blob: 07a48126ce66134918c873d1841a0b324c2776a6 [file] [log] [blame]
package com.xtremelabs.robolectric.shadows;
import android.location.Location;
import android.os.Bundle;
import com.xtremelabs.robolectric.internal.Implementation;
import com.xtremelabs.robolectric.internal.Implements;
import static com.xtremelabs.robolectric.Robolectric.shadowOf_;
/**
* Shadow of {@code Location} that treats it primarily as a data-holder
* todo: support Location's static utility methods
*/
@SuppressWarnings({"UnusedDeclaration"})
@Implements(Location.class)
public class ShadowLocation {
private long time;
private String provider;
private double latitude;
private double longitude;
private float accuracy;
private float bearing;
private double altitude;
private float speed;
private boolean hasAccuracy;
private boolean hasAltitude;
private boolean hasBearing;
private boolean hasSpeed;
// Cache the inputs and outputs of computeDistanceAndBearing
// so calls to distanceTo() and bearingTo() can share work
private double mLat1 = 0.0;
private double mLon1 = 0.0;
private double mLat2 = 0.0;
private double mLon2 = 0.0;
private float mDistance = 0.0f;
private float mInitialBearing = 0.0f;
// Scratchpad
private final float[] mResults = new float[2];
private Bundle extras = new Bundle();
public void __constructor__(Location l) {
set(l);
}
public void __constructor__(String provider) {
this.provider = provider;
time = System.currentTimeMillis();
}
@Implementation
public void set(Location l) {
time = l.getTime();
provider = l.getProvider();
latitude = l.getLatitude();
longitude = l.getLongitude();
accuracy = l.getAccuracy();
bearing = l.getBearing();
altitude = l.getAltitude();
speed = l.getSpeed();
hasAccuracy = l.hasAccuracy();
hasAltitude = l.hasAltitude();
hasBearing = l.hasBearing();
hasSpeed = l.hasSpeed();
}
@Implementation
public String getProvider() {
return provider;
}
@Implementation
public void setProvider(String provider) {
this.provider = provider;
}
@Implementation
public long getTime() {
return time;
}
@Implementation
public void setTime(long time) {
this.time = time;
}
@Implementation
public float getAccuracy() {
return accuracy;
}
@Implementation
public void setAccuracy(float accuracy) {
this.accuracy = accuracy;
this.hasAccuracy = true;
}
@Implementation
public void removeAccuracy() {
this.accuracy = 0.0f;
this.hasAccuracy = false;
}
@Implementation
public boolean hasAccuracy() {
return hasAccuracy;
}
@Implementation
public double getAltitude() {
return altitude;
}
@Implementation
public void setAltitude(double altitude) {
this.altitude = altitude;
this.hasAltitude = true;
}
@Implementation
public void removeAltitude() {
this.altitude = 0.0d;
this.hasAltitude = false;
}
@Implementation
public boolean hasAltitude() {
return hasAltitude;
}
@Implementation
public float getBearing() {
return bearing;
}
@Implementation
public void setBearing(float bearing) {
this.bearing = bearing;
this.hasBearing = true;
}
@Implementation
public void removeBearing() {
this.bearing = 0.0f;
this.hasBearing = false;
}
@Implementation
public boolean hasBearing() {
return hasBearing;
}
@Implementation
public double getLatitude() {
return latitude;
}
@Implementation
public void setLatitude(double latitude) {
this.latitude = latitude;
}
@Implementation
public double getLongitude() {
return longitude;
}
@Implementation
public void setLongitude(double longitude) {
this.longitude = longitude;
}
@Implementation
public float getSpeed() {
return speed;
}
@Implementation
public void setSpeed(float speed) {
this.speed = speed;
this.hasSpeed = true;
}
@Implementation
public void removeSpeed() {
this.hasSpeed = false;
this.speed = 0.0f;
}
@Implementation
public boolean hasSpeed() {
return hasSpeed;
}
@Override @Implementation
public boolean equals(Object o) {
if (o == null) return false;
o = shadowOf_(o);
if (o == null) return false;
if (getClass() != o.getClass()) return false;
if (this == o) return true;
ShadowLocation that = (ShadowLocation) o;
if (Double.compare(that.latitude, latitude) != 0) return false;
if (Double.compare(that.longitude, longitude) != 0) return false;
if (time != that.time) return false;
if (provider != null ? !provider.equals(that.provider) : that.provider != null) return false;
if (accuracy != that.accuracy) return false;
return true;
}
@Override @Implementation
public int hashCode() {
int result;
long temp;
result = (int) (time ^ (time >>> 32));
result = 31 * result + (provider != null ? provider.hashCode() : 0);
temp = latitude != +0.0d ? Double.doubleToLongBits(latitude) : 0L;
result = 31 * result + (int) (temp ^ (temp >>> 32));
temp = longitude != +0.0d ? Double.doubleToLongBits(longitude) : 0L;
result = 31 * result + (int) (temp ^ (temp >>> 32));
temp = accuracy != 0f ? Float.floatToIntBits(accuracy) : 0;
result = 31 * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override @Implementation
public String toString() {
return "Location{" +
"time=" + time +
", provider='" + provider + '\'' +
", latitude=" + latitude +
", longitude=" + longitude +
", accuracy=" + accuracy +
'}';
}
private static void computeDistanceAndBearing(double lat1, double lon1,
double lat2, double lon2, float[] results) {
// Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
// using the "Inverse Formula" (section 4)
int MAXITERS = 20;
// Convert lat/long to radians
lat1 *= Math.PI / 180.0;
lat2 *= Math.PI / 180.0;
lon1 *= Math.PI / 180.0;
lon2 *= Math.PI / 180.0;
double a = 6378137.0; // WGS84 major axis
double b = 6356752.3142; // WGS84 semi-major axis
double f = (a - b) / a;
double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);
double L = lon2 - lon1;
double A = 0.0;
double U1 = Math.atan((1.0 - f) * Math.tan(lat1));
double U2 = Math.atan((1.0 - f) * Math.tan(lat2));
double cosU1 = Math.cos(U1);
double cosU2 = Math.cos(U2);
double sinU1 = Math.sin(U1);
double sinU2 = Math.sin(U2);
double cosU1cosU2 = cosU1 * cosU2;
double sinU1sinU2 = sinU1 * sinU2;
double sigma = 0.0;
double deltaSigma = 0.0;
double cosSqAlpha = 0.0;
double cos2SM = 0.0;
double cosSigma = 0.0;
double sinSigma = 0.0;
double cosLambda = 0.0;
double sinLambda = 0.0;
double lambda = L; // initial guess
for (int iter = 0; iter < MAXITERS; iter++) {
double lambdaOrig = lambda;
cosLambda = Math.cos(lambda);
sinLambda = Math.sin(lambda);
double t1 = cosU2 * sinLambda;
double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
double sinSqSigma = t1 * t1 + t2 * t2; // (14)
sinSigma = Math.sqrt(sinSqSigma);
cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15)
sigma = Math.atan2(sinSigma, cosSigma); // (16)
double sinAlpha = (sinSigma == 0) ? 0.0 :
cosU1cosU2 * sinLambda / sinSigma; // (17)
cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
cos2SM = (cosSqAlpha == 0) ? 0.0 :
cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18)
double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn
A = 1 + (uSquared / 16384.0) * // (3)
(4096.0 + uSquared *
(-768 + uSquared * (320.0 - 175.0 * uSquared)));
double B = (uSquared / 1024.0) * // (4)
(256.0 + uSquared *
(-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
double C = (f / 16.0) *
cosSqAlpha *
(4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10)
double cos2SMSq = cos2SM * cos2SM;
deltaSigma = B * sinSigma * // (6)
(cos2SM + (B / 4.0) *
(cosSigma * (-1.0 + 2.0 * cos2SMSq) -
(B / 6.0) * cos2SM *
(-3.0 + 4.0 * sinSigma * sinSigma) *
(-3.0 + 4.0 * cos2SMSq)));
lambda = L +
(1.0 - C) * f * sinAlpha *
(sigma + C * sinSigma *
(cos2SM + C * cosSigma *
(-1.0 + 2.0 * cos2SM * cos2SM))); // (11)
double delta = (lambda - lambdaOrig) / lambda;
if (Math.abs(delta) < 1.0e-12) {
break;
}
}
float distance = (float) (b * A * (sigma - deltaSigma));
results[0] = distance;
if (results.length > 1) {
float initialBearing = (float) Math.atan2(cosU2 * sinLambda,
cosU1 * sinU2 - sinU1 * cosU2 * cosLambda);
initialBearing *= 180.0 / Math.PI;
results[1] = initialBearing;
if (results.length > 2) {
float finalBearing = (float) Math.atan2(cosU1 * sinLambda,
-sinU1 * cosU2 + cosU1 * sinU2 * cosLambda);
finalBearing *= 180.0 / Math.PI;
results[2] = finalBearing;
}
}
}
/**
* Computes the approximate distance in meters between two
* locations, and optionally the initial and final bearings of the
* shortest path between them. Distance and bearing are defined using the
* WGS84 ellipsoid.
*
* <p> The computed distance is stored in results[0]. If results has length
* 2 or greater, the initial bearing is stored in results[1]. If results has
* length 3 or greater, the final bearing is stored in results[2].
*
* @param startLatitude the starting latitude
* @param startLongitude the starting longitude
* @param endLatitude the ending latitude
* @param endLongitude the ending longitude
* @param results an array of floats to hold the results
*
* @throws IllegalArgumentException if results is null or has length < 1
*/
@Implementation
public static void distanceBetween(double startLatitude, double startLongitude,
double endLatitude, double endLongitude, float[] results) {
if (results == null || results.length < 1) {
throw new IllegalArgumentException("results is null or has length < 1");
}
computeDistanceAndBearing(startLatitude, startLongitude,
endLatitude, endLongitude, results);
}
/**
* Returns the approximate distance in meters between this
* location and the given location. Distance is defined using
* the WGS84 ellipsoid.
*
* @param dest the destination location
* @return the approximate distance in meters
*/
@Implementation
public float distanceTo(Location dest) {
// See if we already have the result
synchronized (mResults) {
if (latitude != mLat1 || longitude != mLon1 ||
dest.getLatitude() != mLat2 || dest.getLongitude() != mLon2) {
computeDistanceAndBearing(latitude, longitude,
dest.getLatitude(), dest.getLongitude(), mResults);
mLat1 = latitude;
mLon1 = longitude;
mLat2 = dest.getLatitude();
mLon2 = dest.getLongitude();
mDistance = mResults[0];
mInitialBearing = mResults[1];
}
return mDistance;
}
}
/**
* Returns the approximate initial bearing in degrees East of true
* North when traveling along the shortest path between this
* location and the given location. The shortest path is defined
* using the WGS84 ellipsoid. Locations that are (nearly)
* antipodal may produce meaningless results.
*
* @param dest the destination location
* @return the initial bearing in degrees
*/
@Implementation
public float bearingTo(Location dest) {
synchronized (mResults) {
// See if we already have the result
if (latitude != mLat1 || longitude != mLon1 ||
dest.getLatitude() != mLat2 || dest.getLongitude() != mLon2) {
computeDistanceAndBearing(latitude, longitude,
dest.getLatitude(), dest.getLongitude(), mResults);
mLat1 = latitude;
mLon1 = longitude;
mLat2 = dest.getLatitude();
mLon2 = dest.getLongitude();
mDistance = mResults[0];
mInitialBearing = mResults[1];
}
return mInitialBearing;
}
}
@Implementation
public Bundle getExtras() {
return extras;
}
@Implementation
public void setExtras(Bundle extras) {
this.extras = extras;
}
}