| // Copyright 2006-2008 The RE2 Authors. All Rights Reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "util/test.h" |
| #include "util/thread.h" |
| #include "re2/prog.h" |
| #include "re2/re2.h" |
| #include "re2/regexp.h" |
| #include "re2/testing/regexp_generator.h" |
| #include "re2/testing/string_generator.h" |
| |
| DECLARE_bool(re2_dfa_bail_when_slow); |
| |
| DEFINE_int32(size, 8, "log2(number of DFA nodes)"); |
| DEFINE_int32(repeat, 2, "Repetition count."); |
| DEFINE_int32(threads, 4, "number of threads"); |
| |
| namespace re2 { |
| |
| // Check that multithreaded access to DFA class works. |
| |
| // Helper thread: builds entire DFA for prog. |
| class BuildThread : public Thread { |
| public: |
| BuildThread(Prog* prog) : prog_(prog) {} |
| virtual void Run() { |
| CHECK(prog_->BuildEntireDFA(Prog::kFirstMatch)); |
| } |
| |
| private: |
| Prog* prog_; |
| }; |
| |
| TEST(Multithreaded, BuildEntireDFA) { |
| // Create regexp with 2^FLAGS_size states in DFA. |
| string s = "a"; |
| for (int i = 0; i < FLAGS_size; i++) |
| s += "[ab]"; |
| s += "b"; |
| |
| // Check that single-threaded code works. |
| { |
| //LOG(INFO) << s; |
| Regexp* re = Regexp::Parse(s.c_str(), Regexp::LikePerl, NULL); |
| CHECK(re); |
| Prog* prog = re->CompileToProg(0); |
| CHECK(prog); |
| BuildThread* t = new BuildThread(prog); |
| t->SetJoinable(true); |
| t->Start(); |
| t->Join(); |
| delete t; |
| delete prog; |
| re->Decref(); |
| } |
| |
| // Build the DFA simultaneously in a bunch of threads. |
| for (int i = 0; i < FLAGS_repeat; i++) { |
| Regexp* re = Regexp::Parse(s.c_str(), Regexp::LikePerl, NULL); |
| CHECK(re); |
| Prog* prog = re->CompileToProg(0); |
| CHECK(prog); |
| |
| vector<BuildThread*> threads; |
| for (int j = 0; j < FLAGS_threads; j++) { |
| BuildThread *t = new BuildThread(prog); |
| t->SetJoinable(true); |
| threads.push_back(t); |
| } |
| for (int j = 0; j < FLAGS_threads; j++) |
| threads[j]->Start(); |
| for (int j = 0; j < FLAGS_threads; j++) { |
| threads[j]->Join(); |
| delete threads[j]; |
| } |
| |
| // One more compile, to make sure everything is okay. |
| prog->BuildEntireDFA(Prog::kFirstMatch); |
| delete prog; |
| re->Decref(); |
| } |
| } |
| |
| // Check that DFA size requirements are followed. |
| // BuildEntireDFA will, like SearchDFA, stop building out |
| // the DFA once the memory limits are reached. |
| TEST(SingleThreaded, BuildEntireDFA) { |
| // Create regexp with 2^30 states in DFA. |
| string s = "a"; |
| for (int i = 0; i < 30; i++) |
| s += "[ab]"; |
| s += "b"; |
| |
| //LOG(INFO) << s; |
| Regexp* re = Regexp::Parse(s.c_str(), Regexp::LikePerl, NULL); |
| CHECK(re); |
| int max = 24; |
| for (int i = 17; i < max; i++) { |
| int limit = 1<<i; |
| int usage; |
| //int progusage, dfamem; |
| { |
| testing::MallocCounter m(testing::MallocCounter::THIS_THREAD_ONLY); |
| Prog* prog = re->CompileToProg(limit); |
| CHECK(prog); |
| //progusage = m.HeapGrowth(); |
| //dfamem = prog->dfa_mem(); |
| prog->BuildEntireDFA(Prog::kFirstMatch); |
| prog->BuildEntireDFA(Prog::kLongestMatch); |
| usage = m.HeapGrowth(); |
| delete prog; |
| } |
| if (!UsingMallocCounter) |
| continue; |
| //LOG(INFO) << StringPrintf("Limit %d: prog used %d, DFA budget %d, total %d\n", |
| // limit, progusage, dfamem, usage); |
| CHECK_GT(usage, limit*9/10); |
| CHECK_LT(usage, limit + (16<<10)); // 16kB of slop okay |
| } |
| re->Decref(); |
| } |
| |
| // Generates and returns a string over binary alphabet {0,1} that contains |
| // all possible binary sequences of length n as subsequences. The obvious |
| // brute force method would generate a string of length n * 2^n, but this |
| // generates a string of length n + 2^n - 1 called a De Bruijn cycle. |
| // See Knuth, The Art of Computer Programming, Vol 2, Exercise 3.2.2 #17. |
| // Such a string is useful for testing a DFA. If you have a DFA |
| // where distinct last n bytes implies distinct states, then running on a |
| // DeBruijn string causes the DFA to need to create a new state at every |
| // position in the input, never reusing any states until it gets to the |
| // end of the string. This is the worst possible case for DFA execution. |
| static string DeBruijnString(int n) { |
| CHECK_LT(n, 8*sizeof(int)); |
| CHECK_GT(n, 0); |
| |
| vector<bool> did(1<<n); |
| for (int i = 0; i < 1<<n; i++) |
| did[i] = false; |
| |
| string s; |
| for (int i = 0; i < n-1; i++) |
| s.append("0"); |
| int bits = 0; |
| int mask = (1<<n) - 1; |
| for (int i = 0; i < (1<<n); i++) { |
| bits <<= 1; |
| bits &= mask; |
| if (!did[bits|1]) { |
| bits |= 1; |
| s.append("1"); |
| } else { |
| s.append("0"); |
| } |
| CHECK(!did[bits]); |
| did[bits] = true; |
| } |
| return s; |
| } |
| |
| // Test that the DFA gets the right result even if it runs |
| // out of memory during a search. The regular expression |
| // 0[01]{n}$ matches a binary string of 0s and 1s only if |
| // the (n+1)th-to-last character is a 0. Matching this in |
| // a single forward pass (as done by the DFA) requires |
| // keeping one bit for each of the last n+1 characters |
| // (whether each was a 0), or 2^(n+1) possible states. |
| // If we run this regexp to search in a string that contains |
| // every possible n-character binary string as a substring, |
| // then it will have to run through at least 2^n states. |
| // States are big data structures -- certainly more than 1 byte -- |
| // so if the DFA can search correctly while staying within a |
| // 2^n byte limit, it must be handling out-of-memory conditions |
| // gracefully. |
| TEST(SingleThreaded, SearchDFA) { |
| // Choice of n is mostly arbitrary, except that: |
| // * making n too big makes the test run for too long. |
| // * making n too small makes the DFA refuse to run, |
| // because it has so little memory compared to the program size. |
| // Empirically, n = 18 is a good compromise between the two. |
| const int n = 18; |
| |
| Regexp* re = Regexp::Parse(StringPrintf("0[01]{%d}$", n), |
| Regexp::LikePerl, NULL); |
| CHECK(re); |
| |
| // The De Bruijn string for n ends with a 1 followed by n 0s in a row, |
| // which is not a match for 0[01]{n}$. Adding one more 0 is a match. |
| string no_match = DeBruijnString(n); |
| string match = no_match + "0"; |
| |
| // The De Bruijn string is the worst case input for this regexp. |
| // By default, the DFA will notice that it is flushing its cache |
| // too frequently and will bail out early, so that RE2 can use the |
| // NFA implementation instead. (The DFA loses its speed advantage |
| // if it can't get a good cache hit rate.) |
| // Tell the DFA to trudge along instead. |
| FLAGS_re2_dfa_bail_when_slow = false; |
| |
| int64 usage; |
| int64 peak_usage; |
| { |
| testing::MallocCounter m(testing::MallocCounter::THIS_THREAD_ONLY); |
| Prog* prog = re->CompileToProg(1<<n); |
| CHECK(prog); |
| for (int i = 0; i < 10; i++) { |
| bool matched, failed = false; |
| matched = prog->SearchDFA(match, NULL, |
| Prog::kUnanchored, Prog::kFirstMatch, |
| NULL, &failed, NULL); |
| CHECK(!failed); |
| CHECK(matched); |
| matched = prog->SearchDFA(no_match, NULL, |
| Prog::kUnanchored, Prog::kFirstMatch, |
| NULL, &failed, NULL); |
| CHECK(!failed); |
| CHECK(!matched); |
| } |
| usage = m.HeapGrowth(); |
| peak_usage = m.PeakHeapGrowth(); |
| delete prog; |
| } |
| re->Decref(); |
| |
| if (!UsingMallocCounter) |
| return; |
| //LOG(INFO) << "usage " << usage << " " << peak_usage; |
| CHECK_LT(usage, 1<<n); |
| CHECK_LT(peak_usage, 1<<n); |
| } |
| |
| // Helper thread: searches for match, which should match, |
| // and no_match, which should not. |
| class SearchThread : public Thread { |
| public: |
| SearchThread(Prog* prog, const StringPiece& match, |
| const StringPiece& no_match) |
| : prog_(prog), match_(match), no_match_(no_match) {} |
| |
| virtual void Run() { |
| for (int i = 0; i < 2; i++) { |
| bool matched, failed = false; |
| matched = prog_->SearchDFA(match_, NULL, |
| Prog::kUnanchored, Prog::kFirstMatch, |
| NULL, &failed, NULL); |
| CHECK(!failed); |
| CHECK(matched); |
| matched = prog_->SearchDFA(no_match_, NULL, |
| Prog::kUnanchored, Prog::kFirstMatch, |
| NULL, &failed, NULL); |
| CHECK(!failed); |
| CHECK(!matched); |
| } |
| } |
| |
| private: |
| Prog* prog_; |
| StringPiece match_; |
| StringPiece no_match_; |
| }; |
| |
| TEST(Multithreaded, SearchDFA) { |
| // Same as single-threaded test above. |
| const int n = 18; |
| Regexp* re = Regexp::Parse(StringPrintf("0[01]{%d}$", n), |
| Regexp::LikePerl, NULL); |
| CHECK(re); |
| string no_match = DeBruijnString(n); |
| string match = no_match + "0"; |
| FLAGS_re2_dfa_bail_when_slow = false; |
| |
| // Check that single-threaded code works. |
| { |
| Prog* prog = re->CompileToProg(1<<n); |
| CHECK(prog); |
| SearchThread* t = new SearchThread(prog, match, no_match); |
| t->SetJoinable(true); |
| t->Start(); |
| t->Join(); |
| delete t; |
| delete prog; |
| } |
| |
| // Run the search simultaneously in a bunch of threads. |
| // Reuse same flags for Multithreaded.BuildDFA above. |
| for (int i = 0; i < FLAGS_repeat; i++) { |
| //LOG(INFO) << "Search " << i; |
| Prog* prog = re->CompileToProg(1<<n); |
| CHECK(prog); |
| |
| vector<SearchThread*> threads; |
| for (int j = 0; j < FLAGS_threads; j++) { |
| SearchThread *t = new SearchThread(prog, match, no_match); |
| t->SetJoinable(true); |
| threads.push_back(t); |
| } |
| for (int j = 0; j < FLAGS_threads; j++) |
| threads[j]->Start(); |
| for (int j = 0; j < FLAGS_threads; j++) { |
| threads[j]->Join(); |
| delete threads[j]; |
| } |
| delete prog; |
| } |
| re->Decref(); |
| } |
| |
| struct ReverseTest { |
| const char *regexp; |
| const char *text; |
| bool match; |
| }; |
| |
| // Test that reverse DFA handles anchored/unanchored correctly. |
| // It's in the DFA interface but not used by RE2. |
| ReverseTest reverse_tests[] = { |
| { "\\A(a|b)", "abc", true }, |
| { "(a|b)\\z", "cba", true }, |
| { "\\A(a|b)", "cba", false }, |
| { "(a|b)\\z", "abc", false }, |
| }; |
| |
| TEST(DFA, ReverseMatch) { |
| int nfail = 0; |
| for (int i = 0; i < arraysize(reverse_tests); i++) { |
| const ReverseTest& t = reverse_tests[i]; |
| Regexp* re = Regexp::Parse(t.regexp, Regexp::LikePerl, NULL); |
| CHECK(re); |
| Prog *prog = re->CompileToReverseProg(0); |
| CHECK(prog); |
| bool failed = false; |
| bool matched = prog->SearchDFA(t.text, NULL, Prog::kUnanchored, Prog::kFirstMatch, NULL, &failed, NULL); |
| if (matched != t.match) { |
| LOG(ERROR) << t.regexp << " on " << t.text << ": want " << t.match; |
| nfail++; |
| } |
| delete prog; |
| re->Decref(); |
| } |
| EXPECT_EQ(nfail, 0); |
| } |
| |
| } // namespace re2 |