blob: dc4e4b1799d28abcbc196d6a931c7694c409014b [file] [log] [blame]
use core::{cmp, fmt, hash, isize, slice, usize};
use core::mem::{self, ManuallyDrop};
use core::ops::{Deref, DerefMut};
use core::ptr::{self, NonNull};
use core::iter::{FromIterator, Iterator};
use alloc::{vec::Vec, string::String, boxed::Box, borrow::{Borrow, BorrowMut}};
use crate::{Bytes, Buf, BufMut};
use crate::bytes::Vtable;
use crate::buf::IntoIter;
use crate::loom::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
/// A unique reference to a contiguous slice of memory.
///
/// `BytesMut` represents a unique view into a potentially shared memory region.
/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
/// mutate the memory. It is similar to a `Vec<u8>` but with less copies and
/// allocations.
///
/// # Growth
///
/// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as
/// necessary. However, explicitly reserving the required space up-front before
/// a series of inserts will be more efficient.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(64);
///
/// buf.put_u8(b'h');
/// buf.put_u8(b'e');
/// buf.put(&b"llo"[..]);
///
/// assert_eq!(&buf[..], b"hello");
///
/// // Freeze the buffer so that it can be shared
/// let a = buf.freeze();
///
/// // This does not allocate, instead `b` points to the same memory.
/// let b = a.clone();
///
/// assert_eq!(&a[..], b"hello");
/// assert_eq!(&b[..], b"hello");
/// ```
pub struct BytesMut {
ptr: NonNull<u8>,
len: usize,
cap: usize,
data: *mut Shared,
}
// Thread-safe reference-counted container for the shared storage. This mostly
// the same as `core::sync::Arc` but without the weak counter. The ref counting
// fns are based on the ones found in `std`.
//
// The main reason to use `Shared` instead of `core::sync::Arc` is that it ends
// up making the overall code simpler and easier to reason about. This is due to
// some of the logic around setting `Inner::arc` and other ways the `arc` field
// is used. Using `Arc` ended up requiring a number of funky transmutes and
// other shenanigans to make it work.
struct Shared {
vec: Vec<u8>,
original_capacity_repr: usize,
ref_count: AtomicUsize,
}
// Buffer storage strategy flags.
const KIND_ARC: usize = 0b0;
const KIND_VEC: usize = 0b1;
const KIND_MASK: usize = 0b1;
// The max original capacity value. Any `Bytes` allocated with a greater initial
// capacity will default to this.
const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
// The original capacity algorithm will not take effect unless the originally
// allocated capacity was at least 1kb in size.
const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
// The original capacity is stored in powers of 2 starting at 1kb to a max of
// 64kb. Representing it as such requires only 3 bits of storage.
const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
const ORIGINAL_CAPACITY_OFFSET: usize = 2;
// When the storage is in the `Vec` representation, the pointer can be advanced
// at most this value. This is due to the amount of storage available to track
// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
// bits.
const VEC_POS_OFFSET: usize = 5;
const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
const NOT_VEC_POS_MASK: usize = 0b11111;
#[cfg(target_pointer_width = "64")]
const PTR_WIDTH: usize = 64;
#[cfg(target_pointer_width = "32")]
const PTR_WIDTH: usize = 32;
/*
*
* ===== BytesMut =====
*
*/
impl BytesMut {
/// Creates a new `BytesMut` with the specified capacity.
///
/// The returned `BytesMut` will be able to hold at least `capacity` bytes
/// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`,
/// then `BytesMut` will not allocate.
///
/// It is important to note that this function does not specify the length
/// of the returned `BytesMut`, but only the capacity.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut bytes = BytesMut::with_capacity(64);
///
/// // `bytes` contains no data, even though there is capacity
/// assert_eq!(bytes.len(), 0);
///
/// bytes.put(&b"hello world"[..]);
///
/// assert_eq!(&bytes[..], b"hello world");
/// ```
#[inline]
pub fn with_capacity(capacity: usize) -> BytesMut {
BytesMut::from_vec(Vec::with_capacity(capacity))
}
/// Creates a new `BytesMut` with default capacity.
///
/// Resulting object has length 0 and unspecified capacity.
/// This function does not allocate.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut bytes = BytesMut::new();
///
/// assert_eq!(0, bytes.len());
///
/// bytes.reserve(2);
/// bytes.put_slice(b"xy");
///
/// assert_eq!(&b"xy"[..], &bytes[..]);
/// ```
#[inline]
pub fn new() -> BytesMut {
BytesMut::with_capacity(0)
}
/// Returns the number of bytes contained in this `BytesMut`.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::from(&b"hello"[..]);
/// assert_eq!(b.len(), 5);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Returns true if the `BytesMut` has a length of 0.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::with_capacity(64);
/// assert!(b.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns the number of bytes the `BytesMut` can hold without reallocating.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::with_capacity(64);
/// assert_eq!(b.capacity(), 64);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
self.cap
}
/// Converts `self` into an immutable `Bytes`.
///
/// The conversion is zero cost and is used to indicate that the slice
/// referenced by the handle will no longer be mutated. Once the conversion
/// is done, the handle can be cloned and shared across threads.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
/// use std::thread;
///
/// let mut b = BytesMut::with_capacity(64);
/// b.put(&b"hello world"[..]);
/// let b1 = b.freeze();
/// let b2 = b1.clone();
///
/// let th = thread::spawn(move || {
/// assert_eq!(&b1[..], b"hello world");
/// });
///
/// assert_eq!(&b2[..], b"hello world");
/// th.join().unwrap();
/// ```
#[inline]
pub fn freeze(mut self) -> Bytes {
if self.kind() == KIND_VEC {
// Just re-use `Bytes` internal Vec vtable
unsafe {
let (off, _) = self.get_vec_pos();
let vec = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
mem::forget(self);
vec.into()
}
} else {
debug_assert_eq!(self.kind(), KIND_ARC);
let ptr = self.ptr.as_ptr();
let len = self.len;
let data = AtomicPtr::new(self.data as _);
mem::forget(self);
unsafe {
Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE)
}
}
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[0, at)`, and the returned
/// `BytesMut` contains elements `[at, capacity)`.
///
/// This is an `O(1)` operation that just increases the reference count
/// and sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut a = BytesMut::from(&b"hello world"[..]);
/// let mut b = a.split_off(5);
///
/// a[0] = b'j';
/// b[0] = b'!';
///
/// assert_eq!(&a[..], b"jello");
/// assert_eq!(&b[..], b"!world");
/// ```
///
/// # Panics
///
/// Panics if `at > capacity`.
#[must_use = "consider BytesMut::truncate if you don't need the other half"]
pub fn split_off(&mut self, at: usize) -> BytesMut {
assert!(
at <= self.capacity(),
"split_off out of bounds: {:?} <= {:?}",
at,
self.capacity(),
);
unsafe {
let mut other = self.shallow_clone();
other.set_start(at);
self.set_end(at);
other
}
}
/// Removes the bytes from the current view, returning them in a new
/// `BytesMut` handle.
///
/// Afterwards, `self` will be empty, but will retain any additional
/// capacity that it had before the operation. This is identical to
/// `self.split_to(self.len())`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(1024);
/// buf.put(&b"hello world"[..]);
///
/// let other = buf.split();
///
/// assert!(buf.is_empty());
/// assert_eq!(1013, buf.capacity());
///
/// assert_eq!(other, b"hello world"[..]);
/// ```
#[must_use = "consider BytesMut::advance(len()) if you don't need the other half"]
pub fn split(&mut self) -> BytesMut {
let len = self.len();
self.split_to(len)
}
/// Splits the buffer into two at the given index.
///
/// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
/// contains elements `[0, at)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut a = BytesMut::from(&b"hello world"[..]);
/// let mut b = a.split_to(5);
///
/// a[0] = b'!';
/// b[0] = b'j';
///
/// assert_eq!(&a[..], b"!world");
/// assert_eq!(&b[..], b"jello");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
#[must_use = "consider BytesMut::advance if you don't need the other half"]
pub fn split_to(&mut self, at: usize) -> BytesMut {
assert!(
at <= self.len(),
"split_to out of bounds: {:?} <= {:?}",
at,
self.len(),
);
unsafe {
let mut other = self.shallow_clone();
other.set_end(at);
self.set_start(at);
other
}
}
/// Shortens the buffer, keeping the first `len` bytes and dropping the
/// rest.
///
/// If `len` is greater than the buffer's current length, this has no
/// effect.
///
/// The [`split_off`] method can emulate `truncate`, but this causes the
/// excess bytes to be returned instead of dropped.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello world"[..]);
/// buf.truncate(5);
/// assert_eq!(buf, b"hello"[..]);
/// ```
///
/// [`split_off`]: #method.split_off
pub fn truncate(&mut self, len: usize) {
if len <= self.len() {
unsafe { self.set_len(len); }
}
}
/// Clears the buffer, removing all data.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello world"[..]);
/// buf.clear();
/// assert!(buf.is_empty());
/// ```
pub fn clear(&mut self) {
self.truncate(0);
}
/// Resizes the buffer so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the buffer is extended by the
/// difference with each additional byte set to `value`. If `new_len` is
/// less than `len`, the buffer is simply truncated.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::new();
///
/// buf.resize(3, 0x1);
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
///
/// buf.resize(2, 0x2);
/// assert_eq!(&buf[..], &[0x1, 0x1]);
///
/// buf.resize(4, 0x3);
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
/// ```
pub fn resize(&mut self, new_len: usize, value: u8) {
let len = self.len();
if new_len > len {
let additional = new_len - len;
self.reserve(additional);
unsafe {
let dst = self.bytes_mut().as_mut_ptr();
ptr::write_bytes(dst, value, additional);
self.set_len(new_len);
}
} else {
self.truncate(new_len);
}
}
/// Sets the length of the buffer.
///
/// This will explicitly set the size of the buffer without actually
/// modifying the data, so it is up to the caller to ensure that the data
/// has been initialized.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut b = BytesMut::from(&b"hello world"[..]);
///
/// unsafe {
/// b.set_len(5);
/// }
///
/// assert_eq!(&b[..], b"hello");
///
/// unsafe {
/// b.set_len(11);
/// }
///
/// assert_eq!(&b[..], b"hello world");
/// ```
pub unsafe fn set_len(&mut self, len: usize) {
debug_assert!(len <= self.cap, "set_len out of bounds");
self.len = len;
}
/// Reserves capacity for at least `additional` more bytes to be inserted
/// into the given `BytesMut`.
///
/// More than `additional` bytes may be reserved in order to avoid frequent
/// reallocations. A call to `reserve` may result in an allocation.
///
/// Before allocating new buffer space, the function will attempt to reclaim
/// space in the existing buffer. If the current handle references a small
/// view in the original buffer and all other handles have been dropped,
/// and the requested capacity is less than or equal to the existing
/// buffer's capacity, then the current view will be copied to the front of
/// the buffer and the handle will take ownership of the full buffer.
///
/// # Examples
///
/// In the following example, a new buffer is allocated.
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello"[..]);
/// buf.reserve(64);
/// assert!(buf.capacity() >= 69);
/// ```
///
/// In the following example, the existing buffer is reclaimed.
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(128);
/// buf.put(&[0; 64][..]);
///
/// let ptr = buf.as_ptr();
/// let other = buf.split();
///
/// assert!(buf.is_empty());
/// assert_eq!(buf.capacity(), 64);
///
/// drop(other);
/// buf.reserve(128);
///
/// assert_eq!(buf.capacity(), 128);
/// assert_eq!(buf.as_ptr(), ptr);
/// ```
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
#[inline]
pub fn reserve(&mut self, additional: usize) {
let len = self.len();
let rem = self.capacity() - len;
if additional <= rem {
// The handle can already store at least `additional` more bytes, so
// there is no further work needed to be done.
return;
}
self.reserve_inner(additional);
}
// In separate function to allow the short-circuits in `reserve` to
// be inline-able. Significant helps performance.
fn reserve_inner(&mut self, additional: usize) {
let len = self.len();
let kind = self.kind();
if kind == KIND_VEC {
// If there's enough free space before the start of the buffer, then
// just copy the data backwards and reuse the already-allocated
// space.
//
// Otherwise, since backed by a vector, use `Vec::reserve`
unsafe {
let (off, prev) = self.get_vec_pos();
// Only reuse space if we stand to gain at least capacity/2
// bytes of space back
if off >= additional && off >= (self.cap / 2) {
// There's space - reuse it
//
// Just move the pointer back to the start after copying
// data back.
let base_ptr = self.ptr.as_ptr().offset(-(off as isize));
ptr::copy(self.ptr.as_ptr(), base_ptr, self.len);
self.ptr = vptr(base_ptr);
self.set_vec_pos(0, prev);
// Length stays constant, but since we moved backwards we
// can gain capacity back.
self.cap += off;
} else {
// No space - allocate more
let mut v = ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off));
v.reserve(additional);
// Update the info
self.ptr = vptr(v.as_mut_ptr().offset(off as isize));
self.len = v.len() - off;
self.cap = v.capacity() - off;
}
return;
}
}
debug_assert_eq!(kind, KIND_ARC);
let shared: *mut Shared = self.data as _;
// Reserving involves abandoning the currently shared buffer and
// allocating a new vector with the requested capacity.
//
// Compute the new capacity
let mut new_cap = len.checked_add(additional).expect("overflow");
let original_capacity;
let original_capacity_repr;
unsafe {
original_capacity_repr = (*shared).original_capacity_repr;
original_capacity = original_capacity_from_repr(original_capacity_repr);
// First, try to reclaim the buffer. This is possible if the current
// handle is the only outstanding handle pointing to the buffer.
if (*shared).is_unique() {
// This is the only handle to the buffer. It can be reclaimed.
// However, before doing the work of copying data, check to make
// sure that the vector has enough capacity.
let v = &mut (*shared).vec;
if v.capacity() >= new_cap {
// The capacity is sufficient, reclaim the buffer
let ptr = v.as_mut_ptr();
ptr::copy(self.ptr.as_ptr(), ptr, len);
self.ptr = vptr(ptr);
self.cap = v.capacity();
return;
}
// The vector capacity is not sufficient. The reserve request is
// asking for more than the initial buffer capacity. Allocate more
// than requested if `new_cap` is not much bigger than the current
// capacity.
//
// There are some situations, using `reserve_exact` that the
// buffer capacity could be below `original_capacity`, so do a
// check.
let double = v.capacity().checked_shl(1).unwrap_or(new_cap);
new_cap = cmp::max(
cmp::max(double, new_cap),
original_capacity);
} else {
new_cap = cmp::max(new_cap, original_capacity);
}
}
// Create a new vector to store the data
let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap));
// Copy the bytes
v.extend_from_slice(self.as_ref());
// Release the shared handle. This must be done *after* the bytes are
// copied.
unsafe { release_shared(shared) };
// Update self
let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
self.data = data as _;
self.ptr = vptr(v.as_mut_ptr());
self.len = v.len();
self.cap = v.capacity();
}
/// Appends given bytes to this `BytesMut`.
///
/// If this `BytesMut` object does not have enough capacity, it is resized
/// first.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::with_capacity(0);
/// buf.extend_from_slice(b"aaabbb");
/// buf.extend_from_slice(b"cccddd");
///
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
/// ```
pub fn extend_from_slice(&mut self, extend: &[u8]) {
let cnt = extend.len();
self.reserve(cnt);
unsafe {
let dst = self.maybe_uninit_bytes();
// Reserved above
debug_assert!(dst.len() >= cnt);
ptr::copy_nonoverlapping(
extend.as_ptr(),
dst.as_mut_ptr() as *mut u8,
cnt);
}
unsafe { self.advance_mut(cnt); }
}
/// Absorbs a `BytesMut` that was previously split off.
///
/// If the two `BytesMut` objects were previously contiguous, i.e., if
/// `other` was created by calling `split_off` on this `BytesMut`, then
/// this is an `O(1)` operation that just decreases a reference
/// count and sets a few indices. Otherwise this method degenerates to
/// `self.extend_from_slice(other.as_ref())`.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::with_capacity(64);
/// buf.extend_from_slice(b"aaabbbcccddd");
///
/// let split = buf.split_off(6);
/// assert_eq!(b"aaabbb", &buf[..]);
/// assert_eq!(b"cccddd", &split[..]);
///
/// buf.unsplit(split);
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
/// ```
pub fn unsplit(&mut self, other: BytesMut) {
if self.is_empty() {
*self = other;
return;
}
if let Err(other) = self.try_unsplit(other) {
self.extend_from_slice(other.as_ref());
}
}
// private
// For now, use a `Vec` to manage the memory for us, but we may want to
// change that in the future to some alternate allocator strategy.
//
// Thus, we don't expose an easy way to construct from a `Vec` since an
// internal change could make a simple pattern (`BytesMut::from(vec)`)
// suddenly a lot more expensive.
#[inline]
pub(crate) fn from_vec(mut vec: Vec<u8>) -> BytesMut {
let ptr = vptr(vec.as_mut_ptr());
let len = vec.len();
let cap = vec.capacity();
mem::forget(vec);
let original_capacity_repr = original_capacity_to_repr(cap);
let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
BytesMut {
ptr,
len,
cap,
data: data as *mut _,
}
}
#[inline]
fn as_slice(&self) -> &[u8] {
unsafe {
slice::from_raw_parts(self.ptr.as_ptr(), self.len)
}
}
#[inline]
fn as_slice_mut(&mut self) -> &mut [u8] {
unsafe {
slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len)
}
}
unsafe fn set_start(&mut self, start: usize) {
// Setting the start to 0 is a no-op, so return early if this is the
// case.
if start == 0 {
return;
}
debug_assert!(start <= self.cap, "internal: set_start out of bounds");
let kind = self.kind();
if kind == KIND_VEC {
// Setting the start when in vec representation is a little more
// complicated. First, we have to track how far ahead the
// "start" of the byte buffer from the beginning of the vec. We
// also have to ensure that we don't exceed the maximum shift.
let (mut pos, prev) = self.get_vec_pos();
pos += start;
if pos <= MAX_VEC_POS {
self.set_vec_pos(pos, prev);
} else {
// The repr must be upgraded to ARC. This will never happen
// on 64 bit systems and will only happen on 32 bit systems
// when shifting past 134,217,727 bytes. As such, we don't
// worry too much about performance here.
self.promote_to_shared(/*ref_count = */1);
}
}
// Updating the start of the view is setting `ptr` to point to the
// new start and updating the `len` field to reflect the new length
// of the view.
self.ptr = vptr(self.ptr.as_ptr().offset(start as isize));
if self.len >= start {
self.len -= start;
} else {
self.len = 0;
}
self.cap -= start;
}
unsafe fn set_end(&mut self, end: usize) {
debug_assert_eq!(self.kind(), KIND_ARC);
assert!(end <= self.cap, "set_end out of bounds");
self.cap = end;
self.len = cmp::min(self.len, end);
}
fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> {
if other.is_empty() {
return Ok(());
}
let ptr = unsafe { self.ptr.as_ptr().offset(self.len as isize) };
if ptr == other.ptr.as_ptr() &&
self.kind() == KIND_ARC &&
other.kind() == KIND_ARC &&
self.data == other.data
{
// Contiguous blocks, just combine directly
self.len += other.len;
self.cap += other.cap;
Ok(())
} else {
Err(other)
}
}
#[inline]
fn kind(&self) -> usize {
self.data as usize & KIND_MASK
}
unsafe fn promote_to_shared(&mut self, ref_cnt: usize) {
debug_assert_eq!(self.kind(), KIND_VEC);
debug_assert!(ref_cnt == 1 || ref_cnt == 2);
let original_capacity_repr =
(self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
// The vec offset cannot be concurrently mutated, so there
// should be no danger reading it.
let off = (self.data as usize) >> VEC_POS_OFFSET;
// First, allocate a new `Shared` instance containing the
// `Vec` fields. It's important to note that `ptr`, `len`,
// and `cap` cannot be mutated without having `&mut self`.
// This means that these fields will not be concurrently
// updated and since the buffer hasn't been promoted to an
// `Arc`, those three fields still are the components of the
// vector.
let shared = Box::new(Shared {
vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off),
original_capacity_repr,
ref_count: AtomicUsize::new(ref_cnt),
});
let shared = Box::into_raw(shared);
// The pointer should be aligned, so this assert should
// always succeed.
debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC);
self.data = shared as _;
}
/// Makes an exact shallow clone of `self`.
///
/// The kind of `self` doesn't matter, but this is unsafe
/// because the clone will have the same offsets. You must
/// be sure the returned value to the user doesn't allow
/// two views into the same range.
#[inline]
unsafe fn shallow_clone(&mut self) -> BytesMut {
if self.kind() == KIND_ARC {
increment_shared(self.data);
ptr::read(self)
} else {
self.promote_to_shared(/*ref_count = */2);
ptr::read(self)
}
}
#[inline]
unsafe fn get_vec_pos(&mut self) -> (usize, usize) {
debug_assert_eq!(self.kind(), KIND_VEC);
let prev = self.data as usize;
(prev >> VEC_POS_OFFSET, prev)
}
#[inline]
unsafe fn set_vec_pos(&mut self, pos: usize, prev: usize) {
debug_assert_eq!(self.kind(), KIND_VEC);
debug_assert!(pos <= MAX_VEC_POS);
self.data = ((pos << VEC_POS_OFFSET) | (prev & NOT_VEC_POS_MASK)) as *mut _;
}
#[inline]
fn maybe_uninit_bytes(&mut self) -> &mut [mem::MaybeUninit<u8>] {
unsafe {
let ptr = self.ptr.as_ptr().offset(self.len as isize);
let len = self.cap - self.len;
slice::from_raw_parts_mut(ptr as *mut mem::MaybeUninit<u8>, len)
}
}
}
impl Drop for BytesMut {
fn drop(&mut self) {
let kind = self.kind();
if kind == KIND_VEC {
unsafe {
let (off, _) = self.get_vec_pos();
// Vector storage, free the vector
let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
}
} else if kind == KIND_ARC {
unsafe { release_shared(self.data as _) };
}
}
}
impl Buf for BytesMut {
#[inline]
fn remaining(&self) -> usize {
self.len()
}
#[inline]
fn bytes(&self) -> &[u8] {
self.as_slice()
}
#[inline]
fn advance(&mut self, cnt: usize) {
assert!(
cnt <= self.remaining(),
"cannot advance past `remaining`: {:?} <= {:?}",
cnt,
self.remaining(),
);
unsafe { self.set_start(cnt); }
}
fn to_bytes(&mut self) -> crate::Bytes {
self.split().freeze()
}
}
impl BufMut for BytesMut {
#[inline]
fn remaining_mut(&self) -> usize {
usize::MAX - self.len()
}
#[inline]
unsafe fn advance_mut(&mut self, cnt: usize) {
let new_len = self.len() + cnt;
assert!(new_len <= self.cap, "new_len = {}; capacity = {}", new_len, self.cap);
self.len = new_len;
}
#[inline]
fn bytes_mut(&mut self) -> &mut [mem::MaybeUninit<u8>] {
if self.capacity() == self.len() {
self.reserve(64);
}
self.maybe_uninit_bytes()
}
// Specialize these methods so they can skip checking `remaining_mut`
// and `advance_mut`.
fn put<T: crate::Buf>(&mut self, mut src: T) where Self: Sized {
while src.has_remaining() {
let s = src.bytes();
let l = s.len();
self.extend_from_slice(s);
src.advance(l);
}
}
fn put_slice(&mut self, src: &[u8]) {
self.extend_from_slice(src);
}
}
impl AsRef<[u8]> for BytesMut {
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_slice()
}
}
impl Deref for BytesMut {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.as_ref()
}
}
impl AsMut<[u8]> for BytesMut {
fn as_mut(&mut self) -> &mut [u8] {
self.as_slice_mut()
}
}
impl DerefMut for BytesMut {
#[inline]
fn deref_mut(&mut self) -> &mut [u8] {
self.as_mut()
}
}
impl<'a> From<&'a [u8]> for BytesMut {
fn from(src: &'a [u8]) -> BytesMut {
BytesMut::from_vec(src.to_vec())
}
}
impl<'a> From<&'a str> for BytesMut {
fn from(src: &'a str) -> BytesMut {
BytesMut::from(src.as_bytes())
}
}
impl From<BytesMut> for Bytes {
fn from(src: BytesMut) -> Bytes {
src.freeze()
}
}
impl PartialEq for BytesMut {
fn eq(&self, other: &BytesMut) -> bool {
self.as_slice() == other.as_slice()
}
}
impl PartialOrd for BytesMut {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(other.as_slice())
}
}
impl Ord for BytesMut {
fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
self.as_slice().cmp(other.as_slice())
}
}
impl Eq for BytesMut {
}
impl Default for BytesMut {
#[inline]
fn default() -> BytesMut {
BytesMut::new()
}
}
impl hash::Hash for BytesMut {
fn hash<H>(&self, state: &mut H) where H: hash::Hasher {
let s: &[u8] = self.as_ref();
s.hash(state);
}
}
impl Borrow<[u8]> for BytesMut {
fn borrow(&self) -> &[u8] {
self.as_ref()
}
}
impl BorrowMut<[u8]> for BytesMut {
fn borrow_mut(&mut self) -> &mut [u8] {
self.as_mut()
}
}
impl fmt::Write for BytesMut {
#[inline]
fn write_str(&mut self, s: &str) -> fmt::Result {
if self.remaining_mut() >= s.len() {
self.put_slice(s.as_bytes());
Ok(())
} else {
Err(fmt::Error)
}
}
#[inline]
fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
fmt::write(self, args)
}
}
impl Clone for BytesMut {
fn clone(&self) -> BytesMut {
BytesMut::from(&self[..])
}
}
impl IntoIterator for BytesMut {
type Item = u8;
type IntoIter = IntoIter<BytesMut>;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self)
}
}
impl<'a> IntoIterator for &'a BytesMut {
type Item = &'a u8;
type IntoIter = core::slice::Iter<'a, u8>;
fn into_iter(self) -> Self::IntoIter {
self.as_ref().into_iter()
}
}
impl Extend<u8> for BytesMut {
fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = u8> {
let iter = iter.into_iter();
let (lower, _) = iter.size_hint();
self.reserve(lower);
// TODO: optimize
// 1. If self.kind() == KIND_VEC, use Vec::extend
// 2. Make `reserve` inline-able
for b in iter {
self.reserve(1);
self.put_u8(b);
}
}
}
impl<'a> Extend<&'a u8> for BytesMut {
fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = &'a u8> {
self.extend(iter.into_iter().map(|b| *b))
}
}
impl FromIterator<u8> for BytesMut {
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
BytesMut::from_vec(Vec::from_iter(into_iter))
}
}
impl<'a> FromIterator<&'a u8> for BytesMut {
fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
BytesMut::from_iter(into_iter.into_iter().map(|b| *b))
}
}
/*
*
* ===== Inner =====
*
*/
unsafe fn increment_shared(ptr: *mut Shared) {
let old_size = (*ptr).ref_count.fetch_add(1, Ordering::Relaxed);
if old_size > isize::MAX as usize {
crate::abort();
}
}
unsafe fn release_shared(ptr: *mut Shared) {
// `Shared` storage... follow the drop steps from Arc.
if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 {
return;
}
// This fence is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` fence. This
// means that use of the data happens before decreasing the reference
// count, which happens before this fence, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
atomic::fence(Ordering::Acquire);
// Drop the data
Box::from_raw(ptr);
}
impl Shared {
fn is_unique(&self) -> bool {
// The goal is to check if the current handle is the only handle
// that currently has access to the buffer. This is done by
// checking if the `ref_count` is currently 1.
//
// The `Acquire` ordering synchronizes with the `Release` as
// part of the `fetch_sub` in `release_shared`. The `fetch_sub`
// operation guarantees that any mutations done in other threads
// are ordered before the `ref_count` is decremented. As such,
// this `Acquire` will guarantee that those mutations are
// visible to the current thread.
self.ref_count.load(Ordering::Acquire) == 1
}
}
fn original_capacity_to_repr(cap: usize) -> usize {
let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
cmp::min(width, MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH)
}
fn original_capacity_from_repr(repr: usize) -> usize {
if repr == 0 {
return 0;
}
1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
}
/*
#[test]
fn test_original_capacity_to_repr() {
assert_eq!(original_capacity_to_repr(0), 0);
let max_width = 32;
for width in 1..(max_width + 1) {
let cap = 1 << width - 1;
let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH {
0
} else if width < MAX_ORIGINAL_CAPACITY_WIDTH {
width - MIN_ORIGINAL_CAPACITY_WIDTH
} else {
MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH
};
assert_eq!(original_capacity_to_repr(cap), expected);
if width > 1 {
assert_eq!(original_capacity_to_repr(cap + 1), expected);
}
// MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below
if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 {
assert_eq!(original_capacity_to_repr(cap - 24), expected - 1);
assert_eq!(original_capacity_to_repr(cap + 76), expected);
} else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 {
assert_eq!(original_capacity_to_repr(cap - 1), expected - 1);
assert_eq!(original_capacity_to_repr(cap - 48), expected - 1);
}
}
}
#[test]
fn test_original_capacity_from_repr() {
assert_eq!(0, original_capacity_from_repr(0));
let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH;
assert_eq!(min_cap, original_capacity_from_repr(1));
assert_eq!(min_cap * 2, original_capacity_from_repr(2));
assert_eq!(min_cap * 4, original_capacity_from_repr(3));
assert_eq!(min_cap * 8, original_capacity_from_repr(4));
assert_eq!(min_cap * 16, original_capacity_from_repr(5));
assert_eq!(min_cap * 32, original_capacity_from_repr(6));
assert_eq!(min_cap * 64, original_capacity_from_repr(7));
}
*/
unsafe impl Send for BytesMut {}
unsafe impl Sync for BytesMut {}
/*
*
* ===== PartialEq / PartialOrd =====
*
*/
impl PartialEq<[u8]> for BytesMut {
fn eq(&self, other: &[u8]) -> bool {
&**self == other
}
}
impl PartialOrd<[u8]> for BytesMut {
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
(**self).partial_cmp(other)
}
}
impl PartialEq<BytesMut> for [u8] {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for [u8] {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
}
}
impl PartialEq<str> for BytesMut {
fn eq(&self, other: &str) -> bool {
&**self == other.as_bytes()
}
}
impl PartialOrd<str> for BytesMut {
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
(**self).partial_cmp(other.as_bytes())
}
}
impl PartialEq<BytesMut> for str {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for str {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
}
}
impl PartialEq<Vec<u8>> for BytesMut {
fn eq(&self, other: &Vec<u8>) -> bool {
*self == &other[..]
}
}
impl PartialOrd<Vec<u8>> for BytesMut {
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
(**self).partial_cmp(&other[..])
}
}
impl PartialEq<BytesMut> for Vec<u8> {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for Vec<u8> {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<String> for BytesMut {
fn eq(&self, other: &String) -> bool {
*self == &other[..]
}
}
impl PartialOrd<String> for BytesMut {
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
(**self).partial_cmp(other.as_bytes())
}
}
impl PartialEq<BytesMut> for String {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for String {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
}
}
impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
where BytesMut: PartialEq<T>
{
fn eq(&self, other: &&'a T) -> bool {
*self == **other
}
}
impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
where BytesMut: PartialOrd<T>
{
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
self.partial_cmp(*other)
}
}
impl PartialEq<BytesMut> for &[u8] {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for &[u8] {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
}
}
impl PartialEq<BytesMut> for &str {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for &str {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<BytesMut> for Bytes {
fn eq(&self, other: &BytesMut) -> bool {
&other[..] == &self[..]
}
}
impl PartialEq<Bytes> for BytesMut {
fn eq(&self, other: &Bytes) -> bool {
&other[..] == &self[..]
}
}
fn vptr(ptr: *mut u8) -> NonNull<u8> {
if cfg!(debug_assertions) {
NonNull::new(ptr).expect("Vec pointer should be non-null")
} else {
unsafe { NonNull::new_unchecked(ptr) }
}
}
unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
let ptr = ptr.offset(-(off as isize));
len += off;
cap += off;
Vec::from_raw_parts(ptr, len, cap)
}
// ===== impl SharedVtable =====
static SHARED_VTABLE: Vtable = Vtable {
clone: shared_v_clone,
drop: shared_v_drop,
};
unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
let shared = data.load(Ordering::Acquire) as *mut Shared;
increment_shared(shared);
let data = AtomicPtr::new(shared as _);
Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE)
}
unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
let shared = (*data.get_mut()) as *mut Shared;
release_shared(shared as *mut Shared);
}
// compile-fails
/// ```compile_fail
/// use bytes::BytesMut;
/// #[deny(unused_must_use)]
/// {
/// let mut b1 = BytesMut::from("hello world");
/// b1.split_to(6);
/// }
/// ```
fn _split_to_must_use() {}
/// ```compile_fail
/// use bytes::BytesMut;
/// #[deny(unused_must_use)]
/// {
/// let mut b1 = BytesMut::from("hello world");
/// b1.split_off(6);
/// }
/// ```
fn _split_off_must_use() {}
/// ```compile_fail
/// use bytes::BytesMut;
/// #[deny(unused_must_use)]
/// {
/// let mut b1 = BytesMut::from("hello world");
/// b1.split();
/// }
/// ```
fn _split_must_use() {}
// fuzz tests
#[cfg(all(test, loom))]
mod fuzz {
use std::sync::Arc;
use loom::thread;
use crate::Bytes;
use super::BytesMut;
#[test]
fn bytes_mut_cloning_frozen() {
loom::model(|| {
let a = BytesMut::from(&b"abcdefgh"[..]).split().freeze();
let addr = a.as_ptr() as usize;
// test the Bytes::clone is Sync by putting it in an Arc
let a1 = Arc::new(a);
let a2 = a1.clone();
let t1 = thread::spawn(move || {
let b: Bytes = (*a1).clone();
assert_eq!(b.as_ptr() as usize, addr);
});
let t2 = thread::spawn(move || {
let b: Bytes = (*a2).clone();
assert_eq!(b.as_ptr() as usize, addr);
});
t1.join().unwrap();
t2.join().unwrap();
});
}
}