blob: d084af8acf6ac2c42dda25d71afa45803ae15333 [file] [log] [blame]
//
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
//Copyright (C) 2016 Google, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
// Implement the TParseContextBase class.
#include <cstdarg>
#include "ParseHelper.h"
extern int yyparse(glslang::TParseContext*);
namespace glslang {
//
// Used to output syntax, parsing, and semantic errors.
//
void TParseContextBase::outputMessage(const TSourceLoc& loc, const char* szReason,
const char* szToken,
const char* szExtraInfoFormat,
TPrefixType prefix, va_list args)
{
const int maxSize = MaxTokenLength + 200;
char szExtraInfo[maxSize];
safe_vsprintf(szExtraInfo, maxSize, szExtraInfoFormat, args);
infoSink.info.prefix(prefix);
infoSink.info.location(loc);
infoSink.info << "'" << szToken << "' : " << szReason << " " << szExtraInfo << "\n";
if (prefix == EPrefixError) {
++numErrors;
}
}
void C_DECL TParseContextBase::error(const TSourceLoc& loc, const char* szReason, const char* szToken,
const char* szExtraInfoFormat, ...)
{
if (messages & EShMsgOnlyPreprocessor)
return;
va_list args;
va_start(args, szExtraInfoFormat);
outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixError, args);
va_end(args);
if ((messages & EShMsgCascadingErrors) == 0)
currentScanner->setEndOfInput();
}
void C_DECL TParseContextBase::warn(const TSourceLoc& loc, const char* szReason, const char* szToken,
const char* szExtraInfoFormat, ...)
{
if (suppressWarnings())
return;
va_list args;
va_start(args, szExtraInfoFormat);
outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixWarning, args);
va_end(args);
}
void C_DECL TParseContextBase::ppError(const TSourceLoc& loc, const char* szReason, const char* szToken,
const char* szExtraInfoFormat, ...)
{
va_list args;
va_start(args, szExtraInfoFormat);
outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixError, args);
va_end(args);
if ((messages & EShMsgCascadingErrors) == 0)
currentScanner->setEndOfInput();
}
void C_DECL TParseContextBase::ppWarn(const TSourceLoc& loc, const char* szReason, const char* szToken,
const char* szExtraInfoFormat, ...)
{
va_list args;
va_start(args, szExtraInfoFormat);
outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixWarning, args);
va_end(args);
}
//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if there was an error.
//
bool TParseContextBase::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
{
TIntermBinary* binaryNode = node->getAsBinaryNode();
if (binaryNode) {
switch(binaryNode->getOp()) {
case EOpIndexDirect:
case EOpIndexIndirect: // fall through
case EOpIndexDirectStruct: // fall through
case EOpVectorSwizzle:
return lValueErrorCheck(loc, op, binaryNode->getLeft());
default:
break;
}
error(loc, " l-value required", op, "", "");
return true;
}
const char* symbol = nullptr;
TIntermSymbol* symNode = node->getAsSymbolNode();
if (symNode != nullptr)
symbol = symNode->getName().c_str();
const char* message = nullptr;
switch (node->getQualifier().storage) {
case EvqConst: message = "can't modify a const"; break;
case EvqConstReadOnly: message = "can't modify a const"; break;
case EvqUniform: message = "can't modify a uniform"; break;
case EvqBuffer:
if (node->getQualifier().readonly)
message = "can't modify a readonly buffer";
break;
default:
//
// Type that can't be written to?
//
switch (node->getBasicType()) {
case EbtSampler:
message = "can't modify a sampler";
break;
case EbtAtomicUint:
message = "can't modify an atomic_uint";
break;
case EbtVoid:
message = "can't modify void";
break;
default:
break;
}
}
if (message == nullptr && binaryNode == nullptr && symNode == nullptr) {
error(loc, " l-value required", op, "", "");
return true;
}
//
// Everything else is okay, no error.
//
if (message == nullptr)
return false;
//
// If we get here, we have an error and a message.
//
if (symNode)
error(loc, " l-value required", op, "\"%s\" (%s)", symbol, message);
else
error(loc, " l-value required", op, "(%s)", message);
return true;
}
// Test for and give an error if the node can't be read from.
void TParseContextBase::rValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
{
if (! node)
return;
TIntermBinary* binaryNode = node->getAsBinaryNode();
if (binaryNode) {
switch(binaryNode->getOp()) {
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectStruct:
case EOpVectorSwizzle:
rValueErrorCheck(loc, op, binaryNode->getLeft());
default:
break;
}
return;
}
TIntermSymbol* symNode = node->getAsSymbolNode();
if (symNode && symNode->getQualifier().writeonly)
error(loc, "can't read from writeonly object: ", op, symNode->getName().c_str());
}
// Add a linkage symbol node for 'symbol', which
// must have its type fully edited, as this will snapshot the type.
// It is okay if symbol becomes invalid before finish().
void TParseContextBase::trackLinkage(TSymbol& symbol)
{
if (!parsingBuiltins)
intermediate.addSymbolLinkageNode(linkage, symbol);
}
// Add 'symbol' to the list of deferred linkage symbols, which
// are later processed in finish(), at which point the symbol
// must still be valid.
// It is okay if the symbol's type will be subsequently edited.
void TParseContextBase::trackLinkageDeferred(TSymbol& symbol)
{
if (!parsingBuiltins)
linkageSymbols.push_back(&symbol);
}
// Make a shared symbol have a non-shared version that can be edited by the current
// compile, such that editing its type will not change the shared version and will
// effect all nodes already sharing it (non-shallow type),
// or adopting its full type after being edited (shallow type).
void TParseContextBase::makeEditable(TSymbol*& symbol)
{
// copyUp() does a deep copy of the type.
symbol = symbolTable.copyUp(symbol);
// Save it (deferred, so it can be edited first) in the AST for linker use.
if (symbol)
trackLinkageDeferred(*symbol);
}
// Return a writable version of the variable 'name'.
//
// Return nullptr if 'name' is not found. This should mean
// something is seriously wrong (e.g., compiler asking self for
// built-in that doesn't exist).
TVariable* TParseContextBase::getEditableVariable(const char* name)
{
bool builtIn;
TSymbol* symbol = symbolTable.find(name, &builtIn);
assert(symbol != nullptr);
if (symbol == nullptr)
return nullptr;
if (builtIn)
makeEditable(symbol);
return symbol->getAsVariable();
}
// Select the best matching function for 'call' from 'candidateList'.
//
// Assumptions
//
// There is no exact match, so a selection algorithm needs to run. That is, the
// language-specific handler should check for exact match first, to
// decide what to do, before calling this selector.
//
// Input
//
// * list of candidate signatures to select from
// * the call
// * a predicate function convertible(from, to) that says whether or not type
// 'from' can implicitly convert to type 'to' (it includes the case of what
// the calling language would consider a matching type with no conversion
// needed)
// * a predicate function better(from1, from2, to1, to2) that says whether or
// not a conversion from <-> to2 is considered better than a conversion
// from <-> to1 (both in and out directions need testing, as declared by the
// formal parameter)
//
// Output
//
// * best matching candidate (or none, if no viable candidates found)
// * whether there was a tie for the best match (ambiguous overload selection,
// caller's choice for how to report)
//
const TFunction* TParseContextBase::selectFunction(
const TVector<const TFunction*> candidateList,
const TFunction& call,
std::function<bool(const TType& from, const TType& to, TOperator op, int arg)> convertible,
std::function<bool(const TType& from, const TType& to1, const TType& to2)> better,
/* output */ bool& tie)
{
//
// Operation
//
// 1. Prune the input list of candidates down to a list of viable candidates,
// where each viable candidate has
//
// * at least as many parameters as there are calling arguments, with any
// remaining parameters being optional or having default values
// * each parameter is true under convertible(A, B), where A is the calling
// type for in and B is the formal type, and in addition, for out B is the
// calling type and A is the formal type
//
// 2. If there are no viable candidates, return with no match.
//
// 3. If there is only one viable candidate, it is the best match.
//
// 4. If there are multiple viable candidates, select the first viable candidate
// as the incumbent. Compare the incumbent to the next viable candidate, and if
// that candidate is better (bullets below), make it the incumbent. Repeat, with
// a linear walk through the viable candidate list. The final incumbent will be
// returned as the best match. A viable candidate is better than the incumbent if
//
// * it has a function argument with a better(...) conversion than the incumbent,
// for all directions needed by in and out
// * the incumbent has no argument with a better(...) conversion then the
// candidate, for either in or out (as needed)
//
// 5. Check for ambiguity by comparing the best match against all other viable
// candidates. If any other viable candidate has a function argument with a
// better(...) conversion than the best candidate (for either in or out
// directions), return that there was a tie for best.
//
tie = false;
// 1. prune to viable...
TVector<const TFunction*> viableCandidates;
for (auto it = candidateList.begin(); it != candidateList.end(); ++it) {
const TFunction& candidate = *(*it);
// to even be a potential match, number of arguments has to match
if (call.getParamCount() != candidate.getParamCount())
continue;
// see if arguments are convertible
bool viable = true;
for (int param = 0; param < candidate.getParamCount(); ++param) {
if (candidate[param].type->getQualifier().isParamInput()) {
if (! convertible(*call[param].type, *candidate[param].type, candidate.getBuiltInOp(), param)) {
viable = false;
break;
}
}
if (candidate[param].type->getQualifier().isParamOutput()) {
if (! convertible(*candidate[param].type, *call[param].type, candidate.getBuiltInOp(), param)) {
viable = false;
break;
}
}
}
if (viable)
viableCandidates.push_back(&candidate);
}
// 2. none viable...
if (viableCandidates.size() == 0)
return nullptr;
// 3. only one viable...
if (viableCandidates.size() == 1)
return viableCandidates.front();
// 4. find best...
auto betterParam = [&call, &better](const TFunction& can1, const TFunction& can2) -> bool {
// is call -> can2 better than call -> can1 for any parameter
bool hasBetterParam = false;
for (int param = 0; param < call.getParamCount(); ++param) {
if (better(*call[param].type, *can1[param].type, *can2[param].type)) {
hasBetterParam = true;
break;
}
}
return hasBetterParam;
};
const TFunction* incumbent = viableCandidates.front();
for (auto it = viableCandidates.begin() + 1; it != viableCandidates.end(); ++it) {
const TFunction& candidate = *(*it);
if (betterParam(*incumbent, candidate) && ! betterParam(candidate, *incumbent))
incumbent = &candidate;
}
// 5. ambiguity...
for (auto it = viableCandidates.begin(); it != viableCandidates.end(); ++it) {
if (incumbent == *it)
continue;
const TFunction& candidate = *(*it);
if (betterParam(*incumbent, candidate))
tie = true;
}
return incumbent;
}
//
// Make the passed-in variable information become a member of the
// global uniform block. If this doesn't exist yet, make it.
//
void TParseContextBase::growGlobalUniformBlock(TSourceLoc& loc, TType& memberType, TString& memberName)
{
// make the global block, if not yet made
if (globalUniformBlock == nullptr) {
TString& blockName = *NewPoolTString(getGlobalUniformBlockName());
TQualifier blockQualifier;
blockQualifier.clear();
blockQualifier.storage = EvqUniform;
TType blockType(new TTypeList, blockName, blockQualifier);
TString* instanceName = NewPoolTString("");
globalUniformBlock = new TVariable(instanceName, blockType, true);
firstNewMember = 0;
}
// add the requested member as a member to the block
TType* type = new TType;
type->shallowCopy(memberType);
type->setFieldName(memberName);
TTypeLoc typeLoc = {type, loc};
globalUniformBlock->getType().getWritableStruct()->push_back(typeLoc);
}
//
// Insert into the symbol table the global uniform block created in
// growGlobalUniformBlock(). The variables added as members won't be
// found unless this is done.
//
bool TParseContextBase::insertGlobalUniformBlock()
{
if (globalUniformBlock == nullptr)
return true;
int numMembers = (int)globalUniformBlock->getType().getStruct()->size();
bool inserted = false;
if (firstNewMember == 0) {
// This is the first request; we need a normal symbol table insert
inserted = symbolTable.insert(*globalUniformBlock);
if (inserted)
trackLinkageDeferred(*globalUniformBlock);
} else if (firstNewMember <= numMembers) {
// This is a follow-on request; we need to amend the first insert
inserted = symbolTable.amend(*globalUniformBlock, firstNewMember);
}
if (inserted) {
finalizeGlobalUniformBlockLayout(*globalUniformBlock);
firstNewMember = numMembers;
}
return inserted;
}
void TParseContextBase::finish()
{
if (!parsingBuiltins) {
// Transfer te linkage symbols to AST nodes
for (auto i = linkageSymbols.begin(); i != linkageSymbols.end(); ++i)
intermediate.addSymbolLinkageNode(linkage, **i);
intermediate.addSymbolLinkageNodes(linkage, getLanguage(), symbolTable);
}
}
} // end namespace glslang