blob: 8493a249c60d9b234162d36fab5cd117f8f8b5e8 [file] [log] [blame]
// Copyright 2018 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::{
mutex::{RawMutex, RawMutexFair, RawMutexTimed},
GuardNoSend,
};
use core::{
cell::{Cell, UnsafeCell},
fmt,
marker::PhantomData,
mem,
num::NonZeroUsize,
ops::Deref,
sync::atomic::{AtomicUsize, Ordering},
};
#[cfg(feature = "arc_lock")]
use alloc::sync::Arc;
#[cfg(feature = "arc_lock")]
use core::mem::ManuallyDrop;
#[cfg(feature = "arc_lock")]
use core::ptr;
#[cfg(feature = "owning_ref")]
use owning_ref::StableAddress;
#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
/// Helper trait which returns a non-zero thread ID.
///
/// The simplest way to implement this trait is to return the address of a
/// thread-local variable.
///
/// # Safety
///
/// Implementations of this trait must ensure that no two active threads share
/// the same thread ID. However the ID of a thread that has exited can be
/// re-used since that thread is no longer active.
pub unsafe trait GetThreadId {
/// Initial value.
// A “non-constant” const item is a legacy way to supply an initialized value to downstream
// static items. Can hopefully be replaced with `const fn new() -> Self` at some point.
#[allow(clippy::declare_interior_mutable_const)]
const INIT: Self;
/// Returns a non-zero thread ID which identifies the current thread of
/// execution.
fn nonzero_thread_id(&self) -> NonZeroUsize;
}
/// A raw mutex type that wraps another raw mutex to provide reentrancy.
///
/// Although this has the same methods as the [`RawMutex`] trait, it does
/// not implement it, and should not be used in the same way, since this
/// mutex can successfully acquire a lock multiple times in the same thread.
/// Only use this when you know you want a raw mutex that can be locked
/// reentrantly; you probably want [`ReentrantMutex`] instead.
///
/// [`RawMutex`]: trait.RawMutex.html
/// [`ReentrantMutex`]: struct.ReentrantMutex.html
pub struct RawReentrantMutex<R, G> {
owner: AtomicUsize,
lock_count: Cell<usize>,
mutex: R,
get_thread_id: G,
}
unsafe impl<R: RawMutex + Send, G: GetThreadId + Send> Send for RawReentrantMutex<R, G> {}
unsafe impl<R: RawMutex + Sync, G: GetThreadId + Sync> Sync for RawReentrantMutex<R, G> {}
impl<R: RawMutex, G: GetThreadId> RawReentrantMutex<R, G> {
/// Initial value for an unlocked mutex.
#[allow(clippy::declare_interior_mutable_const)]
pub const INIT: Self = RawReentrantMutex {
owner: AtomicUsize::new(0),
lock_count: Cell::new(0),
mutex: R::INIT,
get_thread_id: G::INIT,
};
#[inline]
fn lock_internal<F: FnOnce() -> bool>(&self, try_lock: F) -> bool {
let id = self.get_thread_id.nonzero_thread_id().get();
if self.owner.load(Ordering::Relaxed) == id {
self.lock_count.set(
self.lock_count
.get()
.checked_add(1)
.expect("ReentrantMutex lock count overflow"),
);
} else {
if !try_lock() {
return false;
}
self.owner.store(id, Ordering::Relaxed);
debug_assert_eq!(self.lock_count.get(), 0);
self.lock_count.set(1);
}
true
}
/// Acquires this mutex, blocking if it's held by another thread.
#[inline]
pub fn lock(&self) {
self.lock_internal(|| {
self.mutex.lock();
true
});
}
/// Attempts to acquire this mutex without blocking. Returns `true`
/// if the lock was successfully acquired and `false` otherwise.
#[inline]
pub fn try_lock(&self) -> bool {
self.lock_internal(|| self.mutex.try_lock())
}
/// Unlocks this mutex. The inner mutex may not be unlocked if
/// this mutex was acquired previously in the current thread.
///
/// # Safety
///
/// This method may only be called if the mutex is held by the current thread.
#[inline]
pub unsafe fn unlock(&self) {
let lock_count = self.lock_count.get() - 1;
self.lock_count.set(lock_count);
if lock_count == 0 {
self.owner.store(0, Ordering::Relaxed);
self.mutex.unlock();
}
}
/// Checks whether the mutex is currently locked.
#[inline]
pub fn is_locked(&self) -> bool {
self.mutex.is_locked()
}
/// Checks whether the mutex is currently held by the current thread.
#[inline]
pub fn is_owned_by_current_thread(&self) -> bool {
let id = self.get_thread_id.nonzero_thread_id().get();
self.owner.load(Ordering::Relaxed) == id
}
}
impl<R: RawMutexFair, G: GetThreadId> RawReentrantMutex<R, G> {
/// Unlocks this mutex using a fair unlock protocol. The inner mutex
/// may not be unlocked if this mutex was acquired previously in the
/// current thread.
///
/// # Safety
///
/// This method may only be called if the mutex is held by the current thread.
#[inline]
pub unsafe fn unlock_fair(&self) {
let lock_count = self.lock_count.get() - 1;
self.lock_count.set(lock_count);
if lock_count == 0 {
self.owner.store(0, Ordering::Relaxed);
self.mutex.unlock_fair();
}
}
/// Temporarily yields the mutex to a waiting thread if there is one.
///
/// This method is functionally equivalent to calling `unlock_fair` followed
/// by `lock`, however it can be much more efficient in the case where there
/// are no waiting threads.
///
/// # Safety
///
/// This method may only be called if the mutex is held by the current thread.
#[inline]
pub unsafe fn bump(&self) {
if self.lock_count.get() == 1 {
let id = self.owner.load(Ordering::Relaxed);
self.owner.store(0, Ordering::Relaxed);
self.mutex.bump();
self.owner.store(id, Ordering::Relaxed);
}
}
}
impl<R: RawMutexTimed, G: GetThreadId> RawReentrantMutex<R, G> {
/// Attempts to acquire this lock until a timeout is reached.
#[inline]
pub fn try_lock_until(&self, timeout: R::Instant) -> bool {
self.lock_internal(|| self.mutex.try_lock_until(timeout))
}
/// Attempts to acquire this lock until a timeout is reached.
#[inline]
pub fn try_lock_for(&self, timeout: R::Duration) -> bool {
self.lock_internal(|| self.mutex.try_lock_for(timeout))
}
}
/// A mutex which can be recursively locked by a single thread.
///
/// This type is identical to `Mutex` except for the following points:
///
/// - Locking multiple times from the same thread will work correctly instead of
/// deadlocking.
/// - `ReentrantMutexGuard` does not give mutable references to the locked data.
/// Use a `RefCell` if you need this.
///
/// See [`Mutex`](struct.Mutex.html) for more details about the underlying mutex
/// primitive.
pub struct ReentrantMutex<R, G, T: ?Sized> {
raw: RawReentrantMutex<R, G>,
data: UnsafeCell<T>,
}
unsafe impl<R: RawMutex + Send, G: GetThreadId + Send, T: ?Sized + Send> Send
for ReentrantMutex<R, G, T>
{
}
unsafe impl<R: RawMutex + Sync, G: GetThreadId + Sync, T: ?Sized + Send> Sync
for ReentrantMutex<R, G, T>
{
}
impl<R: RawMutex, G: GetThreadId, T> ReentrantMutex<R, G, T> {
/// Creates a new reentrant mutex in an unlocked state ready for use.
#[cfg(feature = "nightly")]
#[inline]
pub const fn new(val: T) -> ReentrantMutex<R, G, T> {
ReentrantMutex {
data: UnsafeCell::new(val),
raw: RawReentrantMutex {
owner: AtomicUsize::new(0),
lock_count: Cell::new(0),
mutex: R::INIT,
get_thread_id: G::INIT,
},
}
}
/// Creates a new reentrant mutex in an unlocked state ready for use.
#[cfg(not(feature = "nightly"))]
#[inline]
pub fn new(val: T) -> ReentrantMutex<R, G, T> {
ReentrantMutex {
data: UnsafeCell::new(val),
raw: RawReentrantMutex {
owner: AtomicUsize::new(0),
lock_count: Cell::new(0),
mutex: R::INIT,
get_thread_id: G::INIT,
},
}
}
/// Consumes this mutex, returning the underlying data.
#[inline]
pub fn into_inner(self) -> T {
self.data.into_inner()
}
}
impl<R, G, T> ReentrantMutex<R, G, T> {
/// Creates a new reentrant mutex based on a pre-existing raw mutex and a
/// helper to get the thread ID.
///
/// This allows creating a reentrant mutex in a constant context on stable
/// Rust.
#[inline]
pub const fn const_new(raw_mutex: R, get_thread_id: G, val: T) -> ReentrantMutex<R, G, T> {
ReentrantMutex {
data: UnsafeCell::new(val),
raw: RawReentrantMutex {
owner: AtomicUsize::new(0),
lock_count: Cell::new(0),
mutex: raw_mutex,
get_thread_id,
},
}
}
}
impl<R: RawMutex, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> {
/// # Safety
///
/// The lock must be held when calling this method.
#[inline]
unsafe fn guard(&self) -> ReentrantMutexGuard<'_, R, G, T> {
ReentrantMutexGuard {
remutex: &self,
marker: PhantomData,
}
}
/// Acquires a reentrant mutex, blocking the current thread until it is able
/// to do so.
///
/// If the mutex is held by another thread then this function will block the
/// local thread until it is available to acquire the mutex. If the mutex is
/// already held by the current thread then this function will increment the
/// lock reference count and return immediately. Upon returning,
/// the thread is the only thread with the mutex held. An RAII guard is
/// returned to allow scoped unlock of the lock. When the guard goes out of
/// scope, the mutex will be unlocked.
#[inline]
pub fn lock(&self) -> ReentrantMutexGuard<'_, R, G, T> {
self.raw.lock();
// SAFETY: The lock is held, as required.
unsafe { self.guard() }
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then `None` is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function does not block.
#[inline]
pub fn try_lock(&self) -> Option<ReentrantMutexGuard<'_, R, G, T>> {
if self.raw.try_lock() {
// SAFETY: The lock is held, as required.
Some(unsafe { self.guard() })
} else {
None
}
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `ReentrantMutex` mutably, no actual locking needs to
/// take place---the mutable borrow statically guarantees no locks exist.
#[inline]
pub fn get_mut(&mut self) -> &mut T {
unsafe { &mut *self.data.get() }
}
/// Checks whether the mutex is currently locked.
#[inline]
pub fn is_locked(&self) -> bool {
self.raw.is_locked()
}
/// Checks whether the mutex is currently held by the current thread.
#[inline]
pub fn is_owned_by_current_thread(&self) -> bool {
self.raw.is_owned_by_current_thread()
}
/// Forcibly unlocks the mutex.
///
/// This is useful when combined with `mem::forget` to hold a lock without
/// the need to maintain a `ReentrantMutexGuard` object alive, for example when
/// dealing with FFI.
///
/// # Safety
///
/// This method must only be called if the current thread logically owns a
/// `ReentrantMutexGuard` but that guard has be discarded using `mem::forget`.
/// Behavior is undefined if a mutex is unlocked when not locked.
#[inline]
pub unsafe fn force_unlock(&self) {
self.raw.unlock();
}
/// Returns the underlying raw mutex object.
///
/// Note that you will most likely need to import the `RawMutex` trait from
/// `lock_api` to be able to call functions on the raw mutex.
///
/// # Safety
///
/// This method is unsafe because it allows unlocking a mutex while
/// still holding a reference to a `ReentrantMutexGuard`.
#[inline]
pub unsafe fn raw(&self) -> &R {
&self.raw.mutex
}
/// Returns a raw pointer to the underlying data.
///
/// This is useful when combined with `mem::forget` to hold a lock without
/// the need to maintain a `ReentrantMutexGuard` object alive, for example
/// when dealing with FFI.
///
/// # Safety
///
/// You must ensure that there are no data races when dereferencing the
/// returned pointer, for example if the current thread logically owns a
/// `ReentrantMutexGuard` but that guard has been discarded using
/// `mem::forget`.
#[inline]
pub fn data_ptr(&self) -> *mut T {
self.data.get()
}
/// # Safety
///
/// The lock must be held before calling this method.
#[cfg(feature = "arc_lock")]
#[inline]
unsafe fn guard_arc(self: &Arc<Self>) -> ArcReentrantMutexGuard<R, G, T> {
ArcReentrantMutexGuard {
remutex: self.clone(),
marker: PhantomData,
}
}
/// Acquires a reentrant mutex through an `Arc`.
///
/// This method is similar to the `lock` method; however, it requires the `ReentrantMutex` to be inside of an
/// `Arc` and the resulting mutex guard has no lifetime requirements.
#[cfg(feature = "arc_lock")]
#[inline]
pub fn lock_arc(self: &Arc<Self>) -> ArcReentrantMutexGuard<R, G, T> {
self.raw.lock();
// SAFETY: locking guarantee is upheld
unsafe { self.guard_arc() }
}
/// Attempts to acquire a reentrant mutex through an `Arc`.
///
/// This method is similar to the `try_lock` method; however, it requires the `ReentrantMutex` to be inside
/// of an `Arc` and the resulting mutex guard has no lifetime requirements.
#[cfg(feature = "arc_lock")]
#[inline]
pub fn try_lock_arc(self: &Arc<Self>) -> Option<ArcReentrantMutexGuard<R, G, T>> {
if self.raw.try_lock() {
// SAFETY: locking guarantee is upheld
Some(unsafe { self.guard_arc() })
} else {
None
}
}
}
impl<R: RawMutexFair, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> {
/// Forcibly unlocks the mutex using a fair unlock protocol.
///
/// This is useful when combined with `mem::forget` to hold a lock without
/// the need to maintain a `ReentrantMutexGuard` object alive, for example when
/// dealing with FFI.
///
/// # Safety
///
/// This method must only be called if the current thread logically owns a
/// `ReentrantMutexGuard` but that guard has be discarded using `mem::forget`.
/// Behavior is undefined if a mutex is unlocked when not locked.
#[inline]
pub unsafe fn force_unlock_fair(&self) {
self.raw.unlock_fair();
}
}
impl<R: RawMutexTimed, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> {
/// Attempts to acquire this lock until a timeout is reached.
///
/// If the lock could not be acquired before the timeout expired, then
/// `None` is returned. Otherwise, an RAII guard is returned. The lock will
/// be unlocked when the guard is dropped.
#[inline]
pub fn try_lock_for(&self, timeout: R::Duration) -> Option<ReentrantMutexGuard<'_, R, G, T>> {
if self.raw.try_lock_for(timeout) {
// SAFETY: The lock is held, as required.
Some(unsafe { self.guard() })
} else {
None
}
}
/// Attempts to acquire this lock until a timeout is reached.
///
/// If the lock could not be acquired before the timeout expired, then
/// `None` is returned. Otherwise, an RAII guard is returned. The lock will
/// be unlocked when the guard is dropped.
#[inline]
pub fn try_lock_until(&self, timeout: R::Instant) -> Option<ReentrantMutexGuard<'_, R, G, T>> {
if self.raw.try_lock_until(timeout) {
// SAFETY: The lock is held, as required.
Some(unsafe { self.guard() })
} else {
None
}
}
/// Attempts to acquire this lock until a timeout is reached, through an `Arc`.
///
/// This method is similar to the `try_lock_for` method; however, it requires the `ReentrantMutex` to be
/// inside of an `Arc` and the resulting mutex guard has no lifetime requirements.
#[cfg(feature = "arc_lock")]
#[inline]
pub fn try_lock_arc_for(self: &Arc<Self>, timeout: R::Duration) -> Option<ArcReentrantMutexGuard<R, G, T>> {
if self.raw.try_lock_for(timeout) {
// SAFETY: locking guarantee is upheld
Some(unsafe { self.guard_arc() })
} else {
None
}
}
/// Attempts to acquire this lock until a timeout is reached, through an `Arc`.
///
/// This method is similar to the `try_lock_until` method; however, it requires the `ReentrantMutex` to be
/// inside of an `Arc` and the resulting mutex guard has no lifetime requirements.
#[cfg(feature = "arc_lock")]
#[inline]
pub fn try_lock_arc_until(self: &Arc<Self>, timeout: R::Instant) -> Option<ArcReentrantMutexGuard<R, G, T>> {
if self.raw.try_lock_until(timeout) {
// SAFETY: locking guarantee is upheld
Some(unsafe { self.guard_arc() })
} else {
None
}
}
}
impl<R: RawMutex, G: GetThreadId, T: ?Sized + Default> Default for ReentrantMutex<R, G, T> {
#[inline]
fn default() -> ReentrantMutex<R, G, T> {
ReentrantMutex::new(Default::default())
}
}
impl<R: RawMutex, G: GetThreadId, T> From<T> for ReentrantMutex<R, G, T> {
#[inline]
fn from(t: T) -> ReentrantMutex<R, G, T> {
ReentrantMutex::new(t)
}
}
impl<R: RawMutex, G: GetThreadId, T: ?Sized + fmt::Debug> fmt::Debug for ReentrantMutex<R, G, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.try_lock() {
Some(guard) => f
.debug_struct("ReentrantMutex")
.field("data", &&*guard)
.finish(),
None => {
struct LockedPlaceholder;
impl fmt::Debug for LockedPlaceholder {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<locked>")
}
}
f.debug_struct("ReentrantMutex")
.field("data", &LockedPlaceholder)
.finish()
}
}
}
}
// Copied and modified from serde
#[cfg(feature = "serde")]
impl<R, G, T> Serialize for ReentrantMutex<R, G, T>
where
R: RawMutex,
G: GetThreadId,
T: Serialize + ?Sized,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.lock().serialize(serializer)
}
}
#[cfg(feature = "serde")]
impl<'de, R, G, T> Deserialize<'de> for ReentrantMutex<R, G, T>
where
R: RawMutex,
G: GetThreadId,
T: Deserialize<'de> + ?Sized,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
Deserialize::deserialize(deserializer).map(ReentrantMutex::new)
}
}
/// An RAII implementation of a "scoped lock" of a reentrant mutex. When this structure
/// is dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// `Deref` implementation.
#[must_use = "if unused the ReentrantMutex will immediately unlock"]
pub struct ReentrantMutexGuard<'a, R: RawMutex, G: GetThreadId, T: ?Sized> {
remutex: &'a ReentrantMutex<R, G, T>,
marker: PhantomData<(&'a T, GuardNoSend)>,
}
unsafe impl<'a, R: RawMutex + Sync + 'a, G: GetThreadId + Sync + 'a, T: ?Sized + Sync + 'a> Sync
for ReentrantMutexGuard<'a, R, G, T>
{
}
impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> ReentrantMutexGuard<'a, R, G, T> {
/// Returns a reference to the original `ReentrantMutex` object.
pub fn remutex(s: &Self) -> &'a ReentrantMutex<R, G, T> {
s.remutex
}
/// Makes a new `MappedReentrantMutexGuard` for a component of the locked data.
///
/// This operation cannot fail as the `ReentrantMutexGuard` passed
/// in already locked the mutex.
///
/// This is an associated function that needs to be
/// used as `ReentrantMutexGuard::map(...)`. A method would interfere with methods of
/// the same name on the contents of the locked data.
#[inline]
pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedReentrantMutexGuard<'a, R, G, U>
where
F: FnOnce(&T) -> &U,
{
let raw = &s.remutex.raw;
let data = f(unsafe { &*s.remutex.data.get() });
mem::forget(s);
MappedReentrantMutexGuard {
raw,
data,
marker: PhantomData,
}
}
/// Attempts to make a new `MappedReentrantMutexGuard` for a component of the
/// locked data. The original guard is return if the closure returns `None`.
///
/// This operation cannot fail as the `ReentrantMutexGuard` passed
/// in already locked the mutex.
///
/// This is an associated function that needs to be
/// used as `ReentrantMutexGuard::map(...)`. A method would interfere with methods of
/// the same name on the contents of the locked data.
#[inline]
pub fn try_map<U: ?Sized, F>(
s: Self,
f: F,
) -> Result<MappedReentrantMutexGuard<'a, R, G, U>, Self>
where
F: FnOnce(&mut T) -> Option<&mut U>,
{
let raw = &s.remutex.raw;
let data = match f(unsafe { &mut *s.remutex.data.get() }) {
Some(data) => data,
None => return Err(s),
};
mem::forget(s);
Ok(MappedReentrantMutexGuard {
raw,
data,
marker: PhantomData,
})
}
/// Temporarily unlocks the mutex to execute the given function.
///
/// This is safe because `&mut` guarantees that there exist no other
/// references to the data protected by the mutex.
#[inline]
pub fn unlocked<F, U>(s: &mut Self, f: F) -> U
where
F: FnOnce() -> U,
{
// Safety: A ReentrantMutexGuard always holds the lock.
unsafe {
s.remutex.raw.unlock();
}
defer!(s.remutex.raw.lock());
f()
}
}
impl<'a, R: RawMutexFair + 'a, G: GetThreadId + 'a, T: ?Sized + 'a>
ReentrantMutexGuard<'a, R, G, T>
{
/// Unlocks the mutex using a fair unlock protocol.
///
/// By default, mutexes are unfair and allow the current thread to re-lock
/// the mutex before another has the chance to acquire the lock, even if
/// that thread has been blocked on the mutex for a long time. This is the
/// default because it allows much higher throughput as it avoids forcing a
/// context switch on every mutex unlock. This can result in one thread
/// acquiring a mutex many more times than other threads.
///
/// However in some cases it can be beneficial to ensure fairness by forcing
/// the lock to pass on to a waiting thread if there is one. This is done by
/// using this method instead of dropping the `ReentrantMutexGuard` normally.
#[inline]
pub fn unlock_fair(s: Self) {
// Safety: A ReentrantMutexGuard always holds the lock
unsafe {
s.remutex.raw.unlock_fair();
}
mem::forget(s);
}
/// Temporarily unlocks the mutex to execute the given function.
///
/// The mutex is unlocked a fair unlock protocol.
///
/// This is safe because `&mut` guarantees that there exist no other
/// references to the data protected by the mutex.
#[inline]
pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U
where
F: FnOnce() -> U,
{
// Safety: A ReentrantMutexGuard always holds the lock
unsafe {
s.remutex.raw.unlock_fair();
}
defer!(s.remutex.raw.lock());
f()
}
/// Temporarily yields the mutex to a waiting thread if there is one.
///
/// This method is functionally equivalent to calling `unlock_fair` followed
/// by `lock`, however it can be much more efficient in the case where there
/// are no waiting threads.
#[inline]
pub fn bump(s: &mut Self) {
// Safety: A ReentrantMutexGuard always holds the lock
unsafe {
s.remutex.raw.bump();
}
}
}
impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Deref
for ReentrantMutexGuard<'a, R, G, T>
{
type Target = T;
#[inline]
fn deref(&self) -> &T {
unsafe { &*self.remutex.data.get() }
}
}
impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Drop
for ReentrantMutexGuard<'a, R, G, T>
{
#[inline]
fn drop(&mut self) {
// Safety: A ReentrantMutexGuard always holds the lock.
unsafe {
self.remutex.raw.unlock();
}
}
}
impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug
for ReentrantMutexGuard<'a, R, G, T>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display
for ReentrantMutexGuard<'a, R, G, T>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
#[cfg(feature = "owning_ref")]
unsafe impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> StableAddress
for ReentrantMutexGuard<'a, R, G, T>
{
}
/// An RAII mutex guard returned by the `Arc` locking operations on `ReentrantMutex`.
///
/// This is similar to the `ReentrantMutexGuard` struct, except instead of using a reference to unlock the
/// `Mutex` it uses an `Arc<ReentrantMutex>`. This has several advantages, most notably that it has an `'static`
/// lifetime.
#[cfg(feature = "arc_lock")]
#[must_use = "if unused the ReentrantMutex will immediately unlock"]
pub struct ArcReentrantMutexGuard<R: RawMutex, G: GetThreadId, T: ?Sized> {
remutex: Arc<ReentrantMutex<R, G, T>>,
marker: PhantomData<GuardNoSend>,
}
#[cfg(feature = "arc_lock")]
impl<R: RawMutex, G: GetThreadId, T: ?Sized> ArcReentrantMutexGuard<R, G, T> {
/// Returns a reference to the `ReentrantMutex` this object is guarding, contained in its `Arc`.
pub fn remutex(s: &Self) -> &Arc<ReentrantMutex<R, G, T>> {
&s.remutex
}
/// Temporarily unlocks the mutex to execute the given function.
///
/// This is safe because `&mut` guarantees that there exist no other
/// references to the data protected by the mutex.
#[inline]
pub fn unlocked<F, U>(s: &mut Self, f: F) -> U
where
F: FnOnce() -> U,
{
// Safety: A ReentrantMutexGuard always holds the lock.
unsafe {
s.remutex.raw.unlock();
}
defer!(s.remutex.raw.lock());
f()
}
}
#[cfg(feature = "arc_lock")]
impl<R: RawMutexFair, G: GetThreadId, T: ?Sized>
ArcReentrantMutexGuard<R, G, T>
{
/// Unlocks the mutex using a fair unlock protocol.
///
/// This is functionally identical to the `unlock_fair` method on [`ReentrantMutexGuard`].
#[inline]
pub fn unlock_fair(s: Self) {
// Safety: A ReentrantMutexGuard always holds the lock
unsafe {
s.remutex.raw.unlock_fair();
}
// SAFETY: ensure that the Arc's refcount is decremented
let mut s = ManuallyDrop::new(s);
unsafe { ptr::drop_in_place(&mut s.remutex) };
}
/// Temporarily unlocks the mutex to execute the given function.
///
/// This is functionally identical to the `unlocked_fair` method on [`ReentrantMutexGuard`].
#[inline]
pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U
where
F: FnOnce() -> U,
{
// Safety: A ReentrantMutexGuard always holds the lock
unsafe {
s.remutex.raw.unlock_fair();
}
defer!(s.remutex.raw.lock());
f()
}
/// Temporarily yields the mutex to a waiting thread if there is one.
///
/// This is functionally equivalent to the `bump` method on [`ReentrantMutexGuard`].
#[inline]
pub fn bump(s: &mut Self) {
// Safety: A ReentrantMutexGuard always holds the lock
unsafe {
s.remutex.raw.bump();
}
}
}
#[cfg(feature = "arc_lock")]
impl<R: RawMutex, G: GetThreadId, T: ?Sized> Deref
for ArcReentrantMutexGuard<R, G, T>
{
type Target = T;
#[inline]
fn deref(&self) -> &T {
unsafe { &*self.remutex.data.get() }
}
}
#[cfg(feature = "arc_lock")]
impl<R: RawMutex, G: GetThreadId, T: ?Sized> Drop
for ArcReentrantMutexGuard<R, G, T>
{
#[inline]
fn drop(&mut self) {
// Safety: A ReentrantMutexGuard always holds the lock.
unsafe {
self.remutex.raw.unlock();
}
}
}
/// An RAII mutex guard returned by `ReentrantMutexGuard::map`, which can point to a
/// subfield of the protected data.
///
/// The main difference between `MappedReentrantMutexGuard` and `ReentrantMutexGuard` is that the
/// former doesn't support temporarily unlocking and re-locking, since that
/// could introduce soundness issues if the locked object is modified by another
/// thread.
#[must_use = "if unused the ReentrantMutex will immediately unlock"]
pub struct MappedReentrantMutexGuard<'a, R: RawMutex, G: GetThreadId, T: ?Sized> {
raw: &'a RawReentrantMutex<R, G>,
data: *const T,
marker: PhantomData<&'a T>,
}
unsafe impl<'a, R: RawMutex + Sync + 'a, G: GetThreadId + Sync + 'a, T: ?Sized + Sync + 'a> Sync
for MappedReentrantMutexGuard<'a, R, G, T>
{
}
impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a>
MappedReentrantMutexGuard<'a, R, G, T>
{
/// Makes a new `MappedReentrantMutexGuard` for a component of the locked data.
///
/// This operation cannot fail as the `MappedReentrantMutexGuard` passed
/// in already locked the mutex.
///
/// This is an associated function that needs to be
/// used as `MappedReentrantMutexGuard::map(...)`. A method would interfere with methods of
/// the same name on the contents of the locked data.
#[inline]
pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedReentrantMutexGuard<'a, R, G, U>
where
F: FnOnce(&T) -> &U,
{
let raw = s.raw;
let data = f(unsafe { &*s.data });
mem::forget(s);
MappedReentrantMutexGuard {
raw,
data,
marker: PhantomData,
}
}
/// Attempts to make a new `MappedReentrantMutexGuard` for a component of the
/// locked data. The original guard is return if the closure returns `None`.
///
/// This operation cannot fail as the `MappedReentrantMutexGuard` passed
/// in already locked the mutex.
///
/// This is an associated function that needs to be
/// used as `MappedReentrantMutexGuard::map(...)`. A method would interfere with methods of
/// the same name on the contents of the locked data.
#[inline]
pub fn try_map<U: ?Sized, F>(
s: Self,
f: F,
) -> Result<MappedReentrantMutexGuard<'a, R, G, U>, Self>
where
F: FnOnce(&T) -> Option<&U>,
{
let raw = s.raw;
let data = match f(unsafe { &*s.data }) {
Some(data) => data,
None => return Err(s),
};
mem::forget(s);
Ok(MappedReentrantMutexGuard {
raw,
data,
marker: PhantomData,
})
}
}
impl<'a, R: RawMutexFair + 'a, G: GetThreadId + 'a, T: ?Sized + 'a>
MappedReentrantMutexGuard<'a, R, G, T>
{
/// Unlocks the mutex using a fair unlock protocol.
///
/// By default, mutexes are unfair and allow the current thread to re-lock
/// the mutex before another has the chance to acquire the lock, even if
/// that thread has been blocked on the mutex for a long time. This is the
/// default because it allows much higher throughput as it avoids forcing a
/// context switch on every mutex unlock. This can result in one thread
/// acquiring a mutex many more times than other threads.
///
/// However in some cases it can be beneficial to ensure fairness by forcing
/// the lock to pass on to a waiting thread if there is one. This is done by
/// using this method instead of dropping the `ReentrantMutexGuard` normally.
#[inline]
pub fn unlock_fair(s: Self) {
// Safety: A MappedReentrantMutexGuard always holds the lock
unsafe {
s.raw.unlock_fair();
}
mem::forget(s);
}
}
impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Deref
for MappedReentrantMutexGuard<'a, R, G, T>
{
type Target = T;
#[inline]
fn deref(&self) -> &T {
unsafe { &*self.data }
}
}
impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Drop
for MappedReentrantMutexGuard<'a, R, G, T>
{
#[inline]
fn drop(&mut self) {
// Safety: A MappedReentrantMutexGuard always holds the lock.
unsafe {
self.raw.unlock();
}
}
}
impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug
for MappedReentrantMutexGuard<'a, R, G, T>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display
for MappedReentrantMutexGuard<'a, R, G, T>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
#[cfg(feature = "owning_ref")]
unsafe impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> StableAddress
for MappedReentrantMutexGuard<'a, R, G, T>
{
}