowid */
int iRowidBind; /* If >0, bind rowid to INSERT here */
RecoverTable *pNext;
};
/*
** Each database column is represented by an instance of the following object
** stored in the RecoverTable.aCol[] array of the associated table.
**
** iField:
** The index of the associated field within database records. Or -1 if
** there is no associated field (e.g. for virtual generated columns).
**
** iBind:
** The bind index of the INSERT statement to bind this columns values
** to. Or 0 if there is no such index (iff (iField<0)).
**
** bIPK:
** True if this is the INTEGER PRIMARY KEY column.
**
** zCol:
** Name of column.
**
** eHidden:
** A RECOVER_EHIDDEN_* constant value (see below for interpretation of each).
*/
struct RecoverColumn {
int iField; /* Field in record on disk */
int iBind; /* Binding to use in INSERT */
int bIPK; /* True for IPK column */
char *zCol;
int eHidden;
};
#define RECOVER_EHIDDEN_NONE 0 /* Normal database column */
#define RECOVER_EHIDDEN_HIDDEN 1 /* Column is __HIDDEN__ */
#define RECOVER_EHIDDEN_VIRTUAL 2 /* Virtual generated column */
#define RECOVER_EHIDDEN_STORED 3 /* Stored generated column */
/*
** Bitmap object used to track pages in the input database. Allocated
** and manipulated only by the following functions:
**
** recoverBitmapAlloc()
** recoverBitmapFree()
** recoverBitmapSet()
** recoverBitmapQuery()
**
** nPg:
** Largest page number that may be stored in the bitmap. The range
** of valid keys is 1 to nPg, inclusive.
**
** aElem[]:
** Array large enough to contain a bit for each key. For key value
** iKey, the associated bit is the bit (iKey%32) of aElem[iKey/32].
** In other words, the following is true if bit iKey is set, or
** false if it is clear:
**
** (aElem[iKey/32] & (1 << (iKey%32))) ? 1 : 0
*/
typedef struct RecoverBitmap RecoverBitmap;
struct RecoverBitmap {
i64 nPg; /* Size of bitmap */
u32 aElem[1]; /* Array of 32-bit bitmasks */
};
/*
** State variables (part of the sqlite3_recover structure) used while
** recovering data for tables identified in the recovered schema (state
** RECOVER_STATE_WRITING).
*/
typedef struct RecoverStateW1 RecoverStateW1;
struct RecoverStateW1 {
sqlite3_stmt *pTbls;
sqlite3_stmt *pSel;
sqlite3_stmt *pInsert;
int nInsert;
RecoverTable *pTab; /* Table currently being written */
int nMax; /* Max column count in any schema table */
sqlite3_value **apVal; /* Array of nMax values */
int nVal; /* Number of valid entries in apVal[] */
int bHaveRowid;
i64 iRowid;
i64 iPrevPage;
int iPrevCell;
};
/*
** State variables (part of the sqlite3_recover structure) used while
** recovering data destined for the lost and found table (states
** RECOVER_STATE_LOSTANDFOUND[123]).
*/
typedef struct RecoverStateLAF RecoverStateLAF;
struct RecoverStateLAF {
RecoverBitmap *pUsed;
i64 nPg; /* Size of db in pages */
sqlite3_stmt *pAllAndParent;
sqlite3_stmt *pMapInsert;
sqlite3_stmt *pMaxField;
sqlite3_stmt *pUsedPages;
sqlite3_stmt *pFindRoot;
sqlite3_stmt *pInsert; /* INSERT INTO lost_and_found ... */
sqlite3_stmt *pAllPage;
sqlite3_stmt *pPageData;
sqlite3_value **apVal;
int nMaxField;
};
/*
** Main recover handle structure.
*/
struct sqlite3_recover {
/* Copies of sqlite3_recover_init[_sql]() parameters */
sqlite3 *dbIn; /* Input database */
char *zDb; /* Name of input db ("main" etc.) */
char *zUri; /* URI for output database */
void *pSqlCtx; /* SQL callback context */
int (*xSql)(void*,const char*); /* Pointer to SQL callback function */
/* Values configured by sqlite3_recover_config() */
char *zStateDb; /* State database to use (or NULL) */
char *zLostAndFound; /* Name of lost-and-found table (or NULL) */
int bFreelistCorrupt; /* SQLITE_RECOVER_FREELIST_CORRUPT setting */
int bRecoverRowid; /* SQLITE_RECOVER_ROWIDS setting */
int bSlowIndexes; /* SQLITE_RECOVER_SLOWINDEXES setting */
int pgsz;
int detected_pgsz;
int nReserve;
u8 *pPage1Disk;
u8 *pPage1Cache;
/* Error code and error message */
int errCode; /* For sqlite3_recover_errcode() */
char *zErrMsg; /* For sqlite3_recover_errmsg() */
int eState;
int bCloseTransaction;
/* Variables used with eState==RECOVER_STATE_WRITING */
RecoverStateW1 w1;
/* Variables used with states RECOVER_STATE_LOSTANDFOUND[123] */
RecoverStateLAF laf;
/* Fields used within sqlite3_recover_run() */
sqlite3 *dbOut; /* Output database */
sqlite3_stmt *pGetPage; /* SELECT against input db sqlite_dbdata */
RecoverTable *pTblList; /* List of tables recovered from schema */
};
/*
** The various states in which an sqlite3_recover object may exist:
**
** RECOVER_STATE_INIT:
** The object is initially created in this state. sqlite3_recover_step()
** has yet to be called. This is the only state in which it is permitted
** to call sqlite3_recover_config().
**
** RECOVER_STATE_WRITING:
**
** RECOVER_STATE_LOSTANDFOUND1:
** State to populate the bitmap of pages used by other tables or the
** database freelist.
**
** RECOVER_STATE_LOSTANDFOUND2:
** Populate the recovery.map table - used to figure out a "root" page
** for each lost page from in the database from which records are
** extracted.
**
** RECOVER_STATE_LOSTANDFOUND3:
** Populate the lost-and-found table itself.
*/
#define RECOVER_STATE_INIT 0
#define RECOVER_STATE_WRITING 1
#define RECOVER_STATE_LOSTANDFOUND1 2
#define RECOVER_STATE_LOSTANDFOUND2 3
#define RECOVER_STATE_LOSTANDFOUND3 4
#define RECOVER_STATE_SCHEMA2 5
#define RECOVER_STATE_DONE 6
/*
** Global variables used by this extension.
*/
typedef struct RecoverGlobal RecoverGlobal;
struct RecoverGlobal {
const sqlite3_io_methods *pMethods;
sqlite3_recover *p;
};
static RecoverGlobal recover_g;
/*
** Use this static SQLite mutex to protect the globals during the
** first call to sqlite3_recover_step().
*/
#define RECOVER_MUTEX_ID SQLITE_MUTEX_STATIC_APP2
/*
** Default value for SQLITE_RECOVER_ROWIDS (sqlite3_recover.bRecoverRowid).
*/
#define RECOVER_ROWID_DEFAULT 1
/*
** Mutex handling:
**
** recoverEnterMutex() - Enter the recovery mutex
** recoverLeaveMutex() - Leave the recovery mutex
** recoverAssertMutexHeld() - Assert that the recovery mutex is held
*/
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE==0
# define recoverEnterMutex()
# define recoverLeaveMutex()
#else
static void recoverEnterMutex(void){
sqlite3_mutex_enter(sqlite3_mutex_alloc(RECOVER_MUTEX_ID));
}
static void recoverLeaveMutex(void){
sqlite3_mutex_leave(sqlite3_mutex_alloc(RECOVER_MUTEX_ID));
}
#endif
#if SQLITE_THREADSAFE+0>=1 && defined(SQLITE_DEBUG)
static void recoverAssertMutexHeld(void){
assert( sqlite3_mutex_held(sqlite3_mutex_alloc(RECOVER_MUTEX_ID)) );
}
#else
# define recoverAssertMutexHeld()
#endif
/*
** Like strlen(). But handles NULL pointer arguments.
*/
static int recoverStrlen(const char *zStr){
if( zStr==0 ) return 0;
return (int)(strlen(zStr)&0x7fffffff);
}
/*
** This function is a no-op if the recover handle passed as the first
** argument already contains an error (if p->errCode!=SQLITE_OK).
**
** Otherwise, an attempt is made to allocate, zero and return a buffer nByte
** bytes in size. If successful, a pointer to the new buffer is returned. Or,
** if an OOM error occurs, NULL is returned and the handle error code
** (p->errCode) set to SQLITE_NOMEM.
*/
static void *recoverMalloc(sqlite3_recover *p, i64 nByte){
void *pRet = 0;
assert( nByte>0 );
if( p->errCode==SQLITE_OK ){
pRet = sqlite3_malloc64(nByte);
if( pRet ){
memset(pRet, 0, nByte);
}else{
p->errCode = SQLITE_NOMEM;
}
}
return pRet;
}
/*
** Set the error code and error message for the recover handle passed as
** the first argument. The error code is set to the value of parameter
** errCode.
**
** Parameter zFmt must be a printf() style formatting string. The handle
** error message is set to the result of using any trailing arguments for
** parameter substitutions in the formatting string.
**
** For example:
**
** recoverError(p, SQLITE_ERROR, "no such table: %s", zTablename);
*/
static int recoverError(
sqlite3_recover *p,
int errCode,
const char *zFmt, ...
){
char *z = 0;
va_list ap;
va_start(ap, zFmt);
if( zFmt ){
z = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
}
sqlite3_free(p->zErrMsg);
p->zErrMsg = z;
p->errCode = errCode;
return errCode;
}
/*
** This function is a no-op if p->errCode is initially other than SQLITE_OK.
** In this case it returns NULL.
**
** Otherwise, an attempt is made to allocate and return a bitmap object
** large enough to store a bit for all page numbers between 1 and nPg,
** inclusive. The bitmap is initially zeroed.
*/
static RecoverBitmap *recoverBitmapAlloc(sqlite3_recover *p, i64 nPg){
int nElem = (nPg+1+31) / 32;
int nByte = sizeof(RecoverBitmap) + nElem*sizeof(u32);
RecoverBitmap *pRet = (RecoverBitmap*)recoverMalloc(p, nByte);
if( pRet ){
pRet->nPg = nPg;
}
return pRet;
}
/*
** Free a bitmap object allocated by recoverBitmapAlloc().
*/
static void recoverBitmapFree(RecoverBitmap *pMap){
sqlite3_free(pMap);
}
/*
** Set the bit associated with page iPg in bitvec pMap.
*/
static void recoverBitmapSet(RecoverBitmap *pMap, i64 iPg){
if( iPg<=pMap->nPg ){
int iElem = (iPg / 32);
int iBit = (iPg % 32);
pMap->aElem[iElem] |= (((u32)1) << iBit);
}
}
/*
** Query bitmap object pMap for the state of the bit associated with page
** iPg. Return 1 if it is set, or 0 otherwise.
*/
static int recoverBitmapQuery(RecoverBitmap *pMap, i64 iPg){
int ret = 1;
if( iPg<=pMap->nPg && iPg>0 ){
int iElem = (iPg / 32);
int iBit = (iPg % 32);
ret = (pMap->aElem[iElem] & (((u32)1) << iBit)) ? 1 : 0;
}
return ret;
}
/*
** Set the recover handle error to the error code and message returned by
** calling sqlite3_errcode() and sqlite3_errmsg(), respectively, on database
** handle db.
*/
static int recoverDbError(sqlite3_recover *p, sqlite3 *db){
return recoverError(p, sqlite3_errcode(db), "%s", sqlite3_errmsg(db));
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK).
**
** Otherwise, it attempts to prepare the SQL statement in zSql against
** database handle db. If successful, the statement handle is returned.
** Or, if an error occurs, NULL is returned and an error left in the
** recover handle.
*/
static sqlite3_stmt *recoverPrepare(
sqlite3_recover *p,
sqlite3 *db,
const char *zSql
){
sqlite3_stmt *pStmt = 0;
if( p->errCode==SQLITE_OK ){
if( sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0) ){
recoverDbError(p, db);
}
}
return pStmt;
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK).
**
** Otherwise, argument zFmt is used as a printf() style format string,
** along with any trailing arguments, to create an SQL statement. This
** SQL statement is prepared against database handle db and, if successful,
** the statment handle returned. Or, if an error occurs - either during
** the printf() formatting or when preparing the resulting SQL - an
** error code and message are left in the recover handle.
*/
static sqlite3_stmt *recoverPreparePrintf(
sqlite3_recover *p,
sqlite3 *db,
const char *zFmt, ...
){
sqlite3_stmt *pStmt = 0;
if( p->errCode==SQLITE_OK ){
va_list ap;
char *z;
va_start(ap, zFmt);
z = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
if( z==0 ){
p->errCode = SQLITE_NOMEM;
}else{
pStmt = recoverPrepare(p, db, z);
sqlite3_free(z);
}
}
return pStmt;
}
/*
** Reset SQLite statement handle pStmt. If the call to sqlite3_reset()
** indicates that an error occurred, and there is not already an error
** in the recover handle passed as the first argument, set the error
** code and error message appropriately.
**
** This function returns a copy of the statement handle pointer passed
** as the second argument.
*/
static sqlite3_stmt *recoverReset(sqlite3_recover *p, sqlite3_stmt *pStmt){
int rc = sqlite3_reset(pStmt);
if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT && p->errCode==SQLITE_OK ){
recoverDbError(p, sqlite3_db_handle(pStmt));
}
return pStmt;
}
/*
** Finalize SQLite statement handle pStmt. If the call to sqlite3_reset()
** indicates that an error occurred, and there is not already an error
** in the recover handle passed as the first argument, set the error
** code and error message appropriately.
*/
static void recoverFinalize(sqlite3_recover *p, sqlite3_stmt *pStmt){
sqlite3 *db = sqlite3_db_handle(pStmt);
int rc = sqlite3_finalize(pStmt);
if( rc!=SQLITE_OK && p->errCode==SQLITE_OK ){
recoverDbError(p, db);
}
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). A copy of p->errCode is returned in this
** case.
**
** Otherwise, execute SQL script zSql. If successful, return SQLITE_OK.
** Or, if an error occurs, leave an error code and message in the recover
** handle and return a copy of the error code.
*/
static int recoverExec(sqlite3_recover *p, sqlite3 *db, const char *zSql){
if( p->errCode==SQLITE_OK ){
int rc = sqlite3_exec(db, zSql, 0, 0, 0);
if( rc ){
recoverDbError(p, db);
}
}
return p->errCode;
}
/*
** Bind the value pVal to parameter iBind of statement pStmt. Leave an
** error in the recover handle passed as the first argument if an error
** (e.g. an OOM) occurs.
*/
static void recoverBindValue(
sqlite3_recover *p,
sqlite3_stmt *pStmt,
int iBind,
sqlite3_value *pVal
){
if( p->errCode==SQLITE_OK ){
int rc = sqlite3_bind_value(pStmt, iBind, pVal);
if( rc ) recoverError(p, rc, 0);
}
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). NULL is returned in this case.
**
** Otherwise, an attempt is made to interpret zFmt as a printf() style
** formatting string and the result of using the trailing arguments for
** parameter substitution with it written into a buffer obtained from
** sqlite3_malloc(). If successful, a pointer to the buffer is returned.
** It is the responsibility of the caller to eventually free the buffer
** using sqlite3_free().
**
** Or, if an error occurs, an error code and message is left in the recover
** handle and NULL returned.
*/
static char *recoverMPrintf(sqlite3_recover *p, const char *zFmt, ...){
va_list ap;
char *z;
va_start(ap, zFmt);
z = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
if( p->errCode==SQLITE_OK ){
if( z==0 ) p->errCode = SQLITE_NOMEM;
}else{
sqlite3_free(z);
z = 0;
}
return z;
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). Zero is returned in this case.
**
** Otherwise, execute "PRAGMA page_count" against the input database. If
** successful, return the integer result. Or, if an error occurs, leave an
** error code and error message in the sqlite3_recover handle and return
** zero.
*/
static i64 recoverPageCount(sqlite3_recover *p){
i64 nPg = 0;
if( p->errCode==SQLITE_OK ){
sqlite3_stmt *pStmt = 0;
pStmt = recoverPreparePrintf(p, p->dbIn, "PRAGMA %Q.page_count", p->zDb);
if( pStmt ){
sqlite3_step(pStmt);
nPg = sqlite3_column_int64(pStmt, 0);
}
recoverFinalize(p, pStmt);
}
return nPg;
}
/*
** Implementation of SQL scalar function "read_i32". The first argument to
** this function must be a blob. The second a non-negative integer. This
** function reads and returns a 32-bit big-endian integer from byte
** offset (4*<arg2>) of the blob.
**
** SELECT read_i32(<blob>, <idx>)
*/
static void recoverReadI32(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *pBlob;
int nBlob;
int iInt;
assert( argc==2 );
nBlob = sqlite3_value_bytes(argv[0]);
pBlob = (const unsigned char*)sqlite3_value_blob(argv[0]);
iInt = sqlite3_value_int(argv[1]) & 0xFFFF;
if( (iInt+1)*4<=nBlob ){
const unsigned char *a = &pBlob[iInt*4];
i64 iVal = ((i64)a[0]<<24)
+ ((i64)a[1]<<16)
+ ((i64)a[2]<< 8)
+ ((i64)a[3]<< 0);
sqlite3_result_int64(context, iVal);
}
}
/*
** Implementation of SQL scalar function "page_is_used". This function
** is used as part of the procedure for locating orphan rows for the
** lost-and-found table, and it depends on those routines having populated
** the sqlite3_recover.laf.pUsed variable.
**
** The only argument to this function is a page-number. It returns true
** if the page has already been used somehow during data recovery, or false
** otherwise.
**
** SELECT page_is_used(<pgno>);
*/
static void recoverPageIsUsed(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
sqlite3_recover *p = (sqlite3_recover*)sqlite3_user_data(pCtx);
i64 pgno = sqlite3_value_int64(apArg[0]);
assert( nArg==1 );
sqlite3_result_int(pCtx, recoverBitmapQuery(p->laf.pUsed, pgno));
}
/*
** The implementation of a user-defined SQL function invoked by the
** sqlite_dbdata and sqlite_dbptr virtual table modules to access pages
** of the database being recovered.
**
** This function always takes a single integer argument. If the argument
** is zero, then the value returned is the number of pages in the db being
** recovered. If the argument is greater than zero, it is a page number.
** The value returned in this case is an SQL blob containing the data for
** the identified page of the db being recovered. e.g.
**
** SELECT getpage(0); -- return number of pages in db
** SELECT getpage(4); -- return page 4 of db as a blob of data
*/
static void recoverGetPage(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
sqlite3_recover *p = (sqlite3_recover*)sqlite3_user_data(pCtx);
i64 pgno = sqlite3_value_int64(apArg[0]);
sqlite3_stmt *pStmt = 0;
assert( nArg==1 );
if( pgno==0 ){
i64 nPg = recoverPageCount(p);
sqlite3_result_int64(pCtx, nPg);
return;
}else{
if( p->pGetPage==0 ){
pStmt = p->pGetPage = recoverPreparePrintf(
p, p->dbIn, "SELECT data FROM sqlite_dbpage(%Q) WHERE pgno=?", p->zDb
);
}else if( p->errCode==SQLITE_OK ){
pStmt = p->pGetPage;
}
if( pStmt ){
sqlite3_bind_int64(pStmt, 1, pgno);
if( SQLITE_ROW==sqlite3_step(pStmt) ){
const u8 *aPg;
int nPg;
assert( p->errCode==SQLITE_OK );
aPg = sqlite3_column_blob(pStmt, 0);
nPg = sqlite3_column_bytes(pStmt, 0);
if( pgno==1 && nPg==p->pgsz && 0==memcmp(p->pPage1Cache, aPg, nPg) ){
aPg = p->pPage1Disk;
}
sqlite3_result_blob(pCtx, aPg, nPg-p->nReserve, SQLITE_TRANSIENT);
}
recoverReset(p, pStmt);
}
}
if( p->errCode ){
if( p->zErrMsg ) sqlite3_result_error(pCtx, p->zErrMsg, -1);
sqlite3_result_error_code(pCtx, p->errCode);
}
}
/*
** Find a string that is not found anywhere in z[]. Return a pointer
** to that string.
**
** Try to use zA and zB first. If both of those are already found in z[]
** then make up some string and store it in the buffer zBuf.
*/
static const char *recoverUnusedString(
const char *z, /* Result must not appear anywhere in z */
const char *zA, const char *zB, /* Try these first */
char *zBuf /* Space to store a generated string */
){
unsigned i = 0;
if( strstr(z, zA)==0 ) return zA;
if( strstr(z, zB)==0 ) return zB;
do{
sqlite3_snprintf(20,zBuf,"(%s%u)", zA, i++);
}while( strstr(z,zBuf)!=0 );
return zBuf;
}
/*
** Implementation of scalar SQL function "escape_crnl". The argument passed to
** this function is the output of built-in function quote(). If the first
** character of the input is "'", indicating that the value passed to quote()
** was a text value, then this function searches the input for "\n" and "\r"
** characters and adds a wrapper similar to the following:
**
** replace(replace(<input>, '\n', char(10), '\r', char(13));
**
** Or, if the first character of the input is not "'", then a copy of the input
** is returned.
*/
static void recoverEscapeCrnl(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zText = (const char*)sqlite3_value_text(argv[0]);
(void)argc;
if( zText && zText[0]=='\'' ){
int nText = sqlite3_value_bytes(argv[0]);
int i;
char zBuf1[20];
char zBuf2[20];
const char *zNL = 0;
const char *zCR = 0;
int nCR = 0;
int nNL = 0;
for(i=0; zText[i]; i++){
if( zNL==0 && zText[i]=='\n' ){
zNL = recoverUnusedString(zText, "\\n", "\\012", zBuf1);
nNL = (int)strlen(zNL);
}
if( zCR==0 && zText[i]=='\r' ){
zCR = recoverUnusedString(zText, "\\r", "\\015", zBuf2);
nCR = (int)strlen(zCR);
}
}
if( zNL || zCR ){
int iOut = 0;
i64 nMax = (nNL > nCR) ? nNL : nCR;
i64 nAlloc = nMax * nText + (nMax+64)*2;
char *zOut = (char*)sqlite3_malloc64(nAlloc);
if( zOut==0 ){
sqlite3_result_error_nomem(context);
return;
}
if( zNL && zCR ){
memcpy(&zOut[iOut], "replace(replace(", 16);
iOut += 16;
}else{
memcpy(&zOut[iOut], "replace(", 8);
iOut += 8;
}
for(i=0; zText[i]; i++){
if( zText[i]=='\n' ){
memcpy(&zOut[iOut], zNL, nNL);
iOut += nNL;
}else if( zText[i]=='\r' ){
memcpy(&zOut[iOut], zCR, nCR);
iOut += nCR;
}else{
zOut[iOut] = zText[i];
iOut++;
}
}
if( zNL ){
memcpy(&zOut[iOut], ",'", 2); iOut += 2;
memcpy(&zOut[iOut], zNL, nNL); iOut += nNL;
memcpy(&zOut[iOut], "', char(10))", 12); iOut += 12;
}
if( zCR ){
memcpy(&zOut[iOut], ",'", 2); iOut += 2;
memcpy(&zOut[iOut], zCR, nCR); iOut += nCR;
memcpy(&zOut[iOut], "', char(13))", 12); iOut += 12;
}
sqlite3_result_text(context, zOut, iOut, SQLITE_TRANSIENT);
sqlite3_free(zOut);
return;
}
}
sqlite3_result_value(context, argv[0]);
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). A copy of the error code is returned in
** this case.
**
** Otherwise, attempt to populate temporary table "recovery.schema" with the
** parts of the database schema that can be extracted from the input database.
**
** If no error occurs, SQLITE_OK is returned. Otherwise, an error code
** and error message are left in the recover handle and a copy of the
** error code returned. It is not considered an error if part of all of
** the database schema cannot be recovered due to corruption.
*/
static int recoverCacheSchema(sqlite3_recover *p){
return recoverExec(p, p->dbOut,
"WITH RECURSIVE pages(p) AS ("
" SELECT 1"
" UNION"
" SELECT child FROM sqlite_dbptr('getpage()'), pages WHERE pgno=p"
")"
"INSERT INTO recovery.schema SELECT"
" max(CASE WHEN field=0 THEN value ELSE NULL END),"
" max(CASE WHEN field=1 THEN value ELSE NULL END),"
" max(CASE WHEN field=2 THEN value ELSE NULL END),"
" max(CASE WHEN field=3 THEN value ELSE NULL END),"
" max(CASE WHEN field=4 THEN value ELSE NULL END)"
"FROM sqlite_dbdata('getpage()') WHERE pgno IN ("
" SELECT p FROM pages"
") GROUP BY pgno, cell"
);
}
/*
** If this recover handle is not in SQL callback mode (i.e. was not created
** using sqlite3_recover_init_sql()) of if an error has already occurred,
** this function is a no-op. Otherwise, issue a callback with SQL statement
** zSql as the parameter.
**
** If the callback returns non-zero, set the recover handle error code to
** the value returned (so that the caller will abandon processing).
*/
static void recoverSqlCallback(sqlite3_recover *p, const char *zSql){
if( p->errCode==SQLITE_OK && p->xSql ){
int res = p->xSql(p->pSqlCtx, zSql);
if( res ){
recoverError(p, SQLITE_ERROR, "callback returned an error - %d", res);
}
}
}
/*
** Transfer the following settings from the input database to the output
** database:
**
** + page-size,
** + auto-vacuum settings,
** + database encoding,
** + user-version (PRAGMA user_version), and
** + application-id (PRAGMA application_id), and
*/
static void recoverTransferSettings(sqlite3_recover *p){
const char *aPragma[] = {
"encoding",
"page_size",
"auto_vacuum",
"user_version",
"application_id"
};
int ii;
/* Truncate the output database to 0 pages in size. This is done by
** opening a new, empty, temp db, then using the backup API to clobber
** any existing output db with a copy of it. */
if( p->errCode==SQLITE_OK ){
sqlite3 *db2 = 0;
int rc = sqlite3_open("", &db2);
if( rc!=SQLITE_OK ){
recoverDbError(p, db2);
return;
}
for(ii=0; ii<(int)(sizeof(aPragma)/sizeof(aPragma[0])); ii++){
const char *zPrag = aPragma[ii];
sqlite3_stmt *p1 = 0;
p1 = recoverPreparePrintf(p, p->dbIn, "PRAGMA %Q.%s", p->zDb, zPrag);
if( p->errCode==SQLITE_OK && sqlite3_step(p1)==SQLITE_ROW ){
const char *zArg = (const char*)sqlite3_column_text(p1, 0);
char *z2 = recoverMPrintf(p, "PRAGMA %s = %Q", zPrag, zArg);
recoverSqlCallback(p, z2);
recoverExec(p, db2, z2);
sqlite3_free(z2);
if( zArg==0 ){
recoverError(p, SQLITE_NOMEM, 0);
}
}
recoverFinalize(p, p1);
}
recoverExec(p, db2, "CREATE TABLE t1(a); DROP TABLE t1;");
if( p->errCode==SQLITE_OK ){
sqlite3 *db = p->dbOut;
sqlite3_backup *pBackup = sqlite3_backup_init(db, "main", db2, "main");
if( pBackup ){
sqlite3_backup_step(pBackup, -1);
p->errCode = sqlite3_backup_finish(pBackup);
}else{
recoverDbError(p, db);
}
}
sqlite3_close(db2);
}
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). A copy of the error code is returned in
** this case.
**
** Otherwise, an attempt is made to open the output database, attach
** and create the schema of the temporary database used to store
** intermediate data, and to register all required user functions and
** virtual table modules with the output handle.
**
** If no error occurs, SQLITE_OK is returned. Otherwise, an error code
** and error message are left in the recover handle and a copy of the
** error code returned.
*/
static int recoverOpenOutput(sqlite3_recover *p){
struct Func {
const char *zName;
int nArg;
void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
} aFunc[] = {
{ "getpage", 1, recoverGetPage },
{ "page_is_used", 1, recoverPageIsUsed },
{ "read_i32", 2, recoverReadI32 },
{ "escape_crnl", 1, recoverEscapeCrnl },
};
const int flags = SQLITE_OPEN_URI|SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE;
sqlite3 *db = 0; /* New database handle */
int ii; /* For iterating through aFunc[] */
assert( p->dbOut==0 );
if( sqlite3_open_v2(p->zUri, &db, flags, 0) ){
recoverDbError(p, db);
}
/* Register the sqlite_dbdata and sqlite_dbptr virtual table modules.
** These two are registered with the output database handle - this
** module depends on the input handle supporting the sqlite_dbpage
** virtual table only. */
if( p->errCode==SQLITE_OK ){
p->errCode = sqlite3_dbdata_init(db, 0, 0);
}
/* Register the custom user-functions with the output handle. */
for(ii=0;
p->errCode==SQLITE_OK && ii<(int)(sizeof(aFunc)/sizeof(aFunc[0]));
ii++){
p->errCode = sqlite3_create_function(db, aFunc[ii].zName,
aFunc[ii].nArg, SQLITE_UTF8, (void*)p, aFunc[ii].xFunc, 0, 0
);
}
p->dbOut = db;
return p->errCode;
}
/*
** Attach the auxiliary database 'recovery' to the output database handle.
** This temporary database is used during the recovery process and then
** discarded.
*/
static void recoverOpenRecovery(sqlite3_recover *p){
char *zSql = recoverMPrintf(p, "ATTACH %Q AS recovery;", p->zStateDb);
recoverExec(p, p->dbOut, zSql);
recoverExec(p, p->dbOut,
"PRAGMA writable_schema = 1;"
"CREATE TABLE recovery.map(pgno INTEGER PRIMARY KEY, parent INT);"
"CREATE TABLE recovery.schema(type, name, tbl_name, rootpage, sql);"
);
sqlite3_free(zSql);
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK).
**
** Otherwise, argument zName must be the name of a table that has just been
** created in the output database. This function queries the output db
** for the schema of said table, and creates a RecoverTable object to
** store the schema in memory. The new RecoverTable object is linked into
** the list at sqlite3_recover.pTblList.
**
** Parameter iRoot must be the root page of table zName in the INPUT
** database.
*/
static void recoverAddTable(
sqlite3_recover *p,
const char *zName, /* Name of table created in output db */
i64 iRoot /* Root page of same table in INPUT db */
){
sqlite3_stmt *pStmt = recoverPreparePrintf(p, p->dbOut,
"PRAGMA table_xinfo(%Q)", zName
);
if( pStmt ){
int iPk = -1;
int iBind = 1;
RecoverTable *pNew = 0;
int nCol = 0;
int nName = recoverStrlen(zName);
int nByte = 0;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
nCol++;
nByte += (sqlite3_column_bytes(pStmt, 1)+1);
}
nByte += sizeof(RecoverTable) + nCol*sizeof(RecoverColumn) + nName+1;
recoverReset(p, pStmt);
pNew = recoverMalloc(p, nByte);
if( pNew ){
int i = 0;
int iField = 0;
char *csr = 0;
pNew->aCol = (RecoverColumn*)&pNew[1];
pNew->zTab = csr = (char*)&pNew->aCol[nCol];
pNew->nCol = nCol;
pNew->iRoot = iRoot;
memcpy(csr, zName, nName);
csr += nName+1;
for(i=0; sqlite3_step(pStmt)==SQLITE_ROW; i++){
int iPKF = sqlite3_column_int(pStmt, 5);
int n = sqlite3_column_bytes(pStmt, 1);
const char *z = (const char*)sqlite3_column_text(pStmt, 1);
const char *zType = (const char*)sqlite3_column_text(pStmt, 2);
int eHidden = sqlite3_column_int(pStmt, 6);
if( iPk==-1 && iPKF==1 && !sqlite3_stricmp("integer", zType) ) iPk = i;
if( iPKF>1 ) iPk = -2;
pNew->aCol[i].zCol = csr;
pNew->aCol[i].eHidden = eHidden;
if( eHidden==RECOVER_EHIDDEN_VIRTUAL ){
pNew->aCol[i].iField = -1;
}else{
pNew->aCol[i].iField = iField++;
}
if( eHidden!=RECOVER_EHIDDEN_VIRTUAL
&& eHidden!=RECOVER_EHIDDEN_STORED
){
pNew->aCol[i].iBind = iBind++;
}
memcpy(csr, z, n);
csr += (n+1);
}
pNew->pNext = p->pTblList;
p->pTblList = pNew;
pNew->bIntkey = 1;
}
recoverFinalize(p, pStmt);
pStmt = recoverPreparePrintf(p, p->dbOut, "PRAGMA index_xinfo(%Q)", zName);
while( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
int iField = sqlite3_column_int(pStmt, 0);
int iCol = sqlite3_column_int(pStmt, 1);
assert( iCol<pNew->nCol );
pNew->aCol[iCol].iField = iField;
pNew->bIntkey = 0;
iPk = -2;
}
recoverFinalize(p, pStmt);
if( p->errCode==SQLITE_OK ){
if( iPk>=0 ){
pNew->aCol[iPk].bIPK = 1;
}else if( pNew->bIntkey ){
pNew->iRowidBind = iBind++;
}
}
}
}
/*
** This function is called after recoverCacheSchema() has cached those parts
** of the input database schema that could be recovered in temporary table
** "recovery.schema". This function creates in the output database copies
** of all parts of that schema that must be created before the tables can
** be populated. Specifically, this means:
**
** * all tables that are not VIRTUAL, and
** * UNIQUE indexes.
**
** If the recovery handle uses SQL callbacks, then callbacks containing
** the associated "CREATE TABLE" and "CREATE INDEX" statements are made.
**
** Additionally, records are added to the sqlite_schema table of the
** output database for any VIRTUAL tables. The CREATE VIRTUAL TABLE
** records are written directly to sqlite_schema, not actually executed.
** If the handle is in SQL callback mode, then callbacks are invoked
** with equivalent SQL statements.
*/
static int recoverWriteSchema1(sqlite3_recover *p){
sqlite3_stmt *pSelect = 0;
sqlite3_stmt *pTblname = 0;
pSelect = recoverPrepare(p, p->dbOut,
"WITH dbschema(rootpage, name, sql, tbl, isVirtual, isIndex) AS ("
" SELECT rootpage, name, sql, "
" type='table', "
" sql LIKE 'create virtual%',"
" (type='index' AND (sql LIKE '%unique%' OR ?1))"
" FROM recovery.schema"
")"
"SELECT rootpage, tbl, isVirtual, name, sql"
" FROM dbschema "
" WHERE tbl OR isIndex"
" ORDER BY tbl DESC, name=='sqlite_sequence' DESC"
);
pTblname = recoverPrepare(p, p->dbOut,
"SELECT name FROM sqlite_schema "
"WHERE type='table' ORDER BY rowid DESC LIMIT 1"
);
if( pSelect ){
sqlite3_bind_int(pSelect, 1, p->bSlowIndexes);
while( sqlite3_step(pSelect)==SQLITE_ROW ){
i64 iRoot = sqlite3_column_int64(pSelect, 0);
int bTable = sqlite3_column_int(pSelect, 1);
int bVirtual = sqlite3_column_int(pSelect, 2);
const char *zName = (const char*)sqlite3_column_text(pSelect, 3);
const char *zSql = (const char*)sqlite3_column_text(pSelect, 4);
char *zFree = 0;
int rc = SQLITE_OK;
if( bVirtual ){
zSql = (const char*)(zFree = recoverMPrintf(p,
"INSERT INTO sqlite_schema VALUES('table', %Q, %Q, 0, %Q)",
zName, zName, zSql
));
}
rc = sqlite3_exec(p->dbOut, zSql, 0, 0, 0);
if( rc==SQLITE_OK ){
recoverSqlCallback(p, zSql);
if( bTable && !bVirtual ){
if( SQLITE_ROW==sqlite3_step(pTblname) ){
const char *zTbl = (const char*)sqlite3_column_text(pTblname, 0);
recoverAddTable(p, zTbl, iRoot);
}
recoverReset(p, pTblname);
}
}else if( rc!=SQLITE_ERROR ){
recoverDbError(p, p->dbOut);
}
sqlite3_free(zFree);
}
}
recoverFinalize(p, pSelect);
recoverFinalize(p, pTblname);
return p->errCode;
}
/*
** This function is called after the output database has been populated. It
** adds all recovered schema elements that were not created in the output
** database by recoverWriteSchema1() - everything except for tables and
** UNIQUE indexes. Specifically:
**
** * views,
** * triggers,
** * non-UNIQUE indexes.
**
** If the recover handle is in SQL callback mode, then equivalent callbacks
** are issued to create the schema elements.
*/
static int recoverWriteSchema2(sqlite3_recover *p){
sqlite3_stmt *pSelect = 0;
pSelect = recoverPrepare(p, p->dbOut,
p->bSlowIndexes ?
"SELECT rootpage, sql FROM recovery.schema "
" WHERE type!='table' AND type!='index'"
:
"SELECT rootpage, sql FROM recovery.schema "
" WHERE type!='table' AND (type!='index' OR sql NOT LIKE '%unique%')"
);
if( pSelect ){
while( sqlite3_step(pSelect)==SQLITE_ROW ){
const char *zSql = (const char*)sqlite3_column_text(pSelect, 1);
int rc = sqlite3_exec(p->dbOut, zSql, 0, 0, 0);
if( rc==SQLITE_OK ){
recoverSqlCallback(p, zSql);
}else if( rc!=SQLITE_ERROR ){
recoverDbError(p, p->dbOut);
}
}
}
recoverFinalize(p, pSelect);
return p->errCode;
}
/*
** This function is a no-op if recover handle p already contains an error
** (if p->errCode!=SQLITE_OK). In this case it returns NULL.
**
** Otherwise, if the recover handle is configured to create an output
** database (was created by sqlite3_recover_init()), then this function
** prepares and returns an SQL statement to INSERT a new record into table
** pTab, assuming the first nField fields of a record extracted from disk
** are valid.
**
** For example, if table pTab is:
**
** CREATE TABLE name(a, b GENERATED ALWAYS AS (a+1) STORED, c, d, e);
**
** And nField is 4, then the SQL statement prepared and returned is:
**
** INSERT INTO (a, c, d) VALUES (?1, ?2, ?3);
**
** In this case even though 4 values were extracted from the input db,
** only 3 are written to the output, as the generated STORED column
** cannot be written.
**
** If the recover handle is in SQL callback mode, then the SQL statement
** prepared is such that evaluating it returns a single row containing
** a single text value - itself an SQL statement similar to the above,
** except with SQL literals in place of the variables. For example:
**
** SELECT 'INSERT INTO (a, c, d) VALUES ('
** || quote(?1) || ', '
** || quote(?2) || ', '
** || quote(?3) || ')';
**
** In either case, it is the responsibility of the caller to eventually
** free the statement handle using sqlite3_finalize().
*/
static sqlite3_stmt *recoverInsertStmt(
sqlite3_recover *p,
RecoverTable *pTab,
int nField
){
sqlite3_stmt *pRet = 0;
const char *zSep = "";
const char *zSqlSep = "";
char *zSql = 0;
char *zFinal = 0;
char *zBind = 0;
int ii;
int bSql = p->xSql ? 1 : 0;
if( nField<=0 ) return 0;
assert( nField<=pTab->nCol );
zSql = recoverMPrintf(p, "INSERT OR IGNORE INTO %Q(", pTab->zTab);
if( pTab->iRowidBind ){
assert( pTab->bIntkey );
zSql = recoverMPrintf(p, "%z_rowid_", zSql);
if( bSql ){
zBind = recoverMPrintf(p, "%zquote(?%d)", zBind, pTab->iRowidBind);
}else{
zBind = recoverMPrintf(p, "%z?%d", zBind, pTab->iRowidBind);
}
zSqlSep = "||', '||";
zSep = ", ";
}
for(ii=0; ii<nField; ii++){
int eHidden = pTab->aCol[ii].eHidden;
if( eHidden!=RECOVER_EHIDDEN_VIRTUAL
&& eHidden!=RECOVER_EHIDDEN_STORED
){
assert( pTab->aCol[ii].iField>=0 && pTab->aCol[ii].iBind>=1 );
zSql = recoverMPrintf(p, "%z%s%Q", zSql, zSep, pTab->aCol[ii].zCol);
if( bSql ){
zBind = recoverMPrintf(p,
"%z%sescape_crnl(quote(?%d))", zBind, zSqlSep, pTab->aCol[ii].iBind
);
zSqlSep = "||', '||";
}else{
zBind = recoverMPrintf(p, "%z%s?%d", zBind, zSep, pTab->aCol[ii].iBind);
}
zSep = ", ";
}
}
if( bSql ){
zFinal = recoverMPrintf(p, "SELECT %Q || ') VALUES (' || %s || ')'",
zSql, zBind
);
}else{
zFinal = recoverMPrintf(p, "%s) VALUES (%s)", zSql, zBind);
}
pRet = recoverPrepare(p, p->dbOut, zFinal);
sqlite3_free(zSql);
sqlite3_free(zBind);
sqlite3_free(zFinal);
return pRet;
}
/*
** Search the list of RecoverTable objects at p->pTblList for one that
** has root page iRoot in the input database. If such an object is found,
** return a pointer to it. Otherwise, return NULL.
*/
static RecoverTable *recoverFindTable(sqlite3_recover *p, u32 iRoot){
RecoverTable *pRet = 0;
for(pRet=p->pTblList; pRet && pRet->iRoot!=iRoot; pRet=pRet->pNext);
return pRet;
}
/*
** This function attempts to create a lost and found table within the
** output db. If successful, it returns a pointer to a buffer containing
** the name of the new table. It is the responsibility of the caller to
** eventually free this buffer using sqlite3_free().
**
** If an error occurs, NULL is returned and an error code and error
** message left in the recover handle.
*/
static char *recoverLostAndFoundCreate(
sqlite3_recover *p, /* Recover object */
int nField /* Number of column fields in new table */
){
char *zTbl = 0;
sqlite3_stmt *pProbe = 0;