blob: 767fb80247ad9e22cc86ba3d8277ba6b53ed18f2 [file] [log] [blame] [edit]
#![allow(unused_imports)]
use proc_macro2::{Ident, Span, TokenStream, TokenTree};
use quote::{quote, quote_spanned, ToTokens};
use syn::{
parse::{Parse, ParseStream, Parser},
punctuated::Punctuated,
spanned::Spanned,
Result, *,
};
macro_rules! bail {
($msg:expr $(,)?) => {
return Err(Error::new(Span::call_site(), &$msg[..]))
};
( $msg:expr => $span_to_blame:expr $(,)? ) => {
return Err(Error::new_spanned(&$span_to_blame, $msg))
};
}
pub trait Derivable {
fn ident(input: &DeriveInput) -> Result<syn::Path>;
fn implies_trait() -> Option<TokenStream> {
None
}
fn asserts(_input: &DeriveInput) -> Result<TokenStream> {
Ok(quote!())
}
fn check_attributes(_ty: &Data, _attributes: &[Attribute]) -> Result<()> {
Ok(())
}
fn trait_impl(_input: &DeriveInput) -> Result<(TokenStream, TokenStream)> {
Ok((quote!(), quote!()))
}
fn requires_where_clause() -> bool {
true
}
}
pub struct Pod;
impl Derivable for Pod {
fn ident(_: &DeriveInput) -> Result<syn::Path> {
Ok(syn::parse_quote!(::bytemuck::Pod))
}
fn asserts(input: &DeriveInput) -> Result<TokenStream> {
let repr = get_repr(&input.attrs)?;
let completly_packed =
repr.packed == Some(1) || repr.repr == Repr::Transparent;
if !completly_packed && !input.generics.params.is_empty() {
bail!("\
Pod requires cannot be derived for non-packed types containing \
generic parameters because the padding requirements can't be verified \
for generic non-packed structs\
" => input.generics.params.first().unwrap());
}
match &input.data {
Data::Struct(_) => {
let assert_no_padding = if !completly_packed {
Some(generate_assert_no_padding(input)?)
} else {
None
};
let assert_fields_are_pod =
generate_fields_are_trait(input, Self::ident(input)?)?;
Ok(quote!(
#assert_no_padding
#assert_fields_are_pod
))
}
Data::Enum(_) => bail!("Deriving Pod is not supported for enums"),
Data::Union(_) => bail!("Deriving Pod is not supported for unions"),
}
}
fn check_attributes(_ty: &Data, attributes: &[Attribute]) -> Result<()> {
let repr = get_repr(attributes)?;
match repr.repr {
Repr::C => Ok(()),
Repr::Transparent => Ok(()),
_ => {
bail!("Pod requires the type to be #[repr(C)] or #[repr(transparent)]")
}
}
}
}
pub struct AnyBitPattern;
impl Derivable for AnyBitPattern {
fn ident(_: &DeriveInput) -> Result<syn::Path> {
Ok(syn::parse_quote!(::bytemuck::AnyBitPattern))
}
fn implies_trait() -> Option<TokenStream> {
Some(quote!(::bytemuck::Zeroable))
}
fn asserts(input: &DeriveInput) -> Result<TokenStream> {
match &input.data {
Data::Union(_) => Ok(quote!()), // unions are always `AnyBitPattern`
Data::Struct(_) => generate_fields_are_trait(input, Self::ident(input)?),
Data::Enum(_) => {
bail!("Deriving AnyBitPattern is not supported for enums")
}
}
}
}
pub struct Zeroable;
impl Derivable for Zeroable {
fn ident(_: &DeriveInput) -> Result<syn::Path> {
Ok(syn::parse_quote!(::bytemuck::Zeroable))
}
fn asserts(input: &DeriveInput) -> Result<TokenStream> {
match &input.data {
Data::Union(_) => Ok(quote!()), // unions are always `Zeroable`
Data::Struct(_) => generate_fields_are_trait(input, Self::ident(input)?),
Data::Enum(_) => bail!("Deriving Zeroable is not supported for enums"),
}
}
}
pub struct NoUninit;
impl Derivable for NoUninit {
fn ident(_: &DeriveInput) -> Result<syn::Path> {
Ok(syn::parse_quote!(::bytemuck::NoUninit))
}
fn check_attributes(ty: &Data, attributes: &[Attribute]) -> Result<()> {
let repr = get_repr(attributes)?;
match ty {
Data::Struct(_) => match repr.repr {
Repr::C | Repr::Transparent => Ok(()),
_ => bail!("NoUninit requires the struct to be #[repr(C)] or #[repr(transparent)]"),
},
Data::Enum(_) => if repr.repr.is_integer() {
Ok(())
} else {
bail!("NoUninit requires the enum to be an explicit #[repr(Int)]")
},
Data::Union(_) => bail!("NoUninit can only be derived on enums and structs")
}
}
fn asserts(input: &DeriveInput) -> Result<TokenStream> {
if !input.generics.params.is_empty() {
bail!("NoUninit cannot be derived for structs containing generic parameters because the padding requirements can't be verified for generic structs");
}
match &input.data {
Data::Struct(DataStruct { .. }) => {
let assert_no_padding = generate_assert_no_padding(&input)?;
let assert_fields_are_no_padding =
generate_fields_are_trait(&input, Self::ident(input)?)?;
Ok(quote!(
#assert_no_padding
#assert_fields_are_no_padding
))
}
Data::Enum(DataEnum { variants, .. }) => {
if variants.iter().any(|variant| !variant.fields.is_empty()) {
bail!("Only fieldless enums are supported for NoUninit")
} else {
Ok(quote!())
}
}
Data::Union(_) => bail!("NoUninit cannot be derived for unions"), /* shouldn't be possible since we already error in attribute check for this case */
}
}
fn trait_impl(_input: &DeriveInput) -> Result<(TokenStream, TokenStream)> {
Ok((quote!(), quote!()))
}
}
pub struct CheckedBitPattern;
impl Derivable for CheckedBitPattern {
fn ident(_: &DeriveInput) -> Result<syn::Path> {
Ok(syn::parse_quote!(::bytemuck::CheckedBitPattern))
}
fn check_attributes(ty: &Data, attributes: &[Attribute]) -> Result<()> {
let repr = get_repr(attributes)?;
match ty {
Data::Struct(_) => match repr.repr {
Repr::C | Repr::Transparent => Ok(()),
_ => bail!("CheckedBitPattern derive requires the struct to be #[repr(C)] or #[repr(transparent)]"),
},
Data::Enum(_) => if repr.repr.is_integer() {
Ok(())
} else {
bail!("CheckedBitPattern requires the enum to be an explicit #[repr(Int)]")
},
Data::Union(_) => bail!("CheckedBitPattern can only be derived on enums and structs")
}
}
fn asserts(input: &DeriveInput) -> Result<TokenStream> {
if !input.generics.params.is_empty() {
bail!("CheckedBitPattern cannot be derived for structs containing generic parameters");
}
match &input.data {
Data::Struct(DataStruct { .. }) => {
let assert_fields_are_maybe_pod =
generate_fields_are_trait(&input, Self::ident(input)?)?;
Ok(assert_fields_are_maybe_pod)
}
Data::Enum(_) => Ok(quote!()), /* nothing needed, already guaranteed OK by NoUninit */
Data::Union(_) => bail!("Internal error in CheckedBitPattern derive"), /* shouldn't be possible since we already error in attribute check for this case */
}
}
fn trait_impl(input: &DeriveInput) -> Result<(TokenStream, TokenStream)> {
match &input.data {
Data::Struct(DataStruct { fields, .. }) => {
generate_checked_bit_pattern_struct(&input.ident, fields, &input.attrs)
}
Data::Enum(_) => generate_checked_bit_pattern_enum(input),
Data::Union(_) => bail!("Internal error in CheckedBitPattern derive"), /* shouldn't be possible since we already error in attribute check for this case */
}
}
}
pub struct TransparentWrapper;
impl TransparentWrapper {
fn get_wrapper_type(
attributes: &[Attribute], fields: &Fields,
) -> Option<TokenStream> {
let transparent_param = get_simple_attr(attributes, "transparent");
transparent_param.map(|ident| ident.to_token_stream()).or_else(|| {
let mut types = get_field_types(&fields);
let first_type = types.next();
if let Some(_) = types.next() {
// can't guess param type if there is more than one field
return None;
} else {
first_type.map(|ty| ty.to_token_stream())
}
})
}
}
impl Derivable for TransparentWrapper {
fn ident(input: &DeriveInput) -> Result<syn::Path> {
let fields = get_struct_fields(input)?;
let ty = match Self::get_wrapper_type(&input.attrs, &fields) {
Some(ty) => ty,
None => bail!(
"\
when deriving TransparentWrapper for a struct with more than one field \
you need to specify the transparent field using #[transparent(T)]\
"
),
};
Ok(syn::parse_quote!(::bytemuck::TransparentWrapper<#ty>))
}
fn asserts(input: &DeriveInput) -> Result<TokenStream> {
let (impl_generics, _ty_generics, where_clause) =
input.generics.split_for_impl();
let fields = get_struct_fields(input)?;
let wrapped_type = match Self::get_wrapper_type(&input.attrs, &fields) {
Some(wrapped_type) => wrapped_type.to_string(),
None => unreachable!(), /* other code will already reject this derive */
};
let mut wrapped_field_ty = None;
let mut nonwrapped_field_tys = vec![];
for field in fields.iter() {
let field_ty = &field.ty;
if field_ty.to_token_stream().to_string() == wrapped_type {
if wrapped_field_ty.is_some() {
bail!(
"TransparentWrapper can only have one field of the wrapped type"
);
}
wrapped_field_ty = Some(field_ty);
} else {
nonwrapped_field_tys.push(field_ty);
}
}
if let Some(wrapped_field_ty) = wrapped_field_ty {
Ok(quote!(
const _: () = {
#[repr(transparent)]
struct AssertWrappedIsWrapped #impl_generics((u8, ::core::marker::PhantomData<#wrapped_field_ty>), #(#nonwrapped_field_tys),*) #where_clause;
fn assert_zeroable<Z: ::bytemuck::Zeroable>() {}
fn check #impl_generics () #where_clause {
#(
assert_zeroable::<#nonwrapped_field_tys>();
)*
}
};
))
} else {
bail!("TransparentWrapper must have one field of the wrapped type")
}
}
fn check_attributes(_ty: &Data, attributes: &[Attribute]) -> Result<()> {
let repr = get_repr(attributes)?;
match repr.repr {
Repr::Transparent => Ok(()),
_ => {
bail!(
"TransparentWrapper requires the struct to be #[repr(transparent)]"
)
}
}
}
fn requires_where_clause() -> bool {
false
}
}
pub struct Contiguous;
impl Derivable for Contiguous {
fn ident(_: &DeriveInput) -> Result<syn::Path> {
Ok(syn::parse_quote!(::bytemuck::Contiguous))
}
fn trait_impl(input: &DeriveInput) -> Result<(TokenStream, TokenStream)> {
let repr = get_repr(&input.attrs)?;
let integer_ty = if let Some(integer_ty) = repr.repr.as_integer_type() {
integer_ty
} else {
bail!("Contiguous requires the enum to be #[repr(Int)]");
};
let variants = get_enum_variants(input)?;
let mut variants_with_discriminator =
VariantDiscriminantIterator::new(variants);
let (min, max, count) = variants_with_discriminator.try_fold(
(i64::max_value(), i64::min_value(), 0),
|(min, max, count), res| {
let discriminator = res?;
Ok::<_, Error>((
i64::min(min, discriminator),
i64::max(max, discriminator),
count + 1,
))
},
)?;
if max - min != count - 1 {
bail! {
"Contiguous requires the enum discriminants to be contiguous",
}
}
let min_lit = LitInt::new(&format!("{}", min), input.span());
let max_lit = LitInt::new(&format!("{}", max), input.span());
Ok((
quote!(),
quote! {
type Int = #integer_ty;
const MIN_VALUE: #integer_ty = #min_lit;
const MAX_VALUE: #integer_ty = #max_lit;
},
))
}
}
fn get_struct_fields(input: &DeriveInput) -> Result<&Fields> {
if let Data::Struct(DataStruct { fields, .. }) = &input.data {
Ok(fields)
} else {
bail!("deriving this trait is only supported for structs")
}
}
fn get_fields(input: &DeriveInput) -> Result<Fields> {
match &input.data {
Data::Struct(DataStruct { fields, .. }) => Ok(fields.clone()),
Data::Union(DataUnion { fields, .. }) => Ok(Fields::Named(fields.clone())),
Data::Enum(_) => bail!("deriving this trait is not supported for enums"),
}
}
fn get_enum_variants<'a>(
input: &'a DeriveInput,
) -> Result<impl Iterator<Item = &'a Variant> + 'a> {
if let Data::Enum(DataEnum { variants, .. }) = &input.data {
Ok(variants.iter())
} else {
bail!("deriving this trait is only supported for enums")
}
}
fn get_field_types<'a>(
fields: &'a Fields,
) -> impl Iterator<Item = &'a Type> + 'a {
fields.iter().map(|field| &field.ty)
}
fn generate_checked_bit_pattern_struct(
input_ident: &Ident, fields: &Fields, attrs: &[Attribute],
) -> Result<(TokenStream, TokenStream)> {
let bits_ty = Ident::new(&format!("{}Bits", input_ident), input_ident.span());
let repr = get_repr(attrs)?;
let field_names = fields
.iter()
.enumerate()
.map(|(i, field)| {
field.ident.clone().unwrap_or_else(|| {
Ident::new(&format!("field{}", i), input_ident.span())
})
})
.collect::<Vec<_>>();
let field_tys = fields.iter().map(|field| &field.ty).collect::<Vec<_>>();
let field_name = &field_names[..];
let field_ty = &field_tys[..];
let derive_dbg =
quote!(#[cfg_attr(not(target_arch = "spirv"), derive(Debug))]);
Ok((
quote! {
#repr
#[derive(Clone, Copy, ::bytemuck::AnyBitPattern)]
#derive_dbg
pub struct #bits_ty {
#(#field_name: <#field_ty as ::bytemuck::CheckedBitPattern>::Bits,)*
}
},
quote! {
type Bits = #bits_ty;
#[inline]
#[allow(clippy::double_comparisons)]
fn is_valid_bit_pattern(bits: &#bits_ty) -> bool {
#(<#field_ty as ::bytemuck::CheckedBitPattern>::is_valid_bit_pattern(&{ bits.#field_name }) && )* true
}
},
))
}
fn generate_checked_bit_pattern_enum(
input: &DeriveInput,
) -> Result<(TokenStream, TokenStream)> {
let span = input.span();
let mut variants_with_discriminant =
VariantDiscriminantIterator::new(get_enum_variants(input)?);
let (min, max, count) = variants_with_discriminant.try_fold(
(i64::max_value(), i64::min_value(), 0),
|(min, max, count), res| {
let discriminant = res?;
Ok::<_, Error>((
i64::min(min, discriminant),
i64::max(max, discriminant),
count + 1,
))
},
)?;
let check = if count == 0 {
quote_spanned!(span => false)
} else if max - min == count - 1 {
// contiguous range
let min_lit = LitInt::new(&format!("{}", min), span);
let max_lit = LitInt::new(&format!("{}", max), span);
quote!(*bits >= #min_lit && *bits <= #max_lit)
} else {
// not contiguous range, check for each
let variant_lits =
VariantDiscriminantIterator::new(get_enum_variants(input)?)
.map(|res| {
let variant = res?;
Ok(LitInt::new(&format!("{}", variant), span))
})
.collect::<Result<Vec<_>>>()?;
// count is at least 1
let first = &variant_lits[0];
let rest = &variant_lits[1..];
quote!(matches!(*bits, #first #(| #rest )*))
};
let repr = get_repr(&input.attrs)?;
let integer_ty = repr.repr.as_integer_type().unwrap(); // should be checked in attr check already
Ok((
quote!(),
quote! {
type Bits = #integer_ty;
#[inline]
#[allow(clippy::double_comparisons)]
fn is_valid_bit_pattern(bits: &Self::Bits) -> bool {
#check
}
},
))
}
/// Check that a struct has no padding by asserting that the size of the struct
/// is equal to the sum of the size of it's fields
fn generate_assert_no_padding(input: &DeriveInput) -> Result<TokenStream> {
let struct_type = &input.ident;
let span = input.ident.span();
let fields = get_fields(input)?;
let mut field_types = get_field_types(&fields);
let size_sum = if let Some(first) = field_types.next() {
let size_first = quote_spanned!(span => ::core::mem::size_of::<#first>());
let size_rest =
quote_spanned!(span => #( + ::core::mem::size_of::<#field_types>() )*);
quote_spanned!(span => #size_first#size_rest)
} else {
quote_spanned!(span => 0)
};
Ok(quote_spanned! {span => const _: fn() = || {
struct TypeWithoutPadding([u8; #size_sum]);
let _ = ::core::mem::transmute::<#struct_type, TypeWithoutPadding>;
};})
}
/// Check that all fields implement a given trait
fn generate_fields_are_trait(
input: &DeriveInput, trait_: syn::Path,
) -> Result<TokenStream> {
let (impl_generics, _ty_generics, where_clause) =
input.generics.split_for_impl();
let fields = get_fields(input)?;
let span = input.span();
let field_types = get_field_types(&fields);
Ok(quote_spanned! {span => #(const _: fn() = || {
#[allow(clippy::missing_const_for_fn)]
fn check #impl_generics () #where_clause {
fn assert_impl<T: #trait_>() {}
assert_impl::<#field_types>();
}
};)*
})
}
fn get_ident_from_stream(tokens: TokenStream) -> Option<Ident> {
match tokens.into_iter().next() {
Some(TokenTree::Group(group)) => get_ident_from_stream(group.stream()),
Some(TokenTree::Ident(ident)) => Some(ident),
_ => None,
}
}
/// get a simple #[foo(bar)] attribute, returning "bar"
fn get_simple_attr(attributes: &[Attribute], attr_name: &str) -> Option<Ident> {
for attr in attributes {
if let (AttrStyle::Outer, Meta::List(list)) = (&attr.style, &attr.meta) {
if list.path.is_ident(attr_name) {
if let Some(ident) = get_ident_from_stream(list.tokens.clone()) {
return Some(ident);
}
}
}
}
None
}
fn get_repr(attributes: &[Attribute]) -> Result<Representation> {
attributes
.iter()
.filter_map(|attr| {
if attr.path().is_ident("repr") {
Some(attr.parse_args::<Representation>())
} else {
None
}
})
.try_fold(Representation::default(), |a, b| {
let b = b?;
Ok(Representation {
repr: match (a.repr, b.repr) {
(a, Repr::Rust) => a,
(Repr::Rust, b) => b,
_ => bail!("conflicting representation hints"),
},
packed: match (a.packed, b.packed) {
(a, None) => a,
(None, b) => b,
_ => bail!("conflicting representation hints"),
},
align: match (a.align, b.align) {
(a, None) => a,
(None, b) => b,
_ => bail!("conflicting representation hints"),
},
})
})
}
mk_repr! {
U8 => u8,
I8 => i8,
U16 => u16,
I16 => i16,
U32 => u32,
I32 => i32,
U64 => u64,
I64 => i64,
I128 => i128,
U128 => u128,
Usize => usize,
Isize => isize,
}
// where
macro_rules! mk_repr {(
$(
$Xn:ident => $xn:ident
),* $(,)?
) => (
#[derive(Clone, Copy, PartialEq)]
enum Repr {
Rust,
C,
Transparent,
$($Xn),*
}
impl Repr {
fn is_integer(self) -> bool {
match self {
Repr::Rust | Repr::C | Repr::Transparent => false,
_ => true,
}
}
fn as_integer_type(self) -> Option<TokenStream> {
match self {
Repr::Rust | Repr::C | Repr::Transparent => None,
$(
Repr::$Xn => Some(quote! { ::core::primitive::$xn }),
)*
}
}
}
#[derive(Clone, Copy)]
struct Representation {
packed: Option<u32>,
align: Option<u32>,
repr: Repr,
}
impl Default for Representation {
fn default() -> Self {
Self { packed: None, align: None, repr: Repr::Rust }
}
}
impl Parse for Representation {
fn parse(input: ParseStream<'_>) -> Result<Representation> {
let mut ret = Representation::default();
while !input.is_empty() {
let keyword = input.parse::<Ident>()?;
// preƫmptively call `.to_string()` *once* (rather than on `is_ident()`)
let keyword_str = keyword.to_string();
let new_repr = match keyword_str.as_str() {
"C" => Repr::C,
"transparent" => Repr::Transparent,
"packed" => {
ret.packed = Some(if input.peek(token::Paren) {
let contents; parenthesized!(contents in input);
LitInt::base10_parse::<u32>(&contents.parse()?)?
} else {
1
});
let _: Option<Token![,]> = input.parse()?;
continue;
},
"align" => {
let contents; parenthesized!(contents in input);
ret.align = Some(LitInt::base10_parse::<u32>(&contents.parse()?)?);
let _: Option<Token![,]> = input.parse()?;
continue;
},
$(
stringify!($xn) => Repr::$Xn,
)*
_ => return Err(input.error("unrecognized representation hint"))
};
if ::core::mem::replace(&mut ret.repr, new_repr) != Repr::Rust {
input.error("duplicate representation hint");
}
let _: Option<Token![,]> = input.parse()?;
}
Ok(ret)
}
}
impl ToTokens for Representation {
fn to_tokens(&self, tokens: &mut TokenStream) {
let repr = match self.repr {
Repr::Rust => None,
Repr::C => Some(quote!(C)),
Repr::Transparent => Some(quote!(transparent)),
$(
Repr::$Xn => Some(quote!($xn)),
)*
};
let packed = self.packed.map(|p| {
let lit = LitInt::new(&p.to_string(), Span::call_site());
quote!(packed(#lit))
});
let comma = if packed.is_some() && repr.is_some() {
Some(quote!(,))
} else {
None
};
tokens.extend(quote!(
#[repr( #repr #comma #packed )]
));
}
}
)}
use mk_repr;
struct VariantDiscriminantIterator<'a, I: Iterator<Item = &'a Variant> + 'a> {
inner: I,
last_value: i64,
}
impl<'a, I: Iterator<Item = &'a Variant> + 'a>
VariantDiscriminantIterator<'a, I>
{
fn new(inner: I) -> Self {
VariantDiscriminantIterator { inner, last_value: -1 }
}
}
impl<'a, I: Iterator<Item = &'a Variant> + 'a> Iterator
for VariantDiscriminantIterator<'a, I>
{
type Item = Result<i64>;
fn next(&mut self) -> Option<Self::Item> {
let variant = self.inner.next()?;
if !variant.fields.is_empty() {
return Some(Err(Error::new_spanned(
&variant.fields,
"Only fieldless enums are supported",
)));
}
if let Some((_, discriminant)) = &variant.discriminant {
let discriminant_value = match parse_int_expr(discriminant) {
Ok(value) => value,
Err(e) => return Some(Err(e)),
};
self.last_value = discriminant_value;
} else {
self.last_value += 1;
}
Some(Ok(self.last_value))
}
}
fn parse_int_expr(expr: &Expr) -> Result<i64> {
match expr {
Expr::Unary(ExprUnary { op: UnOp::Neg(_), expr, .. }) => {
parse_int_expr(expr).map(|int| -int)
}
Expr::Lit(ExprLit { lit: Lit::Int(int), .. }) => int.base10_parse(),
Expr::Lit(ExprLit { lit: Lit::Byte(byte), .. }) => Ok(byte.value().into()),
_ => bail!("Not an integer expression"),
}
}