| // Copyright 2006 The RE2 Authors. All Rights Reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // DESCRIPTION |
| // |
| // SparseSet<T>(m) is a set of integers in [0, m). |
| // It requires sizeof(int)*m memory, but it provides |
| // fast iteration through the elements in the set and fast clearing |
| // of the set. |
| // |
| // Insertion and deletion are constant time operations. |
| // |
| // Allocating the set is a constant time operation |
| // when memory allocation is a constant time operation. |
| // |
| // Clearing the set is a constant time operation (unusual!). |
| // |
| // Iterating through the set is an O(n) operation, where n |
| // is the number of items in the set (not O(m)). |
| // |
| // The set iterator visits entries in the order they were first |
| // inserted into the array. It is safe to add items to the set while |
| // using an iterator: the iterator will visit indices added to the set |
| // during the iteration, but will not re-visit indices whose values |
| // change after visiting. Thus SparseSet can be a convenient |
| // implementation of a work queue. |
| // |
| // The SparseSet implementation is NOT thread-safe. It is up to the |
| // caller to make sure only one thread is accessing the set. (Typically |
| // these sets are temporary values and used in situations where speed is |
| // important.) |
| // |
| // The SparseSet interface does not present all the usual STL bells and |
| // whistles. |
| // |
| // Implemented with reference to Briggs & Torczon, An Efficient |
| // Representation for Sparse Sets, ACM Letters on Programming Languages |
| // and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69. |
| // |
| // For a generalization to sparse array, see sparse_array.h. |
| |
| // IMPLEMENTATION |
| // |
| // See sparse_array.h for implementation details |
| |
| #ifndef RE2_UTIL_SPARSE_SET_H__ |
| #define RE2_UTIL_SPARSE_SET_H__ |
| |
| #include "util/util.h" |
| |
| namespace re2 { |
| |
| class SparseSet { |
| public: |
| SparseSet() |
| : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(NULL), valgrind_(RunningOnValgrind()) {} |
| |
| SparseSet(int max_size) { |
| max_size_ = max_size; |
| sparse_to_dense_ = new int[max_size]; |
| dense_ = new int[max_size]; |
| valgrind_ = RunningOnValgrind(); |
| // Don't need to zero the memory, but do so anyway |
| // to appease Valgrind. |
| if (valgrind_) { |
| for (int i = 0; i < max_size; i++) { |
| dense_[i] = 0xababababU; |
| sparse_to_dense_[i] = 0xababababU; |
| } |
| } |
| size_ = 0; |
| } |
| |
| ~SparseSet() { |
| delete[] sparse_to_dense_; |
| delete[] dense_; |
| } |
| |
| typedef int* iterator; |
| typedef const int* const_iterator; |
| |
| int size() const { return size_; } |
| iterator begin() { return dense_; } |
| iterator end() { return dense_ + size_; } |
| const_iterator begin() const { return dense_; } |
| const_iterator end() const { return dense_ + size_; } |
| |
| // Change the maximum size of the array. |
| // Invalidates all iterators. |
| void resize(int new_max_size) { |
| if (size_ > new_max_size) |
| size_ = new_max_size; |
| if (new_max_size > max_size_) { |
| int* a = new int[new_max_size]; |
| if (sparse_to_dense_) { |
| memmove(a, sparse_to_dense_, max_size_*sizeof a[0]); |
| if (valgrind_) { |
| for (int i = max_size_; i < new_max_size; i++) |
| a[i] = 0xababababU; |
| } |
| delete[] sparse_to_dense_; |
| } |
| sparse_to_dense_ = a; |
| |
| a = new int[new_max_size]; |
| if (dense_) { |
| memmove(a, dense_, size_*sizeof a[0]); |
| if (valgrind_) { |
| for (int i = size_; i < new_max_size; i++) |
| a[i] = 0xababababU; |
| } |
| delete[] dense_; |
| } |
| dense_ = a; |
| } |
| max_size_ = new_max_size; |
| } |
| |
| // Return the maximum size of the array. |
| // Indices can be in the range [0, max_size). |
| int max_size() const { return max_size_; } |
| |
| // Clear the array. |
| void clear() { size_ = 0; } |
| |
| // Check whether i is in the array. |
| bool contains(int i) const { |
| DCHECK_GE(i, 0); |
| DCHECK_LT(i, max_size_); |
| if (static_cast<uint>(i) >= max_size_) { |
| return false; |
| } |
| // Unsigned comparison avoids checking sparse_to_dense_[i] < 0. |
| return (uint)sparse_to_dense_[i] < (uint)size_ && |
| dense_[sparse_to_dense_[i]] == i; |
| } |
| |
| // Adds i to the set. |
| void insert(int i) { |
| if (!contains(i)) |
| insert_new(i); |
| } |
| |
| // Set the value at the new index i to v. |
| // Fast but unsafe: only use if contains(i) is false. |
| void insert_new(int i) { |
| if (static_cast<uint>(i) >= max_size_) { |
| // Semantically, end() would be better here, but we already know |
| // the user did something stupid, so begin() insulates them from |
| // dereferencing an invalid pointer. |
| return; |
| } |
| DCHECK(!contains(i)); |
| DCHECK_LT(size_, max_size_); |
| sparse_to_dense_[i] = size_; |
| dense_[size_] = i; |
| size_++; |
| } |
| |
| // Comparison function for sorting. |
| // Can sort the sparse array so that future iterations |
| // will visit indices in increasing order using |
| // sort(arr.begin(), arr.end(), arr.less); |
| static bool less(int a, int b) { return a < b; } |
| |
| private: |
| int size_; |
| int max_size_; |
| int* sparse_to_dense_; |
| int* dense_; |
| bool valgrind_; |
| |
| DISALLOW_EVIL_CONSTRUCTORS(SparseSet); |
| }; |
| |
| } // namespace re2 |
| |
| #endif // RE2_UTIL_SPARSE_SET_H__ |