blob: 45d9009330ae860df58d7a03c89c99651eda35c5 [file] [log] [blame] [edit]
// Copyright 2019 Intel Corporation. All Rights Reserved.
//
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Copyright 2017 The Chromium OS Authors. All rights reserved.
//
// SPDX-License-Identifier: BSD-3-Clause
//! Enums, traits and functions for working with
//! [`signal`](http://man7.org/linux/man-pages/man7/signal.7.html).
use libc::{
c_int, c_void, pthread_kill, pthread_sigmask, pthread_t, sigaction, sigaddset, sigemptyset,
sigfillset, siginfo_t, sigismember, sigpending, sigset_t, sigtimedwait, timespec, EAGAIN,
EINTR, EINVAL, SIG_BLOCK, SIG_UNBLOCK,
};
use crate::errno;
use std::fmt::{self, Display};
use std::io;
use std::mem;
use std::os::unix::thread::JoinHandleExt;
use std::ptr::{null, null_mut};
use std::result;
use std::thread::JoinHandle;
/// The error cases enumeration for signal handling.
#[derive(Debug, PartialEq, Eq)]
pub enum Error {
/// Couldn't create a sigset.
CreateSigset(errno::Error),
/// The wrapped signal has already been blocked.
SignalAlreadyBlocked(c_int),
/// Failed to check if the requested signal is in the blocked set already.
CompareBlockedSignals(errno::Error),
/// The signal could not be blocked.
BlockSignal(errno::Error),
/// The signal mask could not be retrieved.
RetrieveSignalMask(c_int),
/// The signal could not be unblocked.
UnblockSignal(errno::Error),
/// Failed to wait for given signal.
ClearWaitPending(errno::Error),
/// Failed to get pending signals.
ClearGetPending(errno::Error),
/// Failed to check if given signal is in the set of pending signals.
ClearCheckPending(errno::Error),
}
impl Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::Error::*;
match self {
CreateSigset(e) => write!(f, "couldn't create a sigset: {}", e),
SignalAlreadyBlocked(num) => write!(f, "signal {} already blocked", num),
CompareBlockedSignals(e) => write!(
f,
"failed to check whether requested signal is in the blocked set: {}",
e,
),
BlockSignal(e) => write!(f, "signal could not be blocked: {}", e),
RetrieveSignalMask(errno) => write!(
f,
"failed to retrieve signal mask: {}",
io::Error::from_raw_os_error(*errno),
),
UnblockSignal(e) => write!(f, "signal could not be unblocked: {}", e),
ClearWaitPending(e) => write!(f, "failed to wait for given signal: {}", e),
ClearGetPending(e) => write!(f, "failed to get pending signals: {}", e),
ClearCheckPending(e) => write!(
f,
"failed to check whether given signal is in the pending set: {}",
e,
),
}
}
}
/// A simplified [Result](https://doc.rust-lang.org/std/result/enum.Result.html) type
/// for operations that can return [`Error`](Enum.error.html).
pub type SignalResult<T> = result::Result<T, Error>;
/// Public alias for a signal handler.
/// [`sigaction`](http://man7.org/linux/man-pages/man2/sigaction.2.html).
pub type SignalHandler =
extern "C" fn(num: c_int, info: *mut siginfo_t, _unused: *mut c_void) -> ();
extern "C" {
fn __libc_current_sigrtmin() -> c_int;
fn __libc_current_sigrtmax() -> c_int;
}
/// Return the minimum (inclusive) real-time signal number.
#[allow(non_snake_case)]
pub fn SIGRTMIN() -> c_int {
// SAFETY: We trust this libc function.
unsafe { __libc_current_sigrtmin() }
}
/// Return the maximum (inclusive) real-time signal number.
#[allow(non_snake_case)]
pub fn SIGRTMAX() -> c_int {
// SAFETY: We trust this libc function.
unsafe { __libc_current_sigrtmax() }
}
/// Verify that a signal number is valid.
///
/// Supported signals range from `SIGHUP` to `SIGSYS` and from `SIGRTMIN` to `SIGRTMAX`.
/// We recommend using realtime signals `[SIGRTMIN(), SIGRTMAX()]` for VCPU threads.
///
/// # Arguments
///
/// * `num`: the signal number to be verified.
///
/// # Examples
///
/// ```
/// extern crate vmm_sys_util;
/// use vmm_sys_util::signal::validate_signal_num;
///
/// let num = validate_signal_num(1).unwrap();
/// ```
pub fn validate_signal_num(num: c_int) -> errno::Result<()> {
if (libc::SIGHUP..=libc::SIGSYS).contains(&num) || (SIGRTMIN() <= num && num <= SIGRTMAX()) {
Ok(())
} else {
Err(errno::Error::new(EINVAL))
}
}
/// Register the signal handler of `signum`.
///
/// # Safety
///
/// This is considered unsafe because the given handler will be called
/// asynchronously, interrupting whatever the thread was doing and therefore
/// must only do async-signal-safe operations.
///
/// # Arguments
///
/// * `num`: the signal number to be registered.
/// * `handler`: the signal handler function to register.
///
/// # Examples
///
/// ```
/// # extern crate libc;
/// extern crate vmm_sys_util;
/// # use libc::{c_int, c_void, siginfo_t, SA_SIGINFO};
/// use vmm_sys_util::signal::{register_signal_handler, SignalHandler};
///
/// extern "C" fn handle_signal(_: c_int, _: *mut siginfo_t, _: *mut c_void) {}
/// register_signal_handler(0, handle_signal);
/// ```
pub fn register_signal_handler(num: c_int, handler: SignalHandler) -> errno::Result<()> {
validate_signal_num(num)?;
// signum specifies the signal and can be any valid signal except
// SIGKILL and SIGSTOP.
// [`sigaction`](http://man7.org/linux/man-pages/man2/sigaction.2.html).
if libc::SIGKILL == num || libc::SIGSTOP == num {
return Err(errno::Error::new(EINVAL));
}
// SAFETY: Safe, because this is a POD struct.
let mut act: sigaction = unsafe { mem::zeroed() };
act.sa_sigaction = handler as *const () as usize;
act.sa_flags = libc::SA_SIGINFO;
// Block all signals while the `handler` is running.
// Blocking other signals is needed to make sure the execution of
// the handler continues uninterrupted if another signal comes.
// SAFETY: The parameters are valid and we trust the sifillset function.
if unsafe { sigfillset(&mut act.sa_mask as *mut sigset_t) } < 0 {
return errno::errno_result();
}
// SAFETY: Safe because the parameters are valid and we check the return value.
match unsafe { sigaction(num, &act, null_mut()) } {
0 => Ok(()),
_ => errno::errno_result(),
}
}
/// Create a `sigset` with given signals.
///
/// An array of signal numbers are added into the signal set by
/// [`sigaddset`](http://man7.org/linux/man-pages/man3/sigaddset.3p.html).
/// This is a helper function used when we want to manipulate signals.
///
/// # Arguments
///
/// * `signals`: signal numbers to be added to the new `sigset`.
///
/// # Examples
///
/// ```
/// # extern crate libc;
/// extern crate vmm_sys_util;
/// # use libc::sigismember;
/// use vmm_sys_util::signal::create_sigset;
///
/// let sigset = create_sigset(&[1]).unwrap();
///
/// unsafe {
/// assert_eq!(sigismember(&sigset, 1), 1);
/// }
/// ```
pub fn create_sigset(signals: &[c_int]) -> errno::Result<sigset_t> {
// SAFETY: sigset will actually be initialized by sigemptyset below.
let mut sigset: sigset_t = unsafe { mem::zeroed() };
// SAFETY: return value is checked.
let ret = unsafe { sigemptyset(&mut sigset) };
if ret < 0 {
return errno::errno_result();
}
for signal in signals {
// SAFETY: return value is checked.
let ret = unsafe { sigaddset(&mut sigset, *signal) };
if ret < 0 {
return errno::errno_result();
}
}
Ok(sigset)
}
/// Retrieve the signal mask that is blocked of the current thread.
///
/// Use [`pthread_sigmask`](http://man7.org/linux/man-pages/man3/pthread_sigmask.3.html)
/// to fetch the signal mask which is blocked for the caller, return the signal mask as
/// a vector of c_int.
///
/// # Examples
///
/// ```
/// extern crate vmm_sys_util;
/// use vmm_sys_util::signal::{block_signal, get_blocked_signals};
///
/// block_signal(1).unwrap();
/// assert!(get_blocked_signals().unwrap().contains(&(1)));
/// ```
pub fn get_blocked_signals() -> SignalResult<Vec<c_int>> {
let mut mask = Vec::new();
// SAFETY: return values are checked.
unsafe {
let mut old_sigset: sigset_t = mem::zeroed();
let ret = pthread_sigmask(SIG_BLOCK, null(), &mut old_sigset as *mut sigset_t);
if ret < 0 {
return Err(Error::RetrieveSignalMask(ret));
}
for num in 0..=SIGRTMAX() {
if sigismember(&old_sigset, num) > 0 {
mask.push(num);
}
}
}
Ok(mask)
}
/// Mask a given signal.
///
/// Set the given signal `num` as blocked.
/// If signal is already blocked, the call will fail with
/// [`SignalAlreadyBlocked`](enum.Error.html#variant.SignalAlreadyBlocked).
///
/// # Arguments
///
/// * `num`: the signal to be masked.
///
/// # Examples
///
/// ```
/// extern crate vmm_sys_util;
/// use vmm_sys_util::signal::block_signal;
///
/// block_signal(1).unwrap();
/// ```
// Allowing comparison chain because rewriting it with match makes the code less readable.
// Also, the risk of having non-exhaustive checks is low.
#[allow(clippy::comparison_chain)]
pub fn block_signal(num: c_int) -> SignalResult<()> {
let sigset = create_sigset(&[num]).map_err(Error::CreateSigset)?;
// SAFETY: return values are checked.
unsafe {
let mut old_sigset: sigset_t = mem::zeroed();
let ret = pthread_sigmask(SIG_BLOCK, &sigset, &mut old_sigset as *mut sigset_t);
if ret < 0 {
return Err(Error::BlockSignal(errno::Error::last()));
}
// Check if the given signal is already blocked.
let ret = sigismember(&old_sigset, num);
if ret < 0 {
return Err(Error::CompareBlockedSignals(errno::Error::last()));
} else if ret > 0 {
return Err(Error::SignalAlreadyBlocked(num));
}
}
Ok(())
}
/// Unmask a given signal.
///
/// # Arguments
///
/// * `num`: the signal to be unmasked.
///
/// # Examples
///
/// ```
/// extern crate vmm_sys_util;
/// use vmm_sys_util::signal::{block_signal, get_blocked_signals, unblock_signal};
///
/// block_signal(1).unwrap();
/// assert!(get_blocked_signals().unwrap().contains(&(1)));
/// unblock_signal(1).unwrap();
/// ```
pub fn unblock_signal(num: c_int) -> SignalResult<()> {
let sigset = create_sigset(&[num]).map_err(Error::CreateSigset)?;
// SAFETY: return value is checked.
let ret = unsafe { pthread_sigmask(SIG_UNBLOCK, &sigset, null_mut()) };
if ret < 0 {
return Err(Error::UnblockSignal(errno::Error::last()));
}
Ok(())
}
/// Clear a pending signal.
///
/// # Arguments
///
/// * `num`: the signal to be cleared.
///
/// # Examples
///
/// ```
/// # extern crate libc;
/// extern crate vmm_sys_util;
/// # use libc::{pthread_kill, sigismember, sigpending, sigset_t};
/// # use std::mem;
/// # use std::thread;
/// # use std::time::Duration;
/// use vmm_sys_util::signal::{block_signal, clear_signal, Killable};
///
/// block_signal(1).unwrap();
/// let killable = thread::spawn(move || {
/// thread::sleep(Duration::from_millis(100));
/// unsafe {
/// let mut chkset: sigset_t = mem::zeroed();
/// sigpending(&mut chkset);
/// assert_eq!(sigismember(&chkset, 1), 1);
/// }
/// });
/// unsafe {
/// pthread_kill(killable.pthread_handle(), 1);
/// }
/// clear_signal(1).unwrap();
/// ```
pub fn clear_signal(num: c_int) -> SignalResult<()> {
let sigset = create_sigset(&[num]).map_err(Error::CreateSigset)?;
while {
// SAFETY: This is safe as we are rigorously checking return values
// of libc calls.
unsafe {
let mut siginfo: siginfo_t = mem::zeroed();
let ts = timespec {
tv_sec: 0,
tv_nsec: 0,
};
// Attempt to consume one instance of pending signal. If signal
// is not pending, the call will fail with EAGAIN or EINTR.
let ret = sigtimedwait(&sigset, &mut siginfo, &ts);
if ret < 0 {
let e = errno::Error::last();
match e.errno() {
EAGAIN | EINTR => {}
_ => {
return Err(Error::ClearWaitPending(errno::Error::last()));
}
}
}
// This sigset will be actually filled with `sigpending` call.
let mut chkset: sigset_t = mem::zeroed();
// See if more instances of the signal are pending.
let ret = sigpending(&mut chkset);
if ret < 0 {
return Err(Error::ClearGetPending(errno::Error::last()));
}
let ret = sigismember(&chkset, num);
if ret < 0 {
return Err(Error::ClearCheckPending(errno::Error::last()));
}
// This is do-while loop condition.
ret != 0
}
} {}
Ok(())
}
/// Trait for threads that can be signalled via `pthread_kill`.
///
/// Note that this is only useful for signals between `SIGRTMIN()` and
/// `SIGRTMAX()` because these are guaranteed to not be used by the C
/// runtime.
///
/// # Safety
///
/// This is marked unsafe because the implementation of this trait must
/// guarantee that the returned `pthread_t` is valid and has a lifetime at
/// least that of the trait object.
pub unsafe trait Killable {
/// Cast this killable thread as `pthread_t`.
fn pthread_handle(&self) -> pthread_t;
/// Send a signal to this killable thread.
///
/// # Arguments
///
/// * `num`: specify the signal
fn kill(&self, num: c_int) -> errno::Result<()> {
validate_signal_num(num)?;
// SAFETY: Safe because we ensure we are using a valid pthread handle,
// a valid signal number, and check the return result.
let ret = unsafe { pthread_kill(self.pthread_handle(), num) };
if ret < 0 {
return errno::errno_result();
}
Ok(())
}
}
// SAFETY: Safe because we fulfill our contract of returning a genuine pthread handle.
unsafe impl<T> Killable for JoinHandle<T> {
fn pthread_handle(&self) -> pthread_t {
// JoinHandleExt::as_pthread_t gives c_ulong, convert it to the
// type that the libc crate expects
assert_eq!(mem::size_of::<pthread_t>(), mem::size_of::<usize>());
self.as_pthread_t() as usize as pthread_t
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::undocumented_unsafe_blocks)]
use super::*;
use std::thread;
use std::time::Duration;
// Reserve for each vcpu signal.
static mut SIGNAL_HANDLER_CALLED: bool = false;
extern "C" fn handle_signal(_: c_int, _: *mut siginfo_t, _: *mut c_void) {
unsafe {
// In the tests, there only uses vcpu signal.
SIGNAL_HANDLER_CALLED = true;
}
}
fn is_pending(signal: c_int) -> bool {
unsafe {
let mut chkset: sigset_t = mem::zeroed();
sigpending(&mut chkset);
sigismember(&chkset, signal) == 1
}
}
#[test]
fn test_register_signal_handler() {
// testing bad value
assert!(register_signal_handler(libc::SIGKILL, handle_signal).is_err());
assert!(register_signal_handler(libc::SIGSTOP, handle_signal).is_err());
assert!(register_signal_handler(SIGRTMAX() + 1, handle_signal).is_err());
format!("{:?}", register_signal_handler(SIGRTMAX(), handle_signal));
assert!(register_signal_handler(SIGRTMIN(), handle_signal).is_ok());
assert!(register_signal_handler(libc::SIGSYS, handle_signal).is_ok());
}
#[test]
#[allow(clippy::empty_loop)]
fn test_killing_thread() {
let killable = thread::spawn(|| thread::current().id());
let killable_id = killable.join().unwrap();
assert_ne!(killable_id, thread::current().id());
// We install a signal handler for the specified signal; otherwise the whole process will
// be brought down when the signal is received, as part of the default behaviour. Signal
// handlers are global, so we install this before starting the thread.
register_signal_handler(SIGRTMIN(), handle_signal)
.expect("failed to register vcpu signal handler");
let killable = thread::spawn(|| loop {});
let res = killable.kill(SIGRTMAX() + 1);
assert!(res.is_err());
format!("{:?}", res);
unsafe {
assert!(!SIGNAL_HANDLER_CALLED);
}
assert!(killable.kill(SIGRTMIN()).is_ok());
// We're waiting to detect that the signal handler has been called.
const MAX_WAIT_ITERS: u32 = 20;
let mut iter_count = 0;
loop {
thread::sleep(Duration::from_millis(100));
if unsafe { SIGNAL_HANDLER_CALLED } {
break;
}
iter_count += 1;
// timeout if we wait too long
assert!(iter_count <= MAX_WAIT_ITERS);
}
// Our signal handler doesn't do anything which influences the killable thread, so the
// previous signal is effectively ignored. If we were to join killable here, we would block
// forever as the loop keeps running. Since we don't join, the thread will become detached
// as the handle is dropped, and will be killed when the process/main thread exits.
}
#[test]
fn test_block_unblock_signal() {
let signal = SIGRTMIN();
// Check if it is blocked.
unsafe {
let mut sigset: sigset_t = mem::zeroed();
pthread_sigmask(SIG_BLOCK, null(), &mut sigset as *mut sigset_t);
assert_eq!(sigismember(&sigset, signal), 0);
}
block_signal(signal).unwrap();
assert!(get_blocked_signals().unwrap().contains(&(signal)));
unblock_signal(signal).unwrap();
assert!(!get_blocked_signals().unwrap().contains(&(signal)));
}
#[test]
fn test_clear_pending() {
let signal = SIGRTMIN() + 1;
block_signal(signal).unwrap();
// Block the signal, which means it won't be delivered until it is
// unblocked. Pending between the time when the signal which is set as blocked
// is generated and when is delivered.
let killable = thread::spawn(move || {
loop {
// Wait for the signal being killed.
thread::sleep(Duration::from_millis(100));
if is_pending(signal) {
clear_signal(signal).unwrap();
assert!(!is_pending(signal));
break;
}
}
});
// Send a signal to the thread.
assert!(killable.kill(SIGRTMIN() + 1).is_ok());
killable.join().unwrap();
}
}