| // Copyright 2008 The RE2 Authors. All Rights Reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Tested by search_test.cc, exhaustive_test.cc, tester.cc |
| |
| // Prog::SearchBitState is a regular expression search with submatch |
| // tracking for small regular expressions and texts. Like |
| // testing/backtrack.cc, it allocates a bit vector with (length of |
| // text) * (length of prog) bits, to make sure it never explores the |
| // same (character position, instruction) state multiple times. This |
| // limits the search to run in time linear in the length of the text. |
| // |
| // Unlike testing/backtrack.cc, SearchBitState is not recursive |
| // on the text. |
| // |
| // SearchBitState is a fast replacement for the NFA code on small |
| // regexps and texts when SearchOnePass cannot be used. |
| |
| #include "re2/prog.h" |
| #include "re2/regexp.h" |
| |
| namespace re2 { |
| |
| struct Job { |
| int id; |
| int arg; |
| const char* p; |
| }; |
| |
| class BitState { |
| public: |
| explicit BitState(Prog* prog); |
| ~BitState(); |
| |
| // The usual Search prototype. |
| // Can only call Search once per BitState. |
| bool Search(const StringPiece& text, const StringPiece& context, |
| bool anchored, bool longest, |
| StringPiece* submatch, int nsubmatch); |
| |
| private: |
| inline bool ShouldVisit(int id, const char* p); |
| void Push(int id, const char* p, int arg); |
| bool GrowStack(); |
| bool TrySearch(int id, const char* p); |
| |
| // Search parameters |
| Prog* prog_; // program being run |
| StringPiece text_; // text being searched |
| StringPiece context_; // greater context of text being searched |
| bool anchored_; // whether search is anchored at text.begin() |
| bool longest_; // whether search wants leftmost-longest match |
| bool endmatch_; // whether match must end at text.end() |
| StringPiece *submatch_; // submatches to fill in |
| int nsubmatch_; // # of submatches to fill in |
| |
| // Search state |
| const char** cap_; // capture registers |
| int ncap_; |
| |
| static const int VisitedBits = 32; |
| uint32 *visited_; // bitmap: (Inst*, char*) pairs already backtracked |
| int nvisited_; // # of words in bitmap |
| |
| Job *job_; // stack of text positions to explore |
| int njob_; |
| int maxjob_; |
| }; |
| |
| BitState::BitState(Prog* prog) |
| : prog_(prog), |
| anchored_(false), |
| longest_(false), |
| endmatch_(false), |
| submatch_(NULL), |
| nsubmatch_(0), |
| cap_(NULL), |
| ncap_(0), |
| visited_(NULL), |
| nvisited_(0), |
| job_(NULL), |
| njob_(0), |
| maxjob_(0) { |
| } |
| |
| BitState::~BitState() { |
| delete[] visited_; |
| delete[] job_; |
| delete[] cap_; |
| } |
| |
| // Should the search visit the pair ip, p? |
| // If so, remember that it was visited so that the next time, |
| // we don't repeat the visit. |
| bool BitState::ShouldVisit(int id, const char* p) { |
| uint n = id * (text_.size() + 1) + (p - text_.begin()); |
| if (visited_[n/VisitedBits] & (1 << (n & (VisitedBits-1)))) |
| return false; |
| visited_[n/VisitedBits] |= 1 << (n & (VisitedBits-1)); |
| return true; |
| } |
| |
| // Grow the stack. |
| bool BitState::GrowStack() { |
| // VLOG(0) << "Reallocate."; |
| maxjob_ *= 2; |
| Job* newjob = new Job[maxjob_]; |
| memmove(newjob, job_, njob_*sizeof job_[0]); |
| delete[] job_; |
| job_ = newjob; |
| if (njob_ >= maxjob_) { |
| LOG(DFATAL) << "Job stack overflow."; |
| return false; |
| } |
| return true; |
| } |
| |
| // Push the triple (id, p, arg) onto the stack, growing it if necessary. |
| void BitState::Push(int id, const char* p, int arg) { |
| if (njob_ >= maxjob_) { |
| if (!GrowStack()) |
| return; |
| } |
| int op = prog_->inst(id)->opcode(); |
| if (op == kInstFail) |
| return; |
| |
| // Only check ShouldVisit when arg == 0. |
| // When arg > 0, we are continuing a previous visit. |
| if (arg == 0 && !ShouldVisit(id, p)) |
| return; |
| |
| Job* j = &job_[njob_++]; |
| j->id = id; |
| j->p = p; |
| j->arg = arg; |
| } |
| |
| // Try a search from instruction id0 in state p0. |
| // Return whether it succeeded. |
| bool BitState::TrySearch(int id0, const char* p0) { |
| bool matched = false; |
| const char* end = text_.end(); |
| njob_ = 0; |
| Push(id0, p0, 0); |
| while (njob_ > 0) { |
| // Pop job off stack. |
| --njob_; |
| int id = job_[njob_].id; |
| const char* p = job_[njob_].p; |
| int arg = job_[njob_].arg; |
| |
| // Optimization: rather than push and pop, |
| // code that is going to Push and continue |
| // the loop simply updates ip, p, and arg |
| // and jumps to CheckAndLoop. We have to |
| // do the ShouldVisit check that Push |
| // would have, but we avoid the stack |
| // manipulation. |
| if (0) { |
| CheckAndLoop: |
| if (!ShouldVisit(id, p)) |
| continue; |
| } |
| |
| // Visit ip, p. |
| // VLOG(0) << "Job: " << ip->id() << " " |
| // << (p - text_.begin()) << " " << arg; |
| Prog::Inst* ip = prog_->inst(id); |
| switch (ip->opcode()) { |
| case kInstFail: |
| default: |
| LOG(DFATAL) << "Unexpected opcode: " << ip->opcode() << " arg " << arg; |
| return false; |
| |
| case kInstAlt: |
| // Cannot just |
| // Push(ip->out1(), p, 0); |
| // Push(ip->out(), p, 0); |
| // If, during the processing of ip->out(), we encounter |
| // ip->out1() via another path, we want to process it then. |
| // Pushing it here will inhibit that. Instead, re-push |
| // ip with arg==1 as a reminder to push ip->out1() later. |
| switch (arg) { |
| case 0: |
| Push(id, p, 1); // come back when we're done |
| id = ip->out(); |
| goto CheckAndLoop; |
| |
| case 1: |
| // Finished ip->out(); try ip->out1(). |
| arg = 0; |
| id = ip->out1(); |
| goto CheckAndLoop; |
| } |
| LOG(DFATAL) << "Bad arg in kInstCapture: " << arg; |
| continue; |
| |
| case kInstAltMatch: |
| // One opcode is byte range; the other leads to match. |
| if (ip->greedy(prog_)) { |
| // out1 is the match |
| Push(ip->out1(), p, 0); |
| id = ip->out1(); |
| p = end; |
| goto CheckAndLoop; |
| } |
| // out is the match - non-greedy |
| Push(ip->out(), end, 0); |
| id = ip->out(); |
| goto CheckAndLoop; |
| |
| case kInstByteRange: { |
| int c = -1; |
| if (p < end) |
| c = *p & 0xFF; |
| if (ip->Matches(c)) { |
| id = ip->out(); |
| p++; |
| goto CheckAndLoop; |
| } |
| continue; |
| } |
| |
| case kInstCapture: |
| switch (arg) { |
| case 0: |
| if (0 <= ip->cap() && ip->cap() < ncap_) { |
| // Capture p to register, but save old value. |
| Push(id, cap_[ip->cap()], 1); // come back when we're done |
| cap_[ip->cap()] = p; |
| } |
| // Continue on. |
| id = ip->out(); |
| goto CheckAndLoop; |
| case 1: |
| // Finished ip->out(); restore the old value. |
| cap_[ip->cap()] = p; |
| continue; |
| } |
| LOG(DFATAL) << "Bad arg in kInstCapture: " << arg; |
| continue; |
| |
| case kInstEmptyWidth: |
| if (ip->empty() & ~Prog::EmptyFlags(context_, p)) |
| continue; |
| id = ip->out(); |
| goto CheckAndLoop; |
| |
| case kInstNop: |
| id = ip->out(); |
| goto CheckAndLoop; |
| |
| case kInstMatch: { |
| if (endmatch_ && p != text_.end()) |
| continue; |
| |
| // VLOG(0) << "Found match."; |
| // We found a match. If the caller doesn't care |
| // where the match is, no point going further. |
| if (nsubmatch_ == 0) |
| return true; |
| |
| // Record best match so far. |
| // Only need to check end point, because this entire |
| // call is only considering one start position. |
| matched = true; |
| cap_[1] = p; |
| if (submatch_[0].data() == NULL || |
| (longest_ && p > submatch_[0].end())) { |
| for (int i = 0; i < nsubmatch_; i++) |
| submatch_[i] = StringPiece(cap_[2*i], cap_[2*i+1] - cap_[2*i]); |
| } |
| |
| // If going for first match, we're done. |
| if (!longest_) |
| return true; |
| |
| // If we used the entire text, no longer match is possible. |
| if (p == text_.end()) |
| return true; |
| |
| // Otherwise, continue on in hope of a longer match. |
| continue; |
| } |
| } |
| } |
| return matched; |
| } |
| |
| // Search text (within context) for prog_. |
| bool BitState::Search(const StringPiece& text, const StringPiece& context, |
| bool anchored, bool longest, |
| StringPiece* submatch, int nsubmatch) { |
| // Search parameters. |
| text_ = text; |
| context_ = context; |
| if (context_.begin() == NULL) |
| context_ = text; |
| if (prog_->anchor_start() && context_.begin() != text.begin()) |
| return false; |
| if (prog_->anchor_end() && context_.end() != text.end()) |
| return false; |
| anchored_ = anchored || prog_->anchor_start(); |
| longest_ = longest || prog_->anchor_end(); |
| endmatch_ = prog_->anchor_end(); |
| submatch_ = submatch; |
| nsubmatch_ = nsubmatch; |
| for (int i = 0; i < nsubmatch_; i++) |
| submatch_[i] = NULL; |
| |
| // Allocate scratch space. |
| nvisited_ = (prog_->size() * (text.size()+1) + VisitedBits-1) / VisitedBits; |
| visited_ = new uint32[nvisited_]; |
| memset(visited_, 0, nvisited_*sizeof visited_[0]); |
| // VLOG(0) << "nvisited_ = " << nvisited_; |
| |
| ncap_ = 2*nsubmatch; |
| if (ncap_ < 2) |
| ncap_ = 2; |
| cap_ = new const char*[ncap_]; |
| memset(cap_, 0, ncap_*sizeof cap_[0]); |
| |
| maxjob_ = 256; |
| job_ = new Job[maxjob_]; |
| |
| // Anchored search must start at text.begin(). |
| if (anchored_) { |
| cap_[0] = text.begin(); |
| return TrySearch(prog_->start(), text.begin()); |
| } |
| |
| // Unanchored search, starting from each possible text position. |
| // Notice that we have to try the empty string at the end of |
| // the text, so the loop condition is p <= text.end(), not p < text.end(). |
| // This looks like it's quadratic in the size of the text, |
| // but we are not clearing visited_ between calls to TrySearch, |
| // so no work is duplicated and it ends up still being linear. |
| for (const char* p = text.begin(); p <= text.end(); p++) { |
| cap_[0] = p; |
| if (TrySearch(prog_->start(), p)) // Match must be leftmost; done. |
| return true; |
| } |
| return false; |
| } |
| |
| // Bit-state search. |
| bool Prog::SearchBitState(const StringPiece& text, |
| const StringPiece& context, |
| Anchor anchor, |
| MatchKind kind, |
| StringPiece* match, |
| int nmatch) { |
| // If full match, we ask for an anchored longest match |
| // and then check that match[0] == text. |
| // So make sure match[0] exists. |
| StringPiece sp0; |
| if (kind == kFullMatch) { |
| anchor = kAnchored; |
| if (nmatch < 1) { |
| match = &sp0; |
| nmatch = 1; |
| } |
| } |
| |
| // Run the search. |
| BitState b(this); |
| bool anchored = anchor == kAnchored; |
| bool longest = kind != kFirstMatch; |
| if (!b.Search(text, context, anchored, longest, match, nmatch)) |
| return false; |
| if (kind == kFullMatch && match[0].end() != text.end()) |
| return false; |
| return true; |
| } |
| |
| } // namespace re2 |