blob: ce449ea212a346ab6f56f3fdedbbc68f1455e7dd [file] [log] [blame]
/*
* Copyright 2019 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/GrPathTessellateOp.h"
#include "src/gpu/GrEagerVertexAllocator.h"
#include "src/gpu/GrInnerFanTriangulator.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/ops/GrSimpleMeshDrawOpHelper.h"
#include "src/gpu/tessellate/GrFillPathShader.h"
#include "src/gpu/tessellate/GrMiddleOutPolygonTriangulator.h"
#include "src/gpu/tessellate/GrStencilPathShader.h"
#include "src/gpu/tessellate/GrTessellationPathRenderer.h"
using OpFlags = GrTessellationPathRenderer::OpFlags;
void GrPathTessellateOp::visitProxies(const VisitProxyFunc& fn) const {
if (fPipelineForFills) {
fPipelineForFills->visitProxies(fn);
} else {
fProcessors.visitProxies(fn);
}
}
GrPathTessellateOp::FixedFunctionFlags GrPathTessellateOp::fixedFunctionFlags() const {
auto flags = FixedFunctionFlags::kUsesStencil;
if (GrAAType::kNone != fAAType) {
flags |= FixedFunctionFlags::kUsesHWAA;
}
return flags;
}
void GrPathTessellateOp::onPrePrepare(GrRecordingContext* context,
const GrSurfaceProxyView& writeView, GrAppliedClip* clip,
const GrXferProcessor::DstProxyView& dstProxyView,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) {
SkArenaAlloc* recordTimeAllocator = context->priv().recordTimeAllocator();
GrAppliedHardClip hardClip = GrAppliedHardClip(
(clip) ? clip->hardClip() : GrAppliedHardClip::Disabled());
PrePrepareArgs args{recordTimeAllocator, writeView, &hardClip, clip, &dstProxyView,
renderPassXferBarriers, colorLoadOp, context->priv().caps()};
this->prePreparePrograms(args);
if (fStencilTrianglesProgram) {
context->priv().recordProgramInfo(fStencilTrianglesProgram);
}
if (fStencilCubicsProgram) {
context->priv().recordProgramInfo(fStencilCubicsProgram);
}
if (fFillTrianglesProgram) {
context->priv().recordProgramInfo(fFillTrianglesProgram);
}
if (fFillPathProgram) {
context->priv().recordProgramInfo(fFillPathProgram);
}
}
void GrPathTessellateOp::prePreparePrograms(const PrePrepareArgs& args) {
using DrawInnerFan = GrPathIndirectTessellator::DrawInnerFan;
int numVerbs = fPath.countVerbs();
if (numVerbs <= 0) {
return;
}
// First check if the path is large and/or simple enough that we can actually triangulate the
// inner polygon(s) on the CPU. This is our fastest approach. It allows us to stencil only the
// curves, and then fill the internal polygons directly to the final render target, thus drawing
// the majority of pixels in a single render pass.
SkScalar scales[2];
SkAssertResult(fViewMatrix.getMinMaxScales(scales)); // Will fail if perspective.
const SkRect& bounds = fPath.getBounds();
float gpuFragmentWork = bounds.height() * scales[0] * bounds.width() * scales[1];
float cpuTessellationWork = (float)numVerbs * SkNextLog2(numVerbs); // N log N.
if (cpuTessellationWork * 500 + (256 * 256) < gpuFragmentWork) { // Don't try below 256x256.
bool isLinear;
// This will fail if the inner triangles do not form a simple polygon (e.g., self
// intersection, double winding).
if (this->prePrepareInnerPolygonTriangulation(args, &isLinear)) {
if (!isLinear) {
// Always use indirect draws for cubics instead of tessellation here. Our goal in
// this mode is to maximize GPU performance, and the middle-out topology used by our
// indirect draws is easier on the rasterizer than a tessellated fan. There also
// seems to be a small amount of fixed tessellation overhead that this avoids.
this->prePrepareStencilCubicsProgram<GrMiddleOutCubicShader>(args);
// We will need one final pass to cover the convex hulls of the cubics after
// drawing the inner triangles.
this->prePrepareFillCubicHullsProgram(args);
fTessellator = args.fArena->make<GrPathIndirectTessellator>(fViewMatrix, fPath,
DrawInnerFan::kNo);
}
return;
}
}
// If we didn't triangulate the inner fan then the fill program will be a simple bounding box.
this->prePrepareFillBoundingBoxProgram(args);
// When there are only a few verbs, it seems to always be fastest to make a single indirect draw
// that contains both the inner triangles and the outer cubics, instead of using hardware
// tessellation. Also take this path if tessellation is not supported.
bool drawTrianglesAsIndirectCubicDraw = (numVerbs < 50);
if (drawTrianglesAsIndirectCubicDraw || (fOpFlags & OpFlags::kDisableHWTessellation)) {
if (!drawTrianglesAsIndirectCubicDraw) {
this->prePrepareStencilTrianglesProgram(args);
}
this->prePrepareStencilCubicsProgram<GrMiddleOutCubicShader>(args);
fTessellator = args.fArena->make<GrPathIndirectTessellator>(
fViewMatrix, fPath, DrawInnerFan(drawTrianglesAsIndirectCubicDraw));
return;
}
// The caller should have sent Flags::kDisableHWTessellation if it was not supported.
SkASSERT(args.fCaps->shaderCaps()->tessellationSupport());
// Next see if we can split up the inner triangles and outer cubics into two draw calls. This
// allows for a more efficient inner triangle topology that can reduce the rasterizer load by a
// large margin on complex paths, but also causes greater CPU overhead due to the extra shader
// switches and draw calls.
// NOTE: Raster-edge work is 1-dimensional, so we sum height and width instead of multiplying.
float rasterEdgeWork = (bounds.height() + bounds.width()) * scales[1] * fPath.countVerbs();
if (rasterEdgeWork > 300 * 300) {
this->prePrepareStencilTrianglesProgram(args);
this->prePrepareStencilCubicsProgram<GrCubicTessellateShader>(args);
fTessellator = args.fArena->make<GrPathOuterCurveTessellator>();
return;
}
// Fastest CPU approach: emit one cubic wedge per verb, fanning out from the center.
this->prePrepareStencilCubicsProgram<GrWedgeTessellateShader>(args);
fTessellator = args.fArena->make<GrPathWedgeTessellator>();
}
bool GrPathTessellateOp::prePrepareInnerPolygonTriangulation(const PrePrepareArgs& args,
bool* isLinear) {
SkASSERT(!fTriangleBuffer);
SkASSERT(fTriangleVertexCount == 0);
SkASSERT(!fStencilTrianglesProgram);
SkASSERT(!fFillTrianglesProgram);
fInnerFanTriangulator = args.fArena->make<GrInnerFanTriangulator>(fPath, args.fArena, true);
fInnerFanPolys = fInnerFanTriangulator->pathToPolys(nullptr, isLinear);
if (!fInnerFanPolys) {
// pathToPolys will fail if the inner polygon(s) are not simple.
return false;
}
if ((fOpFlags & (OpFlags::kStencilOnly | OpFlags::kWireframe)) ||
GrAAType::kCoverage == fAAType ||
(args.fClip && args.fClip->hasStencilClip())) {
// If we have certain flags, mixed samples, or a stencil clip then we unfortunately
// can't fill the inner polygon directly. Indicate that these triangles need to be
// stencilled.
this->prePrepareStencilTrianglesProgram(args);
}
this->prePrepareFillTrianglesProgram(args, *isLinear);
return true;
}
// Increments clockwise triangles and decrements counterclockwise. Used for "winding" fill.
constexpr static GrUserStencilSettings kIncrDecrStencil(
GrUserStencilSettings::StaticInitSeparate<
0x0000, 0x0000,
GrUserStencilTest::kAlwaysIfInClip, GrUserStencilTest::kAlwaysIfInClip,
0xffff, 0xffff,
GrUserStencilOp::kIncWrap, GrUserStencilOp::kDecWrap,
GrUserStencilOp::kKeep, GrUserStencilOp::kKeep,
0xffff, 0xffff>());
// Inverts the bottom stencil bit. Used for "even/odd" fill.
constexpr static GrUserStencilSettings kInvertStencil(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kAlwaysIfInClip,
0xffff,
GrUserStencilOp::kInvert,
GrUserStencilOp::kKeep,
0x0001>());
constexpr static const GrUserStencilSettings* stencil_pass_settings(SkPathFillType fillType) {
return (fillType == SkPathFillType::kWinding) ? &kIncrDecrStencil : &kInvertStencil;
}
void GrPathTessellateOp::prePrepareStencilTrianglesProgram(const PrePrepareArgs& args) {
SkASSERT(!fStencilTrianglesProgram);
this->prePreparePipelineForStencils(args);
auto* shader = args.fArena->make<GrStencilTriangleShader>(fViewMatrix);
fStencilTrianglesProgram = GrPathShader::MakeProgramInfo(
shader, args.fArena, args.fWriteView, fPipelineForStencils, *args.fDstProxyView,
args.fXferBarrierFlags, args.fColorLoadOp, stencil_pass_settings(fPath.getFillType()),
*args.fCaps);
}
template<typename ShaderType>
void GrPathTessellateOp::prePrepareStencilCubicsProgram(const PrePrepareArgs& args) {
SkASSERT(!fStencilCubicsProgram);
this->prePreparePipelineForStencils(args);
auto* shader = args.fArena->make<ShaderType>(fViewMatrix);
fStencilCubicsProgram = GrPathShader::MakeProgramInfo(
shader, args.fArena, args.fWriteView, fPipelineForStencils, *args.fDstProxyView,
args.fXferBarrierFlags, args.fColorLoadOp, stencil_pass_settings(fPath.getFillType()),
*args.fCaps);
}
void GrPathTessellateOp::prePreparePipelineForStencils(const PrePrepareArgs& args) {
if (fPipelineForStencils) {
return;
}
GrPipeline::InitArgs initArgs;
if (GrAAType::kNone != fAAType) {
initArgs.fInputFlags |= GrPipeline::InputFlags::kHWAntialias;
}
if (args.fCaps->wireframeSupport() && (OpFlags::kWireframe & fOpFlags)) {
initArgs.fInputFlags |= GrPipeline::InputFlags::kWireframe;
}
SkASSERT(SkPathFillType::kWinding == fPath.getFillType() ||
SkPathFillType::kEvenOdd == fPath.getFillType());
initArgs.fCaps = args.fCaps;
fPipelineForStencils = args.fArena->make<GrPipeline>(
initArgs, GrDisableColorXPFactory::MakeXferProcessor(), *args.fHardClip);
}
// Allows non-zero stencil values to pass and write a color, and resets the stencil value back to
// zero; discards immediately on stencil values of zero.
// NOTE: It's ok to not check the clip here because the previous stencil pass will have only written
// to samples already inside the clip.
constexpr static GrUserStencilSettings kTestAndResetStencil(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kNotEqual,
0xffff,
GrUserStencilOp::kZero,
GrUserStencilOp::kKeep,
0xffff>());
void GrPathTessellateOp::prePrepareFillTrianglesProgram(const PrePrepareArgs& args, bool isLinear) {
SkASSERT(!fFillTrianglesProgram);
if (fOpFlags & OpFlags::kStencilOnly) {
return;
}
// These are a twist on the standard red book stencil settings that allow us to fill the inner
// polygon directly to the final render target. At this point, the curves are already stencilled
// in. So if the stencil value is zero, then it means the path at our sample is not affected by
// any curves and we fill the path in directly. If the stencil value is nonzero, then we don't
// fill and instead continue the standard red book stencil process.
//
// NOTE: These settings are currently incompatible with a stencil clip.
constexpr static GrUserStencilSettings kFillOrIncrDecrStencil(
GrUserStencilSettings::StaticInitSeparate<
0x0000, 0x0000,
GrUserStencilTest::kEqual, GrUserStencilTest::kEqual,
0xffff, 0xffff,
GrUserStencilOp::kKeep, GrUserStencilOp::kKeep,
GrUserStencilOp::kIncWrap, GrUserStencilOp::kDecWrap,
0xffff, 0xffff>());
constexpr static GrUserStencilSettings kFillOrInvertStencil(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kEqual,
0xffff,
GrUserStencilOp::kKeep,
GrUserStencilOp::kZero,
0xffff>());
this->prePreparePipelineForFills(args);
const GrUserStencilSettings* stencil;
if (fStencilTrianglesProgram) {
// The path was already stencilled. Here we just need to do a cover pass.
stencil = &kTestAndResetStencil;
} else if (isLinear) {
// There are no stencilled curves. We can ignore stencil and fill the path directly.
stencil = &GrUserStencilSettings::kUnused;
} else if (SkPathFillType::kWinding == fPath.getFillType()) {
// Fill in the path pixels not touched by curves, incr/decr stencil otherwise.
SkASSERT(!fPipelineForFills->hasStencilClip());
stencil = &kFillOrIncrDecrStencil;
} else {
// Fill in the path pixels not touched by curves, invert stencil otherwise.
SkASSERT(!fPipelineForFills->hasStencilClip());
stencil = &kFillOrInvertStencil;
}
auto* fillTriangleShader = args.fArena->make<GrFillTriangleShader>(fViewMatrix, fColor);
fFillTrianglesProgram = GrPathShader::MakeProgramInfo(
fillTriangleShader, args.fArena, args.fWriteView, fPipelineForFills,
*args.fDstProxyView, args.fXferBarrierFlags, args.fColorLoadOp, stencil, *args.fCaps);
}
void GrPathTessellateOp::prePrepareFillCubicHullsProgram(const PrePrepareArgs& args) {
SkASSERT(!fFillPathProgram);
if (fOpFlags & OpFlags::kStencilOnly) {
return;
}
this->prePreparePipelineForFills(args);
auto* fillCubicHullsShader = args.fArena->make<GrFillCubicHullShader>(fViewMatrix, fColor);
fFillPathProgram = GrPathShader::MakeProgramInfo(
fillCubicHullsShader, args.fArena, args.fWriteView, fPipelineForFills,
*args.fDstProxyView, args.fXferBarrierFlags, args.fColorLoadOp, &kTestAndResetStencil,
*args.fCaps);
}
void GrPathTessellateOp::prePrepareFillBoundingBoxProgram(const PrePrepareArgs& args) {
SkASSERT(!fFillPathProgram);
if (fOpFlags & OpFlags::kStencilOnly) {
return;
}
this->prePreparePipelineForFills(args);
auto* fillBoundingBoxShader = args.fArena->make<GrFillBoundingBoxShader>(fViewMatrix, fColor,
fPath.getBounds());
fFillPathProgram = GrPathShader::MakeProgramInfo(
fillBoundingBoxShader, args.fArena, args.fWriteView, fPipelineForFills,
*args.fDstProxyView, args.fXferBarrierFlags, args.fColorLoadOp, &kTestAndResetStencil,
*args.fCaps);
}
void GrPathTessellateOp::prePreparePipelineForFills(const PrePrepareArgs& args) {
SkASSERT(!(fOpFlags & OpFlags::kStencilOnly));
if (fPipelineForFills) {
return;
}
auto pipelineFlags = GrPipeline::InputFlags::kNone;
if (GrAAType::kNone != fAAType) {
if (args.fWriteView.asRenderTargetProxy()->numSamples() == 1) {
// We are mixed sampled. We need to either enable conservative raster (preferred) or
// disable MSAA in order to avoid double blend artifacts. (Even if we disable MSAA for
// the cover geometry, the stencil test is still multisampled and will still produce
// smooth results.)
SkASSERT(GrAAType::kCoverage == fAAType);
if (args.fCaps->conservativeRasterSupport()) {
pipelineFlags |= GrPipeline::InputFlags::kHWAntialias;
pipelineFlags |= GrPipeline::InputFlags::kConservativeRaster;
}
} else {
// We are standard MSAA. Leave MSAA enabled for the cover geometry.
pipelineFlags |= GrPipeline::InputFlags::kHWAntialias;
}
}
fPipelineForFills = GrSimpleMeshDrawOpHelper::CreatePipeline(
args.fCaps, args.fArena, args.fWriteView.swizzle(),
(args.fClip) ? std::move(*args.fClip) : GrAppliedClip::Disabled(), *args.fDstProxyView,
std::move(fProcessors), pipelineFlags);
}
void GrPathTessellateOp::onPrepare(GrOpFlushState* flushState) {
int numVerbs = fPath.countVerbs();
if (numVerbs <= 0) {
return;
}
if (!fPipelineForStencils && !fPipelineForFills) {
// Nothing has been prePrepared yet. Do it now.
GrAppliedHardClip hardClip = GrAppliedHardClip(flushState->appliedHardClip());
GrAppliedClip clip = flushState->detachAppliedClip();
PrePrepareArgs args{flushState->allocator(), flushState->writeView(), &hardClip,
&clip, &flushState->dstProxyView(),
flushState->renderPassBarriers(), flushState->colorLoadOp(),
&flushState->caps()};
this->prePreparePrograms(args);
}
if (fInnerFanPolys) {
// prePreparePrograms was able to generate an inner polygon triangulation. It will exist in
// either fOffThreadInnerTriangulation or fTriangleBuffer exclusively.
SkASSERT(fInnerFanTriangulator);
GrEagerDynamicVertexAllocator alloc(flushState, &fTriangleBuffer, &fBaseTriangleVertex);
fTriangleVertexCount = fInnerFanTriangulator->polysToTriangles(fInnerFanPolys, &alloc,
nullptr);
} else if (fStencilTrianglesProgram) {
// The inner fan isn't built into the tessellator. Generate a standard Redbook fan with a
// middle-out topology.
GrEagerDynamicVertexAllocator vertexAlloc(flushState, &fTriangleBuffer,
&fBaseTriangleVertex);
// No initial moveTo, plus an implicit close at the end; n-2 triangles fill an n-gon.
int maxInnerTriangles = fPath.countVerbs() - 1;
auto* triangleVertexData = vertexAlloc.lock<SkPoint>(maxInnerTriangles * 3);
fTriangleVertexCount = GrMiddleOutPolygonTriangulator::WritePathInnerFan(
triangleVertexData, 3/*perTriangleVertexAdvance*/, fPath) * 3;
vertexAlloc.unlock(fTriangleVertexCount);
}
if (fTessellator) {
fTessellator->prepare(flushState, fViewMatrix, fPath);
}
}
void GrPathTessellateOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
this->drawStencilPass(flushState);
this->drawCoverPass(flushState);
}
void GrPathTessellateOp::drawStencilPass(GrOpFlushState* flushState) {
if (fStencilTrianglesProgram && fTriangleVertexCount > 0) {
SkASSERT(fTriangleBuffer);
flushState->bindPipelineAndScissorClip(*fStencilTrianglesProgram, this->bounds());
flushState->bindBuffers(nullptr, nullptr, fTriangleBuffer);
flushState->draw(fTriangleVertexCount, fBaseTriangleVertex);
}
if (fTessellator) {
flushState->bindPipelineAndScissorClip(*fStencilCubicsProgram, this->bounds());
fTessellator->draw(flushState);
}
}
void GrPathTessellateOp::drawCoverPass(GrOpFlushState* flushState) {
if (fFillTrianglesProgram) {
SkASSERT(fTriangleBuffer);
// We have a triangulation of the path's inner polygon. This is the fast path. Fill those
// triangles directly to the screen.
if (fTriangleVertexCount > 0) {
flushState->bindPipelineAndScissorClip(*fFillTrianglesProgram, this->bounds());
flushState->bindTextures(fFillTrianglesProgram->primProc(), nullptr,
*fPipelineForFills);
flushState->bindBuffers(nullptr, nullptr, fTriangleBuffer);
flushState->draw(fTriangleVertexCount, fBaseTriangleVertex);
}
if (fTessellator) {
// At this point, every pixel is filled in except the ones touched by curves.
// fFillPathProgram will issue a final cover pass over the curves by drawing their
// convex hulls. This will fill in any remaining samples and reset the stencil buffer.
SkASSERT(fFillPathProgram);
flushState->bindPipelineAndScissorClip(*fFillPathProgram, this->bounds());
flushState->bindTextures(fFillPathProgram->primProc(), nullptr, *fPipelineForFills);
fTessellator->drawHullInstances(flushState);
}
} else if (fFillPathProgram) {
// There are no triangles to fill. Just draw a bounding box.
flushState->bindPipelineAndScissorClip(*fFillPathProgram, this->bounds());
flushState->bindTextures(fFillPathProgram->primProc(), nullptr, *fPipelineForFills);
flushState->bindBuffers(nullptr, nullptr, nullptr);
flushState->draw(4, 0);
}
}