blob: d0a44b564c29364a884ffd091088a25933ea2da4 [file] [log] [blame]
/* Copyright (C) 2007-2008 The Android Open Source Project
**
** This software is licensed under the terms of the GNU General Public
** License version 2, as published by the Free Software Foundation, and
** may be copied, distributed, and modified under those terms.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
*/
#include "qemu_file.h"
#include "goldfish_device.h"
#include "audio/audio.h"
#include "qemu_debug.h"
#include "android/globals.h"
#define DEBUG 1
#if DEBUG
# define D(...) VERBOSE_PRINT(audio,__VA_ARGS__)
#else
# define D(...) ((void)0)
#endif
extern void dprint(const char* fmt, ...);
/* define USE_QEMU_AUDIO_IN to 1 to use QEMU's audio subsystem to
* implement the audio input. if 0, this will try to read a .wav file
* directly...
*/
#define USE_QEMU_AUDIO_IN 1
enum {
/* audio status register */
AUDIO_INT_STATUS = 0x00,
/* set this to enable IRQ */
AUDIO_INT_ENABLE = 0x04,
/* set these to specify buffer addresses */
AUDIO_SET_WRITE_BUFFER_1 = 0x08,
AUDIO_SET_WRITE_BUFFER_2 = 0x0C,
/* set number of bytes in buffer to write */
AUDIO_WRITE_BUFFER_1 = 0x10,
AUDIO_WRITE_BUFFER_2 = 0x14,
/* true if audio input is supported */
AUDIO_READ_SUPPORTED = 0x18,
/* buffer to use for audio input */
AUDIO_SET_READ_BUFFER = 0x1C,
/* driver writes number of bytes to read */
AUDIO_START_READ = 0x20,
/* number of bytes available in read buffer */
AUDIO_READ_BUFFER_AVAILABLE = 0x24,
/* AUDIO_INT_STATUS bits */
/* this bit set when it is safe to write more bytes to the buffer */
AUDIO_INT_WRITE_BUFFER_1_EMPTY = 1U << 0,
AUDIO_INT_WRITE_BUFFER_2_EMPTY = 1U << 1,
AUDIO_INT_READ_BUFFER_FULL = 1U << 2,
};
struct goldfish_audio_state {
struct goldfish_device dev;
// pointers to our two write buffers
uint32_t buffer_1, buffer_2;
uint32_t read_buffer;
// buffer flags
uint32_t int_status;
// irq enable mask for int_status
uint32_t int_enable;
#if USE_QEMU_AUDIO_IN
uint32_t read_pos;
uint32_t read_size;
#else
// path to file or device to use for input
const char* input_source;
// true if input is a wav file
int input_is_wav;
// true if we need to convert stereo -> mono
int input_is_stereo;
// file descriptor to use for input
int input_fd;
#endif
// number of bytes available in the read buffer
int read_buffer_available;
// set to 1 or 2 to indicate which buffer we are writing from, or zero if both buffers are empty
int current_buffer;
// current data to write
uint8* data_1;
uint32_t data_1_length;
uint8* data_2;
uint32_t data_2_length;
// for QEMU sound output
QEMUSoundCard card;
SWVoiceOut *voice;
#if USE_QEMU_AUDIO_IN
SWVoiceIn* voicein;
#endif
};
/* update this whenever you change the goldfish_audio_state structure */
#define AUDIO_STATE_SAVE_VERSION 1
#define QFIELD_STRUCT struct goldfish_audio_state
QFIELD_BEGIN(audio_state_fields)
QFIELD_INT32(buffer_1),
QFIELD_INT32(buffer_2),
QFIELD_INT32(read_buffer),
QFIELD_INT32(int_status),
QFIELD_INT32(int_enable),
#if USE_QEMU_AUDIO_IN
QFIELD_INT32(read_pos),
QFIELD_INT32(read_size),
#endif
QFIELD_INT32(read_buffer_available),
QFIELD_INT32(current_buffer),
QFIELD_INT32(data_1_length),
QFIELD_INT32(data_2_length),
QFIELD_END
static void audio_state_save( QEMUFile* f, void* opaque )
{
struct goldfish_audio_state* s = opaque;
qemu_put_struct(f, audio_state_fields, s);
/* we can't write data_1 and data_2 directly */
qemu_put_be32( f, s->data_1 - phys_ram_base );
qemu_put_be32( f, s->data_2 - phys_ram_base );
}
static int audio_state_load( QEMUFile* f, void* opaque, int version_id )
{
struct goldfish_audio_state* s = opaque;
int ret;
if (version_id != AUDIO_STATE_SAVE_VERSION)
return -1;
ret = qemu_get_struct(f, audio_state_fields, s);
if (!ret) {
s->data_1 = qemu_get_be32(f) + phys_ram_base;
s->data_2 = qemu_get_be32(f) + phys_ram_base;
}
return -1;
}
static void enable_audio(struct goldfish_audio_state *s, int enable)
{
// enable or disable the output voice
if (s->voice != NULL)
AUD_set_active_out(s->voice, (enable & (AUDIO_INT_WRITE_BUFFER_1_EMPTY | AUDIO_INT_WRITE_BUFFER_2_EMPTY)) != 0);
if (s->voicein)
AUD_set_active_in (s->voicein, (enable & AUDIO_INT_READ_BUFFER_FULL) != 0);
// reset buffer information
s->data_1_length = 0;
s->data_2_length = 0;
s->current_buffer = 0;
s->read_pos = 0;
}
#if USE_QEMU_AUDIO_IN
static void start_read(struct goldfish_audio_state *s, uint32_t count)
{
//printf( "... goldfish audio start_read, count=%d\n", count );
s->read_size = count;
s->read_buffer_available = 0;
s->read_pos = 0;
}
#else
static void start_read(struct goldfish_audio_state *s, uint32_t count)
{
uint8 wav_header[44];
int result;
if (!s->input_source) return;
if (s->input_fd < 0) {
s->input_fd = open(s->input_source, O_BINARY | O_RDONLY);
if (s->input_fd < 0) {
fprintf(stderr, "goldfish_audio could not open %s for audio input\n", s->input_source);
s->input_source = NULL; // set to to avoid endless retries
return;
}
// skip WAV header if we have a WAV file
if (s->input_is_wav) {
if (read(s->input_fd, wav_header, sizeof(wav_header)) != sizeof(wav_header)) {
fprintf(stderr, "goldfish_audio could not read WAV file header %s\n", s->input_source);
s->input_fd = -1;
s->input_source = NULL; // set to to avoid endless retries
return;
}
// is the WAV file stereo?
s->input_is_stereo = (wav_header[22] == 2);
} else {
// assume input from an audio device is stereo
s->input_is_stereo = 1;
}
}
uint8* buffer = (uint8*)phys_ram_base + s->read_buffer;
if (s->input_is_stereo) {
// need to read twice as much data
count *= 2;
}
try_again:
result = read(s->input_fd, buffer, count);
if (result == 0 && s->input_is_wav) {
// end of file, so seek back to the beginning
lseek(s->input_fd, sizeof(wav_header), SEEK_SET);
goto try_again;
}
if (result > 0 && s->input_is_stereo) {
// we need to convert stereo to mono
uint8* src = (uint8*)buffer;
uint8* dest = src;
int count = result/2;
while (count-- > 0) {
int sample1 = src[0] | (src[1] << 8);
int sample2 = src[2] | (src[3] << 8);
int sample = (sample1 + sample2) >> 1;
dst[0] = (uint8_t) sample;
dst[1] = (uint8_t)(sample >> 8);
src += 4;
dst += 2;
}
// we reduced the number of bytes by 2
result /= 2;
}
s->read_buffer_available = (result > 0 ? result : 0);
s->int_status |= AUDIO_INT_READ_BUFFER_FULL;
goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable));
}
#endif
static uint32_t goldfish_audio_read(void *opaque, target_phys_addr_t offset)
{
uint32_t ret;
struct goldfish_audio_state *s = opaque;
offset -= s->dev.base;
switch(offset) {
case AUDIO_INT_STATUS:
// return current buffer status flags
ret = s->int_status & s->int_enable;
if(ret) {
goldfish_device_set_irq(&s->dev, 0, 0);
}
return ret;
case AUDIO_READ_SUPPORTED:
#if USE_QEMU_AUDIO_IN
D("%s: AUDIO_READ_SUPPORTED returns %d", __FUNCTION__,
(s->voicein != NULL));
return (s->voicein != NULL);
#else
return (s->input_source ? 1 : 0);
#endif
case AUDIO_READ_BUFFER_AVAILABLE:
D("%s: AUDIO_READ_BUFFER_AVAILABLE returns %d", __FUNCTION__,
s->read_buffer_available);
return s->read_buffer_available;
default:
cpu_abort (cpu_single_env, "goldfish_audio_read: Bad offset %x\n", offset);
return 0;
}
}
static void goldfish_audio_write(void *opaque, target_phys_addr_t offset, uint32_t val)
{
struct goldfish_audio_state *s = opaque;
offset -= s->dev.base;
switch(offset) {
case AUDIO_INT_ENABLE:
/* enable buffer empty interrupts */
D("%s: AUDIO_INT_ENABLE %d", __FUNCTION__, val );
enable_audio(s, val);
s->int_enable = val;
s->int_status = (AUDIO_INT_WRITE_BUFFER_1_EMPTY | AUDIO_INT_WRITE_BUFFER_2_EMPTY);
goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable));
break;
case AUDIO_SET_WRITE_BUFFER_1:
/* save pointer to buffer 1 */
s->buffer_1 = val;
break;
case AUDIO_SET_WRITE_BUFFER_2:
/* save pointer to buffer 2 */
s->buffer_2 = val;
break;
case AUDIO_WRITE_BUFFER_1:
/* record that data in buffer 1 is ready to write */
if (s->current_buffer == 0) s->current_buffer = 1;
s->data_1 = phys_ram_base + s->buffer_1;
s->data_1_length = val;
s->int_status &= ~AUDIO_INT_WRITE_BUFFER_1_EMPTY;
break;
case AUDIO_WRITE_BUFFER_2:
/* record that data in buffer 2 is ready to write */
if (s->current_buffer == 0) s->current_buffer = 2;
s->data_2 = phys_ram_base + s->buffer_2;
s->data_2_length = val;
s->int_status &= ~AUDIO_INT_WRITE_BUFFER_2_EMPTY;
break;
case AUDIO_SET_READ_BUFFER:
/* save pointer to the read buffer */
s->read_buffer = val;
D( "%s: AUDIO_SET_READ_BUFFER %p", __FUNCTION__, (void*)val );
break;
case AUDIO_START_READ:
D( "%s: AUDIO_START_READ %d", __FUNCTION__, val );
start_read(s, val);
s->int_status &= ~AUDIO_INT_READ_BUFFER_FULL;
goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable));
break;
default:
cpu_abort (cpu_single_env, "goldfish_audio_write: Bad offset %x\n", offset);
}
}
static void goldfish_audio_callback(void *opaque, int free)
{
struct goldfish_audio_state *s = opaque;
int new_status = 0;
/* loop until free is zero or both buffers are empty */
while (free && s->current_buffer) {
/* write data in buffer 1 */
while (free && s->current_buffer == 1) {
int write = s->data_1_length;
if (write > free) write = free;
int written = AUD_write(s->voice, s->data_1, write);
if (written) {
D("%s: sent %d bytes to audio output", __FUNCTION__, write);
s->data_1 += written;
s->data_1_length -= written;
free -= written;
if (s->data_1_length == 0) {
new_status |= AUDIO_INT_WRITE_BUFFER_1_EMPTY;
s->current_buffer = (s->data_2_length ? 2 : 0);
}
} else {
break;
}
}
/* write data in buffer 2 */
while (free && s->current_buffer == 2) {
int write = s->data_2_length;
if (write > free) write = free;
int written = AUD_write(s->voice, s->data_2, write);
if (written) {
D("%s: sent %d bytes to audio output", __FUNCTION__, write);
s->data_2 += written;
s->data_2_length -= written;
free -= written;
if (s->data_2_length == 0) {
new_status |= AUDIO_INT_WRITE_BUFFER_2_EMPTY;
s->current_buffer = (s->data_1_length ? 1 : 0);
}
} else {
break;
}
}
}
if (new_status && new_status != s->int_status) {
s->int_status |= new_status;
goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable));
}
}
#if USE_QEMU_AUDIO_IN
static void
goldfish_audio_in_callback(void *opaque, int avail)
{
struct goldfish_audio_state *s = opaque;
int new_status = 0;
if (s->read_pos >= s->read_size)
return;
if (0 && s->read_size > 0)
D("%s: in %d (pos=%d size=%d)", __FUNCTION__,
avail, s->read_pos, s->read_size );
while (avail > 0) {
int pos = s->read_pos;
int missing = s->read_size - pos;
uint8* buffer = (uint8*)phys_ram_base + s->read_buffer + pos;
int read;
int avail2 = (avail > missing) ? missing : avail;
read = AUD_read(s->voicein, buffer, avail2);
if (read == 0)
break;
if (avail2 > 0)
D("%s: AUD_read(%d) returned %d", __FUNCTION__, avail2, read);
s->read_buffer_available += read;
avail -= read;
pos += read;
if (pos == s->read_size) {
new_status |= AUDIO_INT_READ_BUFFER_FULL;
D("%s: AUDIO_INT_READ_BUFFER_FULL available=%d", __FUNCTION__, s->read_buffer_available);
}
s->read_pos = pos;
}
if (new_status && new_status != s->int_status) {
s->int_status |= new_status;
goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable));
}
}
#endif /* USE_QEMU_AUDIO_IN */
static CPUReadMemoryFunc *goldfish_audio_readfn[] = {
goldfish_audio_read,
goldfish_audio_read,
goldfish_audio_read
};
static CPUWriteMemoryFunc *goldfish_audio_writefn[] = {
goldfish_audio_write,
goldfish_audio_write,
goldfish_audio_write
};
void goldfish_audio_init(uint32_t base, int id, const char* input_source)
{
struct goldfish_audio_state *s;
audsettings_t as;
/* nothing to do if no audio input and output */
if (!android_hw->hw_audioOutput && !android_hw->hw_audioInput)
return;
s = (struct goldfish_audio_state *)qemu_mallocz(sizeof(*s));
s->dev.name = "goldfish_audio";
s->dev.id = id;
s->dev.base = base;
s->dev.size = 0x1000;
s->dev.irq_count = 1;
#ifndef USE_QEMU_AUDIO_IN
s->input_fd = -1;
if (input_source) {
s->input_source = input_source;
char* extension = strrchr(input_source, '.');
if (extension && strcasecmp(extension, ".wav") == 0) {
s->input_is_wav = 1;
}
}
#endif
AUD_register_card( &glob_audio_state, "goldfish_audio", &s->card);
as.freq = 44100;
as.nchannels = 2;
as.fmt = AUD_FMT_S16;
as.endianness = AUDIO_HOST_ENDIANNESS;
if (android_hw->hw_audioOutput) {
s->voice = AUD_open_out (
&s->card,
s->voice,
"goldfish_audio",
s,
goldfish_audio_callback,
&as
);
if (!s->voice) {
dprint("warning: opening audio output failed\n");
return;
}
}
#if USE_QEMU_AUDIO_IN
as.freq = 8000;
as.nchannels = 1;
as.fmt = AUD_FMT_S16;
as.endianness = AUDIO_HOST_ENDIANNESS;
if (android_hw->hw_audioInput) {
s->voicein = AUD_open_in (
&s->card,
NULL,
"goldfish_audio_in",
s,
goldfish_audio_in_callback,
&as
);
if (!s->voicein) {
dprint("warning: opening audio input failed\n");
}
}
#endif
goldfish_device_add(&s->dev, goldfish_audio_readfn, goldfish_audio_writefn, s);
register_savevm( "audio_state", 0, AUDIO_STATE_SAVE_VERSION,
audio_state_save, audio_state_load, s );
}