blob: 6b45f6cca0bc5e1309d40f704ae0773c85f6b03b [file] [log] [blame]
/*
* QEMU monitor
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <dirent.h>
#include "hw/hw.h"
#include "hw/qdev.h"
#include "hw/usb.h"
#include "hw/pcmcia.h"
#include "hw/pc.h"
#include "hw/pci.h"
#include "hw/watchdog.h"
#include "gdbstub.h"
#include "net.h"
#include "qemu-char.h"
#include "sysemu.h"
#include "monitor.h"
#include "readline.h"
#include "console.h"
#include "block.h"
#include "audio/audio.h"
#include "disas.h"
#include "balloon.h"
#include "qemu-timer.h"
#include "migration.h"
#include "kvm.h"
#include "acl.h"
//#define DEBUG
//#define DEBUG_COMPLETION
/*
* Supported types:
*
* 'F' filename
* 'B' block device name
* 's' string (accept optional quote)
* 'i' 32 bit integer
* 'l' target long (32 or 64 bit)
* '/' optional gdb-like print format (like "/10x")
*
* '?' optional type (for 'F', 's' and 'i')
*
*/
typedef struct mon_cmd_t {
const char *name;
const char *args_type;
void *handler;
const char *params;
const char *help;
} mon_cmd_t;
struct Monitor {
CharDriverState *chr;
int flags;
int suspend_cnt;
uint8_t outbuf[1024];
int outbuf_index;
ReadLineState *rs;
CPUState *mon_cpu;
BlockDriverCompletionFunc *password_completion_cb;
void *password_opaque;
LIST_ENTRY(Monitor) entry;
};
static LIST_HEAD(mon_list, Monitor) mon_list;
static const mon_cmd_t mon_cmds[];
static const mon_cmd_t info_cmds[];
Monitor *cur_mon = NULL;
static void monitor_command_cb(Monitor *mon, const char *cmdline,
void *opaque);
static void monitor_read_command(Monitor *mon, int show_prompt)
{
readline_start(mon->rs, "(qemu) ", 0, monitor_command_cb, NULL);
if (show_prompt)
readline_show_prompt(mon->rs);
}
static int monitor_read_password(Monitor *mon, ReadLineFunc *readline_func,
void *opaque)
{
if (mon->rs) {
readline_start(mon->rs, "Password: ", 1, readline_func, opaque);
/* prompt is printed on return from the command handler */
return 0;
} else {
monitor_printf(mon, "terminal does not support password prompting\n");
return -ENOTTY;
}
}
void monitor_flush(Monitor *mon)
{
if (mon && mon->outbuf_index != 0 && mon->chr->focus == 0) {
qemu_chr_write(mon->chr, mon->outbuf, mon->outbuf_index);
mon->outbuf_index = 0;
}
}
/* flush at every end of line or if the buffer is full */
static void monitor_puts(Monitor *mon, const char *str)
{
char c;
if (!mon)
return;
for(;;) {
c = *str++;
if (c == '\0')
break;
if (c == '\n')
mon->outbuf[mon->outbuf_index++] = '\r';
mon->outbuf[mon->outbuf_index++] = c;
if (mon->outbuf_index >= (sizeof(mon->outbuf) - 1)
|| c == '\n')
monitor_flush(mon);
}
}
void monitor_vprintf(Monitor *mon, const char *fmt, va_list ap)
{
char buf[4096];
vsnprintf(buf, sizeof(buf), fmt, ap);
monitor_puts(mon, buf);
}
void monitor_printf(Monitor *mon, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf(mon, fmt, ap);
va_end(ap);
}
void monitor_print_filename(Monitor *mon, const char *filename)
{
int i;
for (i = 0; filename[i]; i++) {
switch (filename[i]) {
case ' ':
case '"':
case '\\':
monitor_printf(mon, "\\%c", filename[i]);
break;
case '\t':
monitor_printf(mon, "\\t");
break;
case '\r':
monitor_printf(mon, "\\r");
break;
case '\n':
monitor_printf(mon, "\\n");
break;
default:
monitor_printf(mon, "%c", filename[i]);
break;
}
}
}
static int monitor_fprintf(FILE *stream, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf((Monitor *)stream, fmt, ap);
va_end(ap);
return 0;
}
static int compare_cmd(const char *name, const char *list)
{
const char *p, *pstart;
int len;
len = strlen(name);
p = list;
for(;;) {
pstart = p;
p = strchr(p, '|');
if (!p)
p = pstart + strlen(pstart);
if ((p - pstart) == len && !memcmp(pstart, name, len))
return 1;
if (*p == '\0')
break;
p++;
}
return 0;
}
static void help_cmd_dump(Monitor *mon, const mon_cmd_t *cmds,
const char *prefix, const char *name)
{
const mon_cmd_t *cmd;
for(cmd = cmds; cmd->name != NULL; cmd++) {
if (!name || !strcmp(name, cmd->name))
monitor_printf(mon, "%s%s %s -- %s\n", prefix, cmd->name,
cmd->params, cmd->help);
}
}
static void help_cmd(Monitor *mon, const char *name)
{
if (name && !strcmp(name, "info")) {
help_cmd_dump(mon, info_cmds, "info ", NULL);
} else {
help_cmd_dump(mon, mon_cmds, "", name);
if (name && !strcmp(name, "log")) {
const CPULogItem *item;
monitor_printf(mon, "Log items (comma separated):\n");
monitor_printf(mon, "%-10s %s\n", "none", "remove all logs");
for(item = cpu_log_items; item->mask != 0; item++) {
monitor_printf(mon, "%-10s %s\n", item->name, item->help);
}
}
}
}
static void do_commit(Monitor *mon, const char *device)
{
int i, all_devices;
all_devices = !strcmp(device, "all");
for (i = 0; i < nb_drives; i++) {
if (all_devices ||
!strcmp(bdrv_get_device_name(drives_table[i].bdrv), device))
bdrv_commit(drives_table[i].bdrv);
}
}
static void do_info(Monitor *mon, const char *item)
{
const mon_cmd_t *cmd;
void (*handler)(Monitor *);
if (!item)
goto help;
for(cmd = info_cmds; cmd->name != NULL; cmd++) {
if (compare_cmd(item, cmd->name))
goto found;
}
help:
help_cmd(mon, "info");
return;
found:
handler = cmd->handler;
handler(mon);
}
static void do_info_version(Monitor *mon)
{
monitor_printf(mon, "%s\n", QEMU_VERSION QEMU_PKGVERSION);
}
static void do_info_name(Monitor *mon)
{
if (qemu_name)
monitor_printf(mon, "%s\n", qemu_name);
}
#if defined(TARGET_I386)
static void do_info_hpet(Monitor *mon)
{
monitor_printf(mon, "HPET is %s by QEMU\n",
(no_hpet) ? "disabled" : "enabled");
}
#endif
static void do_info_uuid(Monitor *mon)
{
monitor_printf(mon, UUID_FMT "\n", qemu_uuid[0], qemu_uuid[1],
qemu_uuid[2], qemu_uuid[3], qemu_uuid[4], qemu_uuid[5],
qemu_uuid[6], qemu_uuid[7], qemu_uuid[8], qemu_uuid[9],
qemu_uuid[10], qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
qemu_uuid[14], qemu_uuid[15]);
}
/* get the current CPU defined by the user */
static int mon_set_cpu(int cpu_index)
{
CPUState *env;
for(env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->cpu_index == cpu_index) {
cur_mon->mon_cpu = env;
return 0;
}
}
return -1;
}
static CPUState *mon_get_cpu(void)
{
if (!cur_mon->mon_cpu) {
mon_set_cpu(0);
}
cpu_synchronize_state(cur_mon->mon_cpu, 0);
return cur_mon->mon_cpu;
}
static void do_info_registers(Monitor *mon)
{
CPUState *env;
env = mon_get_cpu();
if (!env)
return;
#ifdef TARGET_I386
cpu_dump_state(env, (FILE *)mon, monitor_fprintf,
X86_DUMP_FPU);
#else
cpu_dump_state(env, (FILE *)mon, monitor_fprintf,
0);
#endif
}
static void do_info_cpus(Monitor *mon)
{
CPUState *env;
/* just to set the default cpu if not already done */
mon_get_cpu();
for(env = first_cpu; env != NULL; env = env->next_cpu) {
cpu_synchronize_state(env, 0);
monitor_printf(mon, "%c CPU #%d:",
(env == mon->mon_cpu) ? '*' : ' ',
env->cpu_index);
#if defined(TARGET_I386)
monitor_printf(mon, " pc=0x" TARGET_FMT_lx,
env->eip + env->segs[R_CS].base);
#elif defined(TARGET_PPC)
monitor_printf(mon, " nip=0x" TARGET_FMT_lx, env->nip);
#elif defined(TARGET_SPARC)
monitor_printf(mon, " pc=0x" TARGET_FMT_lx " npc=0x" TARGET_FMT_lx,
env->pc, env->npc);
#elif defined(TARGET_MIPS)
monitor_printf(mon, " PC=0x" TARGET_FMT_lx, env->active_tc.PC);
#endif
if (env->halted)
monitor_printf(mon, " (halted)");
monitor_printf(mon, "\n");
}
}
static void do_cpu_set(Monitor *mon, int index)
{
if (mon_set_cpu(index) < 0)
monitor_printf(mon, "Invalid CPU index\n");
}
static void do_info_jit(Monitor *mon)
{
dump_exec_info((FILE *)mon, monitor_fprintf);
}
static void do_info_history(Monitor *mon)
{
int i;
const char *str;
if (!mon->rs)
return;
i = 0;
for(;;) {
str = readline_get_history(mon->rs, i);
if (!str)
break;
monitor_printf(mon, "%d: '%s'\n", i, str);
i++;
}
}
#if defined(TARGET_PPC)
/* XXX: not implemented in other targets */
static void do_info_cpu_stats(Monitor *mon)
{
CPUState *env;
env = mon_get_cpu();
cpu_dump_statistics(env, (FILE *)mon, &monitor_fprintf, 0);
}
#endif
static void do_quit(Monitor *mon)
{
exit(0);
}
static int eject_device(Monitor *mon, BlockDriverState *bs, int force)
{
if (bdrv_is_inserted(bs)) {
if (!force) {
if (!bdrv_is_removable(bs)) {
monitor_printf(mon, "device is not removable\n");
return -1;
}
if (bdrv_is_locked(bs)) {
monitor_printf(mon, "device is locked\n");
return -1;
}
}
bdrv_close(bs);
}
return 0;
}
static void do_eject(Monitor *mon, int force, const char *filename)
{
BlockDriverState *bs;
bs = bdrv_find(filename);
if (!bs) {
monitor_printf(mon, "device not found\n");
return;
}
eject_device(mon, bs, force);
}
static void do_change_block(Monitor *mon, const char *device,
const char *filename, const char *fmt)
{
BlockDriverState *bs;
BlockDriver *drv = NULL;
bs = bdrv_find(device);
if (!bs) {
monitor_printf(mon, "device not found\n");
return;
}
if (fmt) {
drv = bdrv_find_format(fmt);
if (!drv) {
monitor_printf(mon, "invalid format %s\n", fmt);
return;
}
}
if (eject_device(mon, bs, 0) < 0)
return;
bdrv_open2(bs, filename, 0, drv);
monitor_read_bdrv_key_start(mon, bs, NULL, NULL);
}
static void change_vnc_password_cb(Monitor *mon, const char *password,
void *opaque)
{
if (vnc_display_password(NULL, password) < 0)
monitor_printf(mon, "could not set VNC server password\n");
monitor_read_command(mon, 1);
}
static void do_change_vnc(Monitor *mon, const char *target, const char *arg)
{
if (strcmp(target, "passwd") == 0 ||
strcmp(target, "password") == 0) {
if (arg) {
char password[9];
strncpy(password, arg, sizeof(password));
password[sizeof(password) - 1] = '\0';
change_vnc_password_cb(mon, password, NULL);
} else {
monitor_read_password(mon, change_vnc_password_cb, NULL);
}
} else {
if (vnc_display_open(NULL, target) < 0)
monitor_printf(mon, "could not start VNC server on %s\n", target);
}
}
static void do_change(Monitor *mon, const char *device, const char *target,
const char *arg)
{
if (strcmp(device, "vnc") == 0) {
do_change_vnc(mon, target, arg);
} else {
do_change_block(mon, device, target, arg);
}
}
static void do_screen_dump(Monitor *mon, const char *filename)
{
vga_hw_screen_dump(filename);
}
static void do_logfile(Monitor *mon, const char *filename)
{
cpu_set_log_filename(filename);
}
static void do_log(Monitor *mon, const char *items)
{
int mask;
if (!strcmp(items, "none")) {
mask = 0;
} else {
mask = cpu_str_to_log_mask(items);
if (!mask) {
help_cmd(mon, "log");
return;
}
}
cpu_set_log(mask);
}
static void do_singlestep(Monitor *mon, const char *option)
{
if (!option || !strcmp(option, "on")) {
singlestep = 1;
} else if (!strcmp(option, "off")) {
singlestep = 0;
} else {
monitor_printf(mon, "unexpected option %s\n", option);
}
}
static void do_stop(Monitor *mon)
{
vm_stop(EXCP_INTERRUPT);
}
static void encrypted_bdrv_it(void *opaque, BlockDriverState *bs);
struct bdrv_iterate_context {
Monitor *mon;
int err;
};
static void do_cont(Monitor *mon)
{
struct bdrv_iterate_context context = { mon, 0 };
bdrv_iterate(encrypted_bdrv_it, &context);
/* only resume the vm if all keys are set and valid */
if (!context.err)
vm_start();
}
static void bdrv_key_cb(void *opaque, int err)
{
Monitor *mon = opaque;
/* another key was set successfully, retry to continue */
if (!err)
do_cont(mon);
}
static void encrypted_bdrv_it(void *opaque, BlockDriverState *bs)
{
struct bdrv_iterate_context *context = opaque;
if (!context->err && bdrv_key_required(bs)) {
context->err = -EBUSY;
monitor_read_bdrv_key_start(context->mon, bs, bdrv_key_cb,
context->mon);
}
}
static void do_gdbserver(Monitor *mon, const char *device)
{
if (!device)
device = "tcp::" DEFAULT_GDBSTUB_PORT;
if (gdbserver_start(device) < 0) {
monitor_printf(mon, "Could not open gdbserver on device '%s'\n",
device);
} else if (strcmp(device, "none") == 0) {
monitor_printf(mon, "Disabled gdbserver\n");
} else {
monitor_printf(mon, "Waiting for gdb connection on device '%s'\n",
device);
}
}
static void do_watchdog_action(Monitor *mon, const char *action)
{
if (select_watchdog_action(action) == -1) {
monitor_printf(mon, "Unknown watchdog action '%s'\n", action);
}
}
static void monitor_printc(Monitor *mon, int c)
{
monitor_printf(mon, "'");
switch(c) {
case '\'':
monitor_printf(mon, "\\'");
break;
case '\\':
monitor_printf(mon, "\\\\");
break;
case '\n':
monitor_printf(mon, "\\n");
break;
case '\r':
monitor_printf(mon, "\\r");
break;
default:
if (c >= 32 && c <= 126) {
monitor_printf(mon, "%c", c);
} else {
monitor_printf(mon, "\\x%02x", c);
}
break;
}
monitor_printf(mon, "'");
}
static void memory_dump(Monitor *mon, int count, int format, int wsize,
target_phys_addr_t addr, int is_physical)
{
CPUState *env;
int nb_per_line, l, line_size, i, max_digits, len;
uint8_t buf[16];
uint64_t v;
if (format == 'i') {
int flags;
flags = 0;
env = mon_get_cpu();
if (!env && !is_physical)
return;
#ifdef TARGET_I386
if (wsize == 2) {
flags = 1;
} else if (wsize == 4) {
flags = 0;
} else {
/* as default we use the current CS size */
flags = 0;
if (env) {
#ifdef TARGET_X86_64
if ((env->efer & MSR_EFER_LMA) &&
(env->segs[R_CS].flags & DESC_L_MASK))
flags = 2;
else
#endif
if (!(env->segs[R_CS].flags & DESC_B_MASK))
flags = 1;
}
}
#endif
monitor_disas(mon, env, addr, count, is_physical, flags);
return;
}
len = wsize * count;
if (wsize == 1)
line_size = 8;
else
line_size = 16;
nb_per_line = line_size / wsize;
max_digits = 0;
switch(format) {
case 'o':
max_digits = (wsize * 8 + 2) / 3;
break;
default:
case 'x':
max_digits = (wsize * 8) / 4;
break;
case 'u':
case 'd':
max_digits = (wsize * 8 * 10 + 32) / 33;
break;
case 'c':
wsize = 1;
break;
}
while (len > 0) {
if (is_physical)
monitor_printf(mon, TARGET_FMT_plx ":", addr);
else
monitor_printf(mon, TARGET_FMT_lx ":", (target_ulong)addr);
l = len;
if (l > line_size)
l = line_size;
if (is_physical) {
cpu_physical_memory_rw(addr, buf, l, 0);
} else {
env = mon_get_cpu();
if (!env)
break;
if (cpu_memory_rw_debug(env, addr, buf, l, 0) < 0) {
monitor_printf(mon, " Cannot access memory\n");
break;
}
}
i = 0;
while (i < l) {
switch(wsize) {
default:
case 1:
v = ldub_raw(buf + i);
break;
case 2:
v = lduw_raw(buf + i);
break;
case 4:
v = (uint32_t)ldl_raw(buf + i);
break;
case 8:
v = ldq_raw(buf + i);
break;
}
monitor_printf(mon, " ");
switch(format) {
case 'o':
monitor_printf(mon, "%#*" PRIo64, max_digits, v);
break;
case 'x':
monitor_printf(mon, "0x%0*" PRIx64, max_digits, v);
break;
case 'u':
monitor_printf(mon, "%*" PRIu64, max_digits, v);
break;
case 'd':
monitor_printf(mon, "%*" PRId64, max_digits, v);
break;
case 'c':
monitor_printc(mon, v);
break;
}
i += wsize;
}
monitor_printf(mon, "\n");
addr += l;
len -= l;
}
}
#if TARGET_LONG_BITS == 64
#define GET_TLONG(h, l) (((uint64_t)(h) << 32) | (l))
#else
#define GET_TLONG(h, l) (l)
#endif
static void do_memory_dump(Monitor *mon, int count, int format, int size,
uint32_t addrh, uint32_t addrl)
{
target_long addr = GET_TLONG(addrh, addrl);
memory_dump(mon, count, format, size, addr, 0);
}
#if TARGET_PHYS_ADDR_BITS > 32
#define GET_TPHYSADDR(h, l) (((uint64_t)(h) << 32) | (l))
#else
#define GET_TPHYSADDR(h, l) (l)
#endif
static void do_physical_memory_dump(Monitor *mon, int count, int format,
int size, uint32_t addrh, uint32_t addrl)
{
target_phys_addr_t addr = GET_TPHYSADDR(addrh, addrl);
memory_dump(mon, count, format, size, addr, 1);
}
static void do_print(Monitor *mon, int count, int format, int size,
unsigned int valh, unsigned int vall)
{
target_phys_addr_t val = GET_TPHYSADDR(valh, vall);
#if TARGET_PHYS_ADDR_BITS == 32
switch(format) {
case 'o':
monitor_printf(mon, "%#o", val);
break;
case 'x':
monitor_printf(mon, "%#x", val);
break;
case 'u':
monitor_printf(mon, "%u", val);
break;
default:
case 'd':
monitor_printf(mon, "%d", val);
break;
case 'c':
monitor_printc(mon, val);
break;
}
#else
switch(format) {
case 'o':
monitor_printf(mon, "%#" PRIo64, val);
break;
case 'x':
monitor_printf(mon, "%#" PRIx64, val);
break;
case 'u':
monitor_printf(mon, "%" PRIu64, val);
break;
default:
case 'd':
monitor_printf(mon, "%" PRId64, val);
break;
case 'c':
monitor_printc(mon, val);
break;
}
#endif
monitor_printf(mon, "\n");
}
static void do_memory_save(Monitor *mon, unsigned int valh, unsigned int vall,
uint32_t size, const char *filename)
{
FILE *f;
target_long addr = GET_TLONG(valh, vall);
uint32_t l;
CPUState *env;
uint8_t buf[1024];
env = mon_get_cpu();
if (!env)
return;
f = fopen(filename, "wb");
if (!f) {
monitor_printf(mon, "could not open '%s'\n", filename);
return;
}
while (size != 0) {
l = sizeof(buf);
if (l > size)
l = size;
cpu_memory_rw_debug(env, addr, buf, l, 0);
fwrite(buf, 1, l, f);
addr += l;
size -= l;
}
fclose(f);
}
static void do_physical_memory_save(Monitor *mon, unsigned int valh,
unsigned int vall, uint32_t size,
const char *filename)
{
FILE *f;
uint32_t l;
uint8_t buf[1024];
target_phys_addr_t addr = GET_TPHYSADDR(valh, vall);
f = fopen(filename, "wb");
if (!f) {
monitor_printf(mon, "could not open '%s'\n", filename);
return;
}
while (size != 0) {
l = sizeof(buf);
if (l > size)
l = size;
cpu_physical_memory_rw(addr, buf, l, 0);
fwrite(buf, 1, l, f);
fflush(f);
addr += l;
size -= l;
}
fclose(f);
}
static void do_sum(Monitor *mon, uint32_t start, uint32_t size)
{
uint32_t addr;
uint8_t buf[1];
uint16_t sum;
sum = 0;
for(addr = start; addr < (start + size); addr++) {
cpu_physical_memory_rw(addr, buf, 1, 0);
/* BSD sum algorithm ('sum' Unix command) */
sum = (sum >> 1) | (sum << 15);
sum += buf[0];
}
monitor_printf(mon, "%05d\n", sum);
}
typedef struct {
int keycode;
const char *name;
} KeyDef;
static const KeyDef key_defs[] = {
{ 0x2a, "shift" },
{ 0x36, "shift_r" },
{ 0x38, "alt" },
{ 0xb8, "alt_r" },
{ 0x64, "altgr" },
{ 0xe4, "altgr_r" },
{ 0x1d, "ctrl" },
{ 0x9d, "ctrl_r" },
{ 0xdd, "menu" },
{ 0x01, "esc" },
{ 0x02, "1" },
{ 0x03, "2" },
{ 0x04, "3" },
{ 0x05, "4" },
{ 0x06, "5" },
{ 0x07, "6" },
{ 0x08, "7" },
{ 0x09, "8" },
{ 0x0a, "9" },
{ 0x0b, "0" },
{ 0x0c, "minus" },
{ 0x0d, "equal" },
{ 0x0e, "backspace" },
{ 0x0f, "tab" },
{ 0x10, "q" },
{ 0x11, "w" },
{ 0x12, "e" },
{ 0x13, "r" },
{ 0x14, "t" },
{ 0x15, "y" },
{ 0x16, "u" },
{ 0x17, "i" },
{ 0x18, "o" },
{ 0x19, "p" },
{ 0x1c, "ret" },
{ 0x1e, "a" },
{ 0x1f, "s" },
{ 0x20, "d" },
{ 0x21, "f" },
{ 0x22, "g" },
{ 0x23, "h" },
{ 0x24, "j" },
{ 0x25, "k" },
{ 0x26, "l" },
{ 0x2c, "z" },
{ 0x2d, "x" },
{ 0x2e, "c" },
{ 0x2f, "v" },
{ 0x30, "b" },
{ 0x31, "n" },
{ 0x32, "m" },
{ 0x33, "comma" },
{ 0x34, "dot" },
{ 0x35, "slash" },
{ 0x37, "asterisk" },
{ 0x39, "spc" },
{ 0x3a, "caps_lock" },
{ 0x3b, "f1" },
{ 0x3c, "f2" },
{ 0x3d, "f3" },
{ 0x3e, "f4" },
{ 0x3f, "f5" },
{ 0x40, "f6" },
{ 0x41, "f7" },
{ 0x42, "f8" },
{ 0x43, "f9" },
{ 0x44, "f10" },
{ 0x45, "num_lock" },
{ 0x46, "scroll_lock" },
{ 0xb5, "kp_divide" },
{ 0x37, "kp_multiply" },
{ 0x4a, "kp_subtract" },
{ 0x4e, "kp_add" },
{ 0x9c, "kp_enter" },
{ 0x53, "kp_decimal" },
{ 0x54, "sysrq" },
{ 0x52, "kp_0" },
{ 0x4f, "kp_1" },
{ 0x50, "kp_2" },
{ 0x51, "kp_3" },
{ 0x4b, "kp_4" },
{ 0x4c, "kp_5" },
{ 0x4d, "kp_6" },
{ 0x47, "kp_7" },
{ 0x48, "kp_8" },
{ 0x49, "kp_9" },
{ 0x56, "<" },
{ 0x57, "f11" },
{ 0x58, "f12" },
{ 0xb7, "print" },
{ 0xc7, "home" },
{ 0xc9, "pgup" },
{ 0xd1, "pgdn" },
{ 0xcf, "end" },
{ 0xcb, "left" },
{ 0xc8, "up" },
{ 0xd0, "down" },
{ 0xcd, "right" },
{ 0xd2, "insert" },
{ 0xd3, "delete" },
#if defined(TARGET_SPARC) && !defined(TARGET_SPARC64)
{ 0xf0, "stop" },
{ 0xf1, "again" },
{ 0xf2, "props" },
{ 0xf3, "undo" },
{ 0xf4, "front" },
{ 0xf5, "copy" },
{ 0xf6, "open" },
{ 0xf7, "paste" },
{ 0xf8, "find" },
{ 0xf9, "cut" },
{ 0xfa, "lf" },
{ 0xfb, "help" },
{ 0xfc, "meta_l" },
{ 0xfd, "meta_r" },
{ 0xfe, "compose" },
#endif
{ 0, NULL },
};
static int get_keycode(const char *key)
{
const KeyDef *p;
char *endp;
int ret;
for(p = key_defs; p->name != NULL; p++) {
if (!strcmp(key, p->name))
return p->keycode;
}
if (strstart(key, "0x", NULL)) {
ret = strtoul(key, &endp, 0);
if (*endp == '\0' && ret >= 0x01 && ret <= 0xff)
return ret;
}
return -1;
}
#define MAX_KEYCODES 16
static uint8_t keycodes[MAX_KEYCODES];
static int nb_pending_keycodes;
static QEMUTimer *key_timer;
static void release_keys(void *opaque)
{
int keycode;
while (nb_pending_keycodes > 0) {
nb_pending_keycodes--;
keycode = keycodes[nb_pending_keycodes];
if (keycode & 0x80)
kbd_put_keycode(0xe0);
kbd_put_keycode(keycode | 0x80);
}
}
static void do_sendkey(Monitor *mon, const char *string, int has_hold_time,
int hold_time)
{
char keyname_buf[16];
char *separator;
int keyname_len, keycode, i;
if (nb_pending_keycodes > 0) {
qemu_del_timer(key_timer);
release_keys(NULL);
}
if (!has_hold_time)
hold_time = 100;
i = 0;
while (1) {
separator = strchr(string, '-');
keyname_len = separator ? separator - string : strlen(string);
if (keyname_len > 0) {
pstrcpy(keyname_buf, sizeof(keyname_buf), string);
if (keyname_len > sizeof(keyname_buf) - 1) {
monitor_printf(mon, "invalid key: '%s...'\n", keyname_buf);
return;
}
if (i == MAX_KEYCODES) {
monitor_printf(mon, "too many keys\n");
return;
}
keyname_buf[keyname_len] = 0;
keycode = get_keycode(keyname_buf);
if (keycode < 0) {
monitor_printf(mon, "unknown key: '%s'\n", keyname_buf);
return;
}
keycodes[i++] = keycode;
}
if (!separator)
break;
string = separator + 1;
}
nb_pending_keycodes = i;
/* key down events */
for (i = 0; i < nb_pending_keycodes; i++) {
keycode = keycodes[i];
if (keycode & 0x80)
kbd_put_keycode(0xe0);
kbd_put_keycode(keycode & 0x7f);
}
/* delayed key up events */
qemu_mod_timer(key_timer, qemu_get_clock(vm_clock) +
muldiv64(ticks_per_sec, hold_time, 1000));
}
static int mouse_button_state;
static void do_mouse_move(Monitor *mon, const char *dx_str, const char *dy_str,
const char *dz_str)
{
int dx, dy, dz;
dx = strtol(dx_str, NULL, 0);
dy = strtol(dy_str, NULL, 0);
dz = 0;
if (dz_str)
dz = strtol(dz_str, NULL, 0);
kbd_mouse_event(dx, dy, dz, mouse_button_state);
}
static void do_mouse_button(Monitor *mon, int button_state)
{
mouse_button_state = button_state;
kbd_mouse_event(0, 0, 0, mouse_button_state);
}
static void do_ioport_read(Monitor *mon, int count, int format, int size,
int addr, int has_index, int index)
{
uint32_t val;
int suffix;
if (has_index) {
cpu_outb(NULL, addr & 0xffff, index & 0xff);
addr++;
}
addr &= 0xffff;
switch(size) {
default:
case 1:
val = cpu_inb(NULL, addr);
suffix = 'b';
break;
case 2:
val = cpu_inw(NULL, addr);
suffix = 'w';
break;
case 4:
val = cpu_inl(NULL, addr);
suffix = 'l';
break;
}
monitor_printf(mon, "port%c[0x%04x] = %#0*x\n",
suffix, addr, size * 2, val);
}
/* boot_set handler */
static QEMUBootSetHandler *qemu_boot_set_handler = NULL;
static void *boot_opaque;
void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
{
qemu_boot_set_handler = func;
boot_opaque = opaque;
}
static void do_boot_set(Monitor *mon, const char *bootdevice)
{
int res;
if (qemu_boot_set_handler) {
res = qemu_boot_set_handler(boot_opaque, bootdevice);
if (res == 0)
monitor_printf(mon, "boot device list now set to %s\n",
bootdevice);
else
monitor_printf(mon, "setting boot device list failed with "
"error %i\n", res);
} else {
monitor_printf(mon, "no function defined to set boot device list for "
"this architecture\n");
}
}
static void do_system_reset(Monitor *mon)
{
qemu_system_reset_request();
}
static void do_system_powerdown(Monitor *mon)
{
qemu_system_powerdown_request();
}
#if defined(TARGET_I386)
static void print_pte(Monitor *mon, uint32_t addr, uint32_t pte, uint32_t mask)
{
monitor_printf(mon, "%08x: %08x %c%c%c%c%c%c%c%c\n",
addr,
pte & mask,
pte & PG_GLOBAL_MASK ? 'G' : '-',
pte & PG_PSE_MASK ? 'P' : '-',
pte & PG_DIRTY_MASK ? 'D' : '-',
pte & PG_ACCESSED_MASK ? 'A' : '-',
pte & PG_PCD_MASK ? 'C' : '-',
pte & PG_PWT_MASK ? 'T' : '-',
pte & PG_USER_MASK ? 'U' : '-',
pte & PG_RW_MASK ? 'W' : '-');
}
static void tlb_info(Monitor *mon)
{
CPUState *env;
int l1, l2;
uint32_t pgd, pde, pte;
env = mon_get_cpu();
if (!env)
return;
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
pgd = env->cr[3] & ~0xfff;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, (uint8_t *)&pde, 4);
pde = le32_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
print_pte(mon, (l1 << 22), pde, ~((1 << 20) - 1));
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4,
(uint8_t *)&pte, 4);
pte = le32_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 22) + (l2 << 12),
pte & ~PG_PSE_MASK,
~0xfff);
}
}
}
}
}
}
static void mem_print(Monitor *mon, uint32_t *pstart, int *plast_prot,
uint32_t end, int prot)
{
int prot1;
prot1 = *plast_prot;
if (prot != prot1) {
if (*pstart != -1) {
monitor_printf(mon, "%08x-%08x %08x %c%c%c\n",
*pstart, end, end - *pstart,
prot1 & PG_USER_MASK ? 'u' : '-',
'r',
prot1 & PG_RW_MASK ? 'w' : '-');
}
if (prot != 0)
*pstart = end;
else
*pstart = -1;
*plast_prot = prot;
}
}
static void mem_info(Monitor *mon)
{
CPUState *env;
int l1, l2, prot, last_prot;
uint32_t pgd, pde, pte, start, end;
env = mon_get_cpu();
if (!env)
return;
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
pgd = env->cr[3] & ~0xfff;
last_prot = 0;
start = -1;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, (uint8_t *)&pde, 4);
pde = le32_to_cpu(pde);
end = l1 << 22;
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
mem_print(mon, &start, &last_prot, end, prot);
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4,
(uint8_t *)&pte, 4);
pte = le32_to_cpu(pte);
end = (l1 << 22) + (l2 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
}
#endif
#if defined(TARGET_SH4)
static void print_tlb(Monitor *mon, int idx, tlb_t *tlb)
{
monitor_printf(mon, " tlb%i:\t"
"asid=%hhu vpn=%x\tppn=%x\tsz=%hhu size=%u\t"
"v=%hhu shared=%hhu cached=%hhu prot=%hhu "
"dirty=%hhu writethrough=%hhu\n",
idx,
tlb->asid, tlb->vpn, tlb->ppn, tlb->sz, tlb->size,
tlb->v, tlb->sh, tlb->c, tlb->pr,
tlb->d, tlb->wt);
}
static void tlb_info(Monitor *mon)
{
CPUState *env = mon_get_cpu();
int i;
monitor_printf (mon, "ITLB:\n");
for (i = 0 ; i < ITLB_SIZE ; i++)
print_tlb (mon, i, &env->itlb[i]);
monitor_printf (mon, "UTLB:\n");
for (i = 0 ; i < UTLB_SIZE ; i++)
print_tlb (mon, i, &env->utlb[i]);
}
#endif
static void do_info_kqemu(Monitor *mon)
{
#ifdef CONFIG_KQEMU
CPUState *env;
int val;
val = 0;
env = mon_get_cpu();
if (!env) {
monitor_printf(mon, "No cpu initialized yet");
return;
}
val = env->kqemu_enabled;
monitor_printf(mon, "kqemu support: ");
switch(val) {
default:
case 0:
monitor_printf(mon, "disabled\n");
break;
case 1:
monitor_printf(mon, "enabled for user code\n");
break;
case 2:
monitor_printf(mon, "enabled for user and kernel code\n");
break;
}
#else
monitor_printf(mon, "kqemu support: not compiled\n");
#endif
}
static void do_info_kvm(Monitor *mon)
{
#ifdef CONFIG_KVM
monitor_printf(mon, "kvm support: ");
if (kvm_enabled())
monitor_printf(mon, "enabled\n");
else
monitor_printf(mon, "disabled\n");
#else
monitor_printf(mon, "kvm support: not compiled\n");
#endif
}
static void do_info_numa(Monitor *mon)
{
int i;
CPUState *env;
monitor_printf(mon, "%d nodes\n", nb_numa_nodes);
for (i = 0; i < nb_numa_nodes; i++) {
monitor_printf(mon, "node %d cpus:", i);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->numa_node == i) {
monitor_printf(mon, " %d", env->cpu_index);
}
}
monitor_printf(mon, "\n");
monitor_printf(mon, "node %d size: %" PRId64 " MB\n", i,
node_mem[i] >> 20);
}
}
#ifdef CONFIG_PROFILER
int64_t kqemu_time;
int64_t qemu_time;
int64_t kqemu_exec_count;
int64_t dev_time;
int64_t kqemu_ret_int_count;
int64_t kqemu_ret_excp_count;
int64_t kqemu_ret_intr_count;
static void do_info_profile(Monitor *mon)
{
int64_t total;
total = qemu_time;
if (total == 0)
total = 1;
monitor_printf(mon, "async time %" PRId64 " (%0.3f)\n",
dev_time, dev_time / (double)ticks_per_sec);
monitor_printf(mon, "qemu time %" PRId64 " (%0.3f)\n",
qemu_time, qemu_time / (double)ticks_per_sec);
monitor_printf(mon, "kqemu time %" PRId64 " (%0.3f %0.1f%%) count=%"
PRId64 " int=%" PRId64 " excp=%" PRId64 " intr=%"
PRId64 "\n",
kqemu_time, kqemu_time / (double)ticks_per_sec,
kqemu_time / (double)total * 100.0,
kqemu_exec_count,
kqemu_ret_int_count,
kqemu_ret_excp_count,
kqemu_ret_intr_count);
qemu_time = 0;
kqemu_time = 0;
kqemu_exec_count = 0;
dev_time = 0;
kqemu_ret_int_count = 0;
kqemu_ret_excp_count = 0;
kqemu_ret_intr_count = 0;
#ifdef CONFIG_KQEMU
kqemu_record_dump();
#endif
}
#else
static void do_info_profile(Monitor *mon)
{
monitor_printf(mon, "Internal profiler not compiled\n");
}
#endif
/* Capture support */
static LIST_HEAD (capture_list_head, CaptureState) capture_head;
static void do_info_capture(Monitor *mon)
{
int i;
CaptureState *s;
for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
monitor_printf(mon, "[%d]: ", i);
s->ops.info (s->opaque);
}
}
#ifdef HAS_AUDIO
static void do_stop_capture(Monitor *mon, int n)
{
int i;
CaptureState *s;
for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
if (i == n) {
s->ops.destroy (s->opaque);
LIST_REMOVE (s, entries);
qemu_free (s);
return;
}
}
}
static void do_wav_capture(Monitor *mon, const char *path,
int has_freq, int freq,
int has_bits, int bits,
int has_channels, int nchannels)
{
CaptureState *s;
s = qemu_mallocz (sizeof (*s));
freq = has_freq ? freq : 44100;
bits = has_bits ? bits : 16;
nchannels = has_channels ? nchannels : 2;
if (wav_start_capture (s, path, freq, bits, nchannels)) {
monitor_printf(mon, "Faied to add wave capture\n");
qemu_free (s);
}
LIST_INSERT_HEAD (&capture_head, s, entries);
}
#endif
#if defined(TARGET_I386)
static void do_inject_nmi(Monitor *mon, int cpu_index)
{
CPUState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu)
if (env->cpu_index == cpu_index) {
cpu_interrupt(env, CPU_INTERRUPT_NMI);
break;
}
}
#endif
static void do_info_status(Monitor *mon)
{
if (vm_running) {
if (singlestep) {
monitor_printf(mon, "VM status: running (single step mode)\n");
} else {
monitor_printf(mon, "VM status: running\n");
}
} else
monitor_printf(mon, "VM status: paused\n");
}
static void do_balloon(Monitor *mon, int value)
{
ram_addr_t target = value;
qemu_balloon(target << 20);
}
static void do_info_balloon(Monitor *mon)
{
ram_addr_t actual;
actual = qemu_balloon_status();
if (kvm_enabled() && !kvm_has_sync_mmu())
monitor_printf(mon, "Using KVM without synchronous MMU, "
"ballooning disabled\n");
else if (actual == 0)
monitor_printf(mon, "Ballooning not activated in VM\n");
else
monitor_printf(mon, "balloon: actual=%d\n", (int)(actual >> 20));
}
static void do_acl(Monitor *mon,
const char *command,
const char *aclname,
const char *match,
int has_index,
int index)
{
qemu_acl *acl;
acl = qemu_acl_find(aclname);
if (!acl) {
monitor_printf(mon, "acl: unknown list '%s'\n", aclname);
return;
}
if (strcmp(command, "show") == 0) {
int i = 0;
qemu_acl_entry *entry;
monitor_printf(mon, "policy: %s\n",
acl->defaultDeny ? "deny" : "allow");
TAILQ_FOREACH(entry, &acl->entries, next) {
i++;
monitor_printf(mon, "%d: %s %s\n", i,
entry->deny ? "deny" : "allow",
entry->match);
}
} else if (strcmp(command, "reset") == 0) {
qemu_acl_reset(acl);
monitor_printf(mon, "acl: removed all rules\n");
} else if (strcmp(command, "policy") == 0) {
if (!match) {
monitor_printf(mon, "acl: missing policy parameter\n");
return;
}
if (strcmp(match, "allow") == 0) {
acl->defaultDeny = 0;
monitor_printf(mon, "acl: policy set to 'allow'\n");
} else if (strcmp(match, "deny") == 0) {
acl->defaultDeny = 1;
monitor_printf(mon, "acl: policy set to 'deny'\n");
} else {
monitor_printf(mon, "acl: unknown policy '%s', expected 'deny' or 'allow'\n", match);
}
} else if ((strcmp(command, "allow") == 0) ||
(strcmp(command, "deny") == 0)) {
int deny = strcmp(command, "deny") == 0 ? 1 : 0;
int ret;
if (!match) {
monitor_printf(mon, "acl: missing match parameter\n");
return;
}
if (has_index)
ret = qemu_acl_insert(acl, deny, match, index);
else
ret = qemu_acl_append(acl, deny, match);
if (ret < 0)
monitor_printf(mon, "acl: unable to add acl entry\n");
else
monitor_printf(mon, "acl: added rule at position %d\n", ret);
} else if (strcmp(command, "remove") == 0) {
int ret;
if (!match) {
monitor_printf(mon, "acl: missing match parameter\n");
return;
}
ret = qemu_acl_remove(acl, match);
if (ret < 0)
monitor_printf(mon, "acl: no matching acl entry\n");
else
monitor_printf(mon, "acl: removed rule at position %d\n", ret);
} else {
monitor_printf(mon, "acl: unknown command '%s'\n", command);
}
}
static const mon_cmd_t mon_cmds[] = {
#include "qemu-monitor.h"
{ NULL, NULL, },
};
/* Please update qemu-monitor.hx when adding or changing commands */
static const mon_cmd_t info_cmds[] = {
{ "version", "", do_info_version,
"", "show the version of QEMU" },
{ "network", "", do_info_network,
"", "show the network state" },
{ "chardev", "", qemu_chr_info,
"", "show the character devices" },
{ "block", "", bdrv_info,
"", "show the block devices" },
{ "blockstats", "", bdrv_info_stats,
"", "show block device statistics" },
{ "registers", "", do_info_registers,
"", "show the cpu registers" },
{ "cpus", "", do_info_cpus,
"", "show infos for each CPU" },
{ "history", "", do_info_history,
"", "show the command line history", },
{ "irq", "", irq_info,
"", "show the interrupts statistics (if available)", },
{ "pic", "", pic_info,
"", "show i8259 (PIC) state", },
{ "pci", "", pci_info,
"", "show PCI info", },
#if defined(TARGET_I386) || defined(TARGET_SH4)
{ "tlb", "", tlb_info,
"", "show virtual to physical memory mappings", },
#endif
#if defined(TARGET_I386)
{ "mem", "", mem_info,
"", "show the active virtual memory mappings", },
{ "hpet", "", do_info_hpet,
"", "show state of HPET", },
#endif
{ "jit", "", do_info_jit,
"", "show dynamic compiler info", },
{ "kqemu", "", do_info_kqemu,
"", "show KQEMU information", },
{ "kvm", "", do_info_kvm,
"", "show KVM information", },
{ "numa", "", do_info_numa,
"", "show NUMA information", },
{ "usb", "", usb_info,
"", "show guest USB devices", },
{ "usbhost", "", usb_host_info,
"", "show host USB devices", },
{ "profile", "", do_info_profile,
"", "show profiling information", },
{ "capture", "", do_info_capture,
"", "show capture information" },
{ "snapshots", "", do_info_snapshots,
"", "show the currently saved VM snapshots" },
{ "status", "", do_info_status,
"", "show the current VM status (running|paused)" },
{ "pcmcia", "", pcmcia_info,
"", "show guest PCMCIA status" },
{ "mice", "", do_info_mice,
"", "show which guest mouse is receiving events" },
{ "vnc", "", do_info_vnc,
"", "show the vnc server status"},
{ "name", "", do_info_name,
"", "show the current VM name" },
{ "uuid", "", do_info_uuid,
"", "show the current VM UUID" },
#if defined(TARGET_PPC)
{ "cpustats", "", do_info_cpu_stats,
"", "show CPU statistics", },
#endif
#if defined(CONFIG_SLIRP)
{ "slirp", "", do_info_slirp,
"", "show SLIRP statistics", },
#endif
{ "migrate", "", do_info_migrate, "", "show migration status" },
{ "balloon", "", do_info_balloon,
"", "show balloon information" },
{ "qtree", "", do_info_qtree,
"", "show device tree" },
{ NULL, NULL, },
};
/*******************************************************************/
static const char *pch;
static jmp_buf expr_env;
#define MD_TLONG 0
#define MD_I32 1
typedef struct MonitorDef {
const char *name;
int offset;
target_long (*get_value)(const struct MonitorDef *md, int val);
int type;
} MonitorDef;
#if defined(TARGET_I386)
static target_long monitor_get_pc (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
if (!env)
return 0;
return env->eip + env->segs[R_CS].base;
}
#endif
#if defined(TARGET_PPC)
static target_long monitor_get_ccr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
unsigned int u;
int i;
if (!env)
return 0;
u = 0;
for (i = 0; i < 8; i++)
u |= env->crf[i] << (32 - (4 * i));
return u;
}
static target_long monitor_get_msr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
if (!env)
return 0;
return env->msr;
}
static target_long monitor_get_xer (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
if (!env)
return 0;
return env->xer;
}
static target_long monitor_get_decr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
if (!env)
return 0;
return cpu_ppc_load_decr(env);
}
static target_long monitor_get_tbu (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
if (!env)
return 0;
return cpu_ppc_load_tbu(env);
}
static target_long monitor_get_tbl (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
if (!env)
return 0;
return cpu_ppc_load_tbl(env);
}
#endif
#if defined(TARGET_SPARC)
#ifndef TARGET_SPARC64
static target_long monitor_get_psr (const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
if (!env)
return 0;
return GET_PSR(env);
}
#endif
static target_long monitor_get_reg(const struct MonitorDef *md, int val)
{
CPUState *env = mon_get_cpu();
if (!env)
return 0;
return env->regwptr[val];
}
#endif
static const MonitorDef monitor_defs[] = {
#ifdef TARGET_I386
#define SEG(name, seg) \
{ name, offsetof(CPUState, segs[seg].selector), NULL, MD_I32 },\
{ name ".base", offsetof(CPUState, segs[seg].base) },\
{ name ".limit", offsetof(CPUState, segs[seg].limit), NULL, MD_I32 },
{ "eax", offsetof(CPUState, regs[0]) },
{ "ecx", offsetof(CPUState, regs[1]) },
{ "edx", offsetof(CPUState, regs[2]) },
{ "ebx", offsetof(CPUState, regs[3]) },
{ "esp|sp", offsetof(CPUState, regs[4]) },
{ "ebp|fp", offsetof(CPUState, regs[5]) },
{ "esi", offsetof(CPUState, regs[6]) },
{ "edi", offsetof(CPUState, regs[7]) },
#ifdef TARGET_X86_64
{ "r8", offsetof(CPUState, regs[8]) },
{ "r9", offsetof(CPUState, regs[9]) },
{ "r10", offsetof(CPUState, regs[10]) },
{ "r11", offsetof(CPUState, regs[11]) },
{ "r12", offsetof(CPUState, regs[12]) },
{ "r13", offsetof(CPUState, regs[13]) },
{ "r14", offsetof(CPUState, regs[14]) },
{ "r15", offsetof(CPUState, regs[15]) },
#endif
{ "eflags", offsetof(CPUState, eflags) },
{ "eip", offsetof(CPUState, eip) },
SEG("cs", R_CS)
SEG("ds", R_DS)
SEG("es", R_ES)
SEG("ss", R_SS)
SEG("fs", R_FS)
SEG("gs", R_GS)
{ "pc", 0, monitor_get_pc, },
#elif defined(TARGET_PPC)
/* General purpose registers */
{ "r0", offsetof(CPUState, gpr[0]) },
{ "r1", offsetof(CPUState, gpr[1]) },
{ "r2", offsetof(CPUState, gpr[2]) },
{ "r3", offsetof(CPUState, gpr[3]) },
{ "r4", offsetof(CPUState, gpr[4]) },
{ "r5", offsetof(CPUState, gpr[5]) },
{ "r6", offsetof(CPUState, gpr[6]) },
{ "r7", offsetof(CPUState, gpr[7]) },
{ "r8", offsetof(CPUState, gpr[8]) },
{ "r9", offsetof(CPUState, gpr[9]) },
{ "r10", offsetof(CPUState, gpr[10]) },
{ "r11", offsetof(CPUState, gpr[11]) },
{ "r12", offsetof(CPUState, gpr[12]) },
{ "r13", offsetof(CPUState, gpr[13]) },
{ "r14", offsetof(CPUState, gpr[14]) },
{ "r15", offsetof(CPUState, gpr[15]) },
{ "r16", offsetof(CPUState, gpr[16]) },
{ "r17", offsetof(CPUState, gpr[17]) },
{ "r18", offsetof(CPUState, gpr[18]) },
{ "r19", offsetof(CPUState, gpr[19]) },
{ "r20", offsetof(CPUState, gpr[20]) },
{ "r21", offsetof(CPUState, gpr[21]) },
{ "r22", offsetof(CPUState, gpr[22]) },
{ "r23", offsetof(CPUState, gpr[23]) },
{ "r24", offsetof(CPUState, gpr[24]) },
{ "r25", offsetof(CPUState, gpr[25]) },
{ "r26", offsetof(CPUState, gpr[26]) },
{ "r27", offsetof(CPUState, gpr[27]) },
{ "r28", offsetof(CPUState, gpr[28]) },
{ "r29", offsetof(CPUState, gpr[29]) },
{ "r30", offsetof(CPUState, gpr[30]) },
{ "r31", offsetof(CPUState, gpr[31]) },
/* Floating point registers */
{ "f0", offsetof(CPUState, fpr[0]) },
{ "f1", offsetof(CPUState, fpr[1]) },
{ "f2", offsetof(CPUState, fpr[2]) },
{ "f3", offsetof(CPUState, fpr[3]) },
{ "f4", offsetof(CPUState, fpr[4]) },
{ "f5", offsetof(CPUState, fpr[5]) },
{ "f6", offsetof(CPUState, fpr[6]) },
{ "f7", offsetof(CPUState, fpr[7]) },
{ "f8", offsetof(CPUState, fpr[8]) },
{ "f9", offsetof(CPUState, fpr[9]) },
{ "f10", offsetof(CPUState, fpr[10]) },
{ "f11", offsetof(CPUState, fpr[11]) },
{ "f12", offsetof(CPUState, fpr[12]) },
{ "f13", offsetof(CPUState, fpr[13]) },
{ "f14", offsetof(CPUState, fpr[14]) },
{ "f15", offsetof(CPUState, fpr[15]) },
{ "f16", offsetof(CPUState, fpr[16]) },
{ "f17", offsetof(CPUState, fpr[17]) },
{ "f18", offsetof(CPUState, fpr[18]) },
{ "f19", offsetof(CPUState, fpr[19]) },
{ "f20", offsetof(CPUState, fpr[20]) },
{ "f21", offsetof(CPUState, fpr[21]) },
{ "f22", offsetof(CPUState, fpr[22]) },
{ "f23", offsetof(CPUState, fpr[23]) },
{ "f24", offsetof(CPUState, fpr[24]) },
{ "f25", offsetof(CPUState, fpr[25]) },
{ "f26", offsetof(CPUState, fpr[26]) },
{ "f27", offsetof(CPUState, fpr[27]) },
{ "f28", offsetof(CPUState, fpr[28]) },
{ "f29", offsetof(CPUState, fpr[29]) },
{ "f30", offsetof(CPUState, fpr[30]) },
{ "f31", offsetof(CPUState, fpr[31]) },
{ "fpscr", offsetof(CPUState, fpscr) },
/* Next instruction pointer */
{ "nip|pc", offsetof(CPUState, nip) },
{ "lr", offsetof(CPUState, lr) },
{ "ctr", offsetof(CPUState, ctr) },
{ "decr", 0, &monitor_get_decr, },
{ "ccr", 0, &monitor_get_ccr, },
/* Machine state register */
{ "msr", 0, &monitor_get_msr, },
{ "xer", 0, &monitor_get_xer, },
{ "tbu", 0, &monitor_get_tbu, },
{ "tbl", 0, &monitor_get_tbl, },
#if defined(TARGET_PPC64)
/* Address space register */
{ "asr", offsetof(CPUState, asr) },
#endif
/* Segment registers */
{ "sdr1", offsetof(CPUState, sdr1) },
{ "sr0", offsetof(CPUState, sr[0]) },
{ "sr1", offsetof(CPUState, sr[1]) },
{ "sr2", offsetof(CPUState, sr[2]) },
{ "sr3", offsetof(CPUState, sr[3]) },
{ "sr4", offsetof(CPUState, sr[4]) },
{ "sr5", offsetof(CPUState, sr[5]) },
{ "sr6", offsetof(CPUState, sr[6]) },
{ "sr7", offsetof(CPUState, sr[7]) },
{ "sr8", offsetof(CPUState, sr[8]) },
{ "sr9", offsetof(CPUState, sr[9]) },
{ "sr10", offsetof(CPUState, sr[10]) },
{ "sr11", offsetof(CPUState, sr[11]) },
{ "sr12", offsetof(CPUState, sr[12]) },
{ "sr13", offsetof(CPUState, sr[13]) },
{ "sr14", offsetof(CPUState, sr[14]) },
{ "sr15", offsetof(CPUState, sr[15]) },
/* Too lazy to put BATs and SPRs ... */
#elif defined(TARGET_SPARC)
{ "g0", offsetof(CPUState, gregs[0]) },
{ "g1", offsetof(CPUState, gregs[1]) },
{ "g2", offsetof(CPUState, gregs[2]) },
{ "g3", offsetof(CPUState, gregs[3]) },
{ "g4", offsetof(CPUState, gregs[4]) },
{ "g5", offsetof(CPUState, gregs[5]) },
{ "g6", offsetof(CPUState, gregs[6]) },
{ "g7", offsetof(CPUState, gregs[7]) },
{ "o0", 0, monitor_get_reg },
{ "o1", 1, monitor_get_reg },
{ "o2", 2, monitor_get_reg },
{ "o3", 3, monitor_get_reg },
{ "o4", 4, monitor_get_reg },
{ "o5", 5, monitor_get_reg },
{ "o6", 6, monitor_get_reg },
{ "o7", 7, monitor_get_reg },
{ "l0", 8, monitor_get_reg },
{ "l1", 9, monitor_get_reg },
{ "l2", 10, monitor_get_reg },
{ "l3", 11, monitor_get_reg },
{ "l4", 12, monitor_get_reg },
{ "l5", 13, monitor_get_reg },
{ "l6", 14, monitor_get_reg },
{ "l7", 15, monitor_get_reg },
{ "i0", 16, monitor_get_reg },
{ "i1", 17, monitor_get_reg },
{ "i2", 18, monitor_get_reg },
{ "i3", 19, monitor_get_reg },
{ "i4", 20, monitor_get_reg },
{ "i5", 21, monitor_get_reg },
{ "i6", 22, monitor_get_reg },
{ "i7", 23, monitor_get_reg },
{ "pc", offsetof(CPUState, pc) },
{ "npc", offsetof(CPUState, npc) },
{ "y", offsetof(CPUState, y) },
#ifndef TARGET_SPARC64
{ "psr", 0, &monitor_get_psr, },
{ "wim", offsetof(CPUState, wim) },
#endif
{ "tbr", offsetof(CPUState, tbr) },
{ "fsr", offsetof(CPUState, fsr) },
{ "f0", offsetof(CPUState, fpr[0]) },
{ "f1", offsetof(CPUState, fpr[1]) },
{ "f2", offsetof(CPUState, fpr[2]) },
{ "f3", offsetof(CPUState, fpr[3]) },
{ "f4", offsetof(CPUState, fpr[4]) },
{ "f5", offsetof(CPUState, fpr[5]) },
{ "f6", offsetof(CPUState, fpr[6]) },
{ "f7", offsetof(CPUState, fpr[7]) },
{ "f8", offsetof(CPUState, fpr[8]) },
{ "f9", offsetof(CPUState, fpr[9]) },
{ "f10", offsetof(CPUState, fpr[10]) },
{ "f11", offsetof(CPUState, fpr[11]) },
{ "f12", offsetof(CPUState, fpr[12]) },
{ "f13", offsetof(CPUState, fpr[13]) },
{ "f14", offsetof(CPUState, fpr[14]) },
{ "f15", offsetof(CPUState, fpr[15]) },
{ "f16", offsetof(CPUState, fpr[16]) },
{ "f17", offsetof(CPUState, fpr[17]) },
{ "f18", offsetof(CPUState, fpr[18]) },
{ "f19", offsetof(CPUState, fpr[19]) },
{ "f20", offsetof(CPUState, fpr[20]) },
{ "f21", offsetof(CPUState, fpr[21]) },
{ "f22", offsetof(CPUState, fpr[22]) },
{ "f23", offsetof(CPUState, fpr[23]) },
{ "f24", offsetof(CPUState, fpr[24]) },
{ "f25", offsetof(CPUState, fpr[25]) },
{ "f26", offsetof(CPUState, fpr[26]) },
{ "f27", offsetof(CPUState, fpr[27]) },
{ "f28", offsetof(CPUState, fpr[28]) },
{ "f29", offsetof(CPUState, fpr[29]) },
{ "f30", offsetof(CPUState, fpr[30]) },
{ "f31", offsetof(CPUState, fpr[31]) },
#ifdef TARGET_SPARC64
{ "f32", offsetof(CPUState, fpr[32]) },
{ "f34", offsetof(CPUState, fpr[34]) },
{ "f36", offsetof(CPUState, fpr[36]) },
{ "f38", offsetof(CPUState, fpr[38]) },
{ "f40", offsetof(CPUState, fpr[40]) },
{ "f42", offsetof(CPUState, fpr[42]) },
{ "f44", offsetof(CPUState, fpr[44]) },
{ "f46", offsetof(CPUState, fpr[46]) },
{ "f48", offsetof(CPUState, fpr[48]) },
{ "f50", offsetof(CPUState, fpr[50]) },
{ "f52", offsetof(CPUState, fpr[52]) },
{ "f54", offsetof(CPUState, fpr[54]) },
{ "f56", offsetof(CPUState, fpr[56]) },
{ "f58", offsetof(CPUState, fpr[58]) },
{ "f60", offsetof(CPUState, fpr[60]) },
{ "f62", offsetof(CPUState, fpr[62]) },
{ "asi", offsetof(CPUState, asi) },
{ "pstate", offsetof(CPUState, pstate) },
{ "cansave", offsetof(CPUState, cansave) },
{ "canrestore", offsetof(CPUState, canrestore) },
{ "otherwin", offsetof(CPUState, otherwin) },
{ "wstate", offsetof(CPUState, wstate) },
{ "cleanwin", offsetof(CPUState, cleanwin) },
{ "fprs", offsetof(CPUState, fprs) },
#endif
#endif
{ NULL },
};
static void expr_error(Monitor *mon, const char *msg)
{
monitor_printf(mon, "%s\n", msg);
longjmp(expr_env, 1);
}
/* return 0 if OK, -1 if not found, -2 if no CPU defined */
static int get_monitor_def(target_long *pval, const char *name)
{
const MonitorDef *md;
void *ptr;
for(md = monitor_defs; md->name != NULL; md++) {
if (compare_cmd(name, md->name)) {
if (md->get_value) {
*pval = md->get_value(md, md->offset);
} else {
CPUState *env = mon_get_cpu();
if (!env)
return -2;
ptr = (uint8_t *)env + md->offset;
switch(md->type) {
case MD_I32:
*pval = *(int32_t *)ptr;
break;
case MD_TLONG:
*pval = *(target_long *)ptr;
break;
default:
*pval = 0;
break;
}
}
return 0;
}
}
return -1;
}
static void next(void)
{
if (pch != '\0') {
pch++;
while (qemu_isspace(*pch))
pch++;
}
}
static int64_t expr_sum(Monitor *mon);
static int64_t expr_unary(Monitor *mon)
{
int64_t n;
char *p;
int ret;
switch(*pch) {
case '+':
next();
n = expr_unary(mon);
break;
case '-':
next();
n = -expr_unary(mon);
break;
case '~':
next();
n = ~expr_unary(mon);
break;
case '(':
next();
n = expr_sum(mon);
if (*pch != ')') {
expr_error(mon, "')' expected");
}
next();
break;
case '\'':
pch++;
if (*pch == '\0')
expr_error(mon, "character constant expected");
n = *pch;
pch++;
if (*pch != '\'')
expr_error(mon, "missing terminating \' character");
next();
break;
case '$':
{
char buf[128], *q;
target_long reg=0;
pch++;
q = buf;
while ((*pch >= 'a' && *pch <= 'z') ||
(*pch >= 'A' && *pch <= 'Z') ||
(*pch >= '0' && *pch <= '9') ||
*pch == '_' || *pch == '.') {
if ((q - buf) < sizeof(buf) - 1)
*q++ = *pch;
pch++;
}
while (qemu_isspace(*pch))
pch++;
*q = 0;
ret = get_monitor_def(&reg, buf);
if (ret == -1)
expr_error(mon, "unknown register");
else if (ret == -2)
expr_error(mon, "no cpu defined");
n = reg;
}
break;
case '\0':
expr_error(mon, "unexpected end of expression");
n = 0;
break;
default:
#if TARGET_PHYS_ADDR_BITS > 32
n = strtoull(pch, &p, 0);
#else
n = strtoul(pch, &p, 0);
#endif
if (pch == p) {
expr_error(mon, "invalid char in expression");
}
pch = p;
while (qemu_isspace(*pch))
pch++;
break;
}
return n;
}
static int64_t expr_prod(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_unary(mon);
for(;;) {
op = *pch;
if (op != '*' && op != '/' && op != '%')
break;
next();
val2 = expr_unary(mon);
switch(op) {
default:
case '*':
val *= val2;
break;
case '/':
case '%':
if (val2 == 0)
expr_error(mon, "division by zero");
if (op == '/')
val /= val2;
else
val %= val2;
break;
}
}
return val;
}
static int64_t expr_logic(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_prod(mon);
for(;;) {
op = *pch;
if (op != '&' && op != '|' && op != '^')
break;
next();
val2 = expr_prod(mon);
switch(op) {
default:
case '&':
val &= val2;
break;
case '|':
val |= val2;
break;
case '^':
val ^= val2;
break;
}
}
return val;
}
static int64_t expr_sum(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_logic(mon);
for(;;) {
op = *pch;
if (op != '+' && op != '-')
break;
next();
val2 = expr_logic(mon);
if (op == '+')
val += val2;
else
val -= val2;
}
return val;
}
static int get_expr(Monitor *mon, int64_t *pval, const char **pp)
{
pch = *pp;
if (setjmp(expr_env)) {
*pp = pch;
return -1;
}
while (qemu_isspace(*pch))
pch++;
*pval = expr_sum(mon);
*pp = pch;
return 0;
}
static int get_str(char *buf, int buf_size, const char **pp)
{
const char *p;
char *q;
int c;
q = buf;
p = *pp;
while (qemu_isspace(*p))
p++;
if (*p == '\0') {
fail:
*q = '\0';
*pp = p;
return -1;
}
if (*p == '\"') {
p++;
while (*p != '\0' && *p != '\"') {
if (*p == '\\') {
p++;
c = *p++;
switch(c) {
case 'n':
c = '\n';
break;
case 'r':
c = '\r';
break;
case '\\':
case '\'':
case '\"':
break;
default:
qemu_printf("unsupported escape code: '\\%c'\n", c);
goto fail;
}
if ((q - buf) < buf_size - 1) {
*q++ = c;
}
} else {
if ((q - buf) < buf_size - 1) {
*q++ = *p;
}
p++;
}
}
if (*p != '\"') {
qemu_printf("unterminated string\n");
goto fail;
}
p++;
} else {
while (*p != '\0' && !qemu_isspace(*p)) {
if ((q - buf) < buf_size - 1) {
*q++ = *p;
}
p++;
}
}
*q = '\0';
*pp = p;
return 0;
}
/*
* Store the command-name in cmdname, and return a pointer to
* the remaining of the command string.
*/
static const char *get_command_name(const char *cmdline,
char *cmdname, size_t nlen)
{
size_t len;
const char *p, *pstart;
p = cmdline;
while (qemu_isspace(*p))
p++;
if (*p == '\0')
return NULL;
pstart = p;
while (*p != '\0' && *p != '/' && !qemu_isspace(*p))
p++;
len = p - pstart;
if (len > nlen - 1)
len = nlen - 1;
memcpy(cmdname, pstart, len);
cmdname[len] = '\0';
return p;
}
static int default_fmt_format = 'x';
static int default_fmt_size = 4;
#define MAX_ARGS 16
static void monitor_handle_command(Monitor *mon, const char *cmdline)
{
const char *p, *typestr;
int c, nb_args, i, has_arg;
const mon_cmd_t *cmd;
char cmdname[256];
char buf[1024];
void *str_allocated[MAX_ARGS];
void *args[MAX_ARGS];
void (*handler_0)(Monitor *mon);
void (*handler_1)(Monitor *mon, void *arg0);
void (*handler_2)(Monitor *mon, void *arg0, void *arg1);
void (*handler_3)(Monitor *mon, void *arg0, void *arg1, void *arg2);
void (*handler_4)(Monitor *mon, void *arg0, void *arg1, void *arg2,
void *arg3);
void (*handler_5)(Monitor *mon, void *arg0, void *arg1, void *arg2,
void *arg3, void *arg4);
void (*handler_6)(Monitor *mon, void *arg0, void *arg1, void *arg2,
void *arg3, void *arg4, void *arg5);
void (*handler_7)(Monitor *mon, void *arg0, void *arg1, void *arg2,
void *arg3, void *arg4, void *arg5, void *arg6);
#ifdef DEBUG
monitor_printf(mon, "command='%s'\n", cmdline);
#endif
/* extract the command name */
p = get_command_name(cmdline, cmdname, sizeof(cmdname));
if (!p)
return;
/* find the command */
for(cmd = mon_cmds; cmd->name != NULL; cmd++) {
if (compare_cmd(cmdname, cmd->name))
break;
}
if (cmd->name == NULL) {
monitor_printf(mon, "unknown command: '%s'\n", cmdname);
return;
}
for(i = 0; i < MAX_ARGS; i++)
str_allocated[i] = NULL;
/* parse the parameters */
typestr = cmd->args_type;
nb_args = 0;
for(;;) {
c = *typestr;
if (c == '\0')
break;
typestr++;
switch(c) {
case 'F':
case 'B':
case 's':
{
int ret;
char *str;
while (qemu_isspace(*p))
p++;
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
/* no optional string: NULL argument */
str = NULL;
goto add_str;
}
}
ret = get_str(buf, sizeof(buf), &p);
if (ret < 0) {
switch(c) {
case 'F':
monitor_printf(mon, "%s: filename expected\n",
cmdname);
break;
case 'B':
monitor_printf(mon, "%s: block device name expected\n",
cmdname);
break;
default:
monitor_printf(mon, "%s: string expected\n", cmdname);
break;
}
goto fail;
}
str = qemu_malloc(strlen(buf) + 1);
pstrcpy(str, sizeof(buf), buf);
str_allocated[nb_args] = str;
add_str:
if (nb_args >= MAX_ARGS) {
error_args:
monitor_printf(mon, "%s: too many arguments\n", cmdname);
goto fail;
}
args[nb_args++] = str;
}
break;
case '/':
{
int count, format, size;
while (qemu_isspace(*p))
p++;
if (*p == '/') {
/* format found */
p++;
count = 1;
if (qemu_isdigit(*p)) {
count = 0;
while (qemu_isdigit(*p)) {
count = count * 10 + (*p - '0');
p++;
}
}
size = -1;
format = -1;
for(;;) {
switch(*p) {
case 'o':
case 'd':
case 'u':
case 'x':
case 'i':
case 'c':
format = *p++;
break;
case 'b':
size = 1;
p++;
break;
case 'h':
size = 2;
p++;
break;
case 'w':
size = 4;
p++;
break;
case 'g':
case 'L':
size = 8;
p++;
break;
default:
goto next;
}
}
next:
if (*p != '\0' && !qemu_isspace(*p)) {
monitor_printf(mon, "invalid char in format: '%c'\n",
*p);
goto fail;
}
if (format < 0)
format = default_fmt_format;
if (format != 'i') {
/* for 'i', not specifying a size gives -1 as size */
if (size < 0)
size = default_fmt_size;
default_fmt_size = size;
}
default_fmt_format = format;
} else {
count = 1;
format = default_fmt_format;
if (format != 'i') {
size = default_fmt_size;
} else {
size = -1;
}
}
if (nb_args + 3 > MAX_ARGS)
goto error_args;
args[nb_args++] = (void*)(long)count;
args[nb_args++] = (void*)(long)format;
args[nb_args++] = (void*)(long)size;
}
break;
case 'i':
case 'l':
{
int64_t val;
while (qemu_isspace(*p))
p++;
if (*typestr == '?' || *typestr == '.') {
if (*typestr == '?') {
if (*p == '\0')
has_arg = 0;
else
has_arg = 1;
} else {
if (*p == '.') {
p++;
while (qemu_isspace(*p))
p++;
has_arg = 1;
} else {
has_arg = 0;
}
}
typestr++;
if (nb_args >= MAX_ARGS)
goto error_args;
args[nb_args++] = (void *)(long)has_arg;
if (!has_arg) {
if (nb_args >= MAX_ARGS)
goto error_args;
val = -1;
goto add_num;
}
}
if (get_expr(mon, &val, &p))
goto fail;
add_num:
if (c == 'i') {
if (nb_args >= MAX_ARGS)
goto error_args;
args[nb_args++] = (void *)(long)val;
} else {
if ((nb_args + 1) >= MAX_ARGS)
goto error_args;
#if TARGET_PHYS_ADDR_BITS > 32
args[nb_args++] = (void *)(long)((val >> 32) & 0xffffffff);
#else
args[nb_args++] = (void *)0;
#endif
args[nb_args++] = (void *)(long)(val & 0xffffffff);
}
}
break;
case '-':
{
int has_option;
/* option */
c = *typestr++;
if (c == '\0')
goto bad_type;
while (qemu_isspace(*p))
p++;
has_option = 0;
if (*p == '-') {
p++;
if (*p != c) {
monitor_printf(mon, "%s: unsupported option -%c\n",
cmdname, *p);
goto fail;
}
p++;
has_option = 1;
}
if (nb_args >= MAX_ARGS)
goto error_args;
args[nb_args++] = (void *)(long)has_option;
}
break;
default:
bad_type:
monitor_printf(mon, "%s: unknown type '%c'\n", cmdname, c);
goto fail;
}
}
/* check that all arguments were parsed */
while (qemu_isspace(*p))
p++;
if (*p != '\0') {
monitor_printf(mon, "%s: extraneous characters at the end of line\n",
cmdname);
goto fail;
}
switch(nb_args) {
case 0:
handler_0 = cmd->handler;
handler_0(mon);
break;
case 1:
handler_1 = cmd->handler;
handler_1(mon, args[0]);
break;
case 2:
handler_2 = cmd->handler;
handler_2(mon, args[0], args[1]);
break;
case 3:
handler_3 = cmd->handler;
handler_3(mon, args[0], args[1], args[2]);
break;
case 4:
handler_4 = cmd->handler;
handler_4(mon, args[0], args[1], args[2], args[3]);
break;
case 5:
handler_5 = cmd->handler;
handler_5(mon, args[0], args[1], args[2], args[3], args[4]);
break;
case 6:
handler_6 = cmd->handler;
handler_6(mon, args[0], args[1], args[2], args[3], args[4], args[5]);
break;
case 7:
handler_7 = cmd->handler;
handler_7(mon, args[0], args[1], args[2], args[3], args[4], args[5],
args[6]);
break;
default:
monitor_printf(mon, "unsupported number of arguments: %d\n", nb_args);
goto fail;
}
fail:
for(i = 0; i < MAX_ARGS; i++)
qemu_free(str_allocated[i]);
}
static void cmd_completion(const char *name, const char *list)
{
const char *p, *pstart;
char cmd[128];
int len;
p = list;
for(;;) {
pstart = p;
p = strchr(p, '|');
if (!p)
p = pstart + strlen(pstart);
len = p - pstart;
if (len > sizeof(cmd) - 2)
len = sizeof(cmd) - 2;
memcpy(cmd, pstart, len);
cmd[len] = '\0';
if (name[0] == '\0' || !strncmp(name, cmd, strlen(name))) {
readline_add_completion(cur_mon->rs, cmd);
}
if (*p == '\0')
break;
p++;
}
}
static void file_completion(const char *input)
{
DIR *ffs;
struct dirent *d;
char path[1024];
char file[1024], file_prefix[1024];
int input_path_len;
const char *p;
p = strrchr(input, '/');
if (!p) {
input_path_len = 0;
pstrcpy(file_prefix, sizeof(file_prefix), input);
pstrcpy(path, sizeof(path), ".");
} else {
input_path_len = p - input + 1;
memcpy(path, input, input_path_len);
if (input_path_len > sizeof(path) - 1)
input_path_len = sizeof(path) - 1;
path[input_path_len] = '\0';
pstrcpy(file_prefix, sizeof(file_prefix), p + 1);
}
#ifdef DEBUG_COMPLETION
monitor_printf(cur_mon, "input='%s' path='%s' prefix='%s'\n",
input, path, file_prefix);
#endif
ffs = opendir(path);
if (!ffs)
return;
for(;;) {
struct stat sb;
d = readdir(ffs);
if (!d)
break;
if (strstart(d->d_name, file_prefix, NULL)) {
memcpy(file, input, input_path_len);
if (input_path_len < sizeof(file))
pstrcpy(file + input_path_len, sizeof(file) - input_path_len,
d->d_name);
/* stat the file to find out if it's a directory.
* In that case add a slash to speed up typing long paths
*/
stat(file, &sb);
if(S_ISDIR(sb.st_mode))
pstrcat(file, sizeof(file), "/");
readline_add_completion(cur_mon->rs, file);
}
}
closedir(ffs);
}
static void block_completion_it(void *opaque, BlockDriverState *bs)
{
const char *name = bdrv_get_device_name(bs);
const char *input = opaque;
if (input[0] == '\0' ||
!strncmp(name, (char *)input, strlen(input))) {
readline_add_completion(cur_mon->rs, name);
}
}
/* NOTE: this parser is an approximate form of the real command parser */
static void parse_cmdline(const char *cmdline,
int *pnb_args, char **args)
{
const char *p;
int nb_args, ret;
char buf[1024];
p = cmdline;
nb_args = 0;
for(;;) {
while (qemu_isspace(*p))
p++;
if (*p == '\0')
break;
if (nb_args >= MAX_ARGS)
break;
ret = get_str(buf, sizeof(buf), &p);
args[nb_args] = qemu_strdup(buf);
nb_args++;
if (ret < 0)
break;
}
*pnb_args = nb_args;
}
static void monitor_find_completion(const char *cmdline)
{
const char *cmdname;
char *args[MAX_ARGS];
int nb_args, i, len;
const char *ptype, *str;
const mon_cmd_t *cmd;
const KeyDef *key;
parse_cmdline(cmdline, &nb_args, args);
#ifdef DEBUG_COMPLETION
for(i = 0; i < nb_args; i++) {
monitor_printf(cur_mon, "arg%d = '%s'\n", i, (char *)args[i]);
}
#endif
/* if the line ends with a space, it means we want to complete the
next arg */
len = strlen(cmdline);
if (len > 0 && qemu_isspace(cmdline[len - 1])) {
if (nb_args >= MAX_ARGS)
return;
args[nb_args++] = qemu_strdup("");
}
if (nb_args <= 1) {
/* command completion */
if (nb_args == 0)
cmdname = "";
else
cmdname = args[0];
readline_set_completion_index(cur_mon->rs, strlen(cmdname));
for(cmd = mon_cmds; cmd->name != NULL; cmd++) {
cmd_completion(cmdname, cmd->name);
}
} else {
/* find the command */
for(cmd = mon_cmds; cmd->name != NULL; cmd++) {
if (compare_cmd(args[0], cmd->name))
goto found;
}
return;
found:
ptype = cmd->args_type;
for(i = 0; i < nb_args - 2; i++) {
if (*ptype != '\0') {
ptype++;
while (*ptype == '?')
ptype++;
}
}
str = args[nb_args - 1];
switch(*ptype) {
case 'F':
/* file completion */
readline_set_completion_index(cur_mon->rs, strlen(str));
file_completion(str);
break;
case 'B':
/* block device name completion */
readline_set_completion_index(cur_mon->rs, strlen(str));
bdrv_iterate(block_completion_it, (void *)str);
break;
case 's':
/* XXX: more generic ? */
if (!strcmp(cmd->name, "info")) {
readline_set_completion_index(cur_mon->rs, strlen(str));
for(cmd = info_cmds; cmd->name != NULL; cmd++) {
cmd_completion(str, cmd->name);
}
} else if (!strcmp(cmd->name, "sendkey")) {
char *sep = strrchr(str, '-');
if (sep)
str = sep + 1;
readline_set_completion_index(cur_mon->rs, strlen(str));
for(key = key_defs; key->name != NULL; key++) {
cmd_completion(str, key->name);
}
}
break;
default:
break;
}
}
for(i = 0; i < nb_args; i++)
qemu_free(args[i]);
}
static int monitor_can_read(void *opaque)
{
Monitor *mon = opaque;
return (mon->suspend_cnt == 0) ? 128 : 0;
}
static void monitor_read(void *opaque, const uint8_t *buf, int size)
{
Monitor *old_mon = cur_mon;
int i;
cur_mon = opaque;
if (cur_mon->rs) {
for (i = 0; i < size; i++)
readline_handle_byte(cur_mon->rs, buf[i]);
} else {
if (size == 0 || buf[size - 1] != 0)
monitor_printf(cur_mon, "corrupted command\n");
else
monitor_handle_command(cur_mon, (char *)buf);
}
cur_mon = old_mon;
}
static void monitor_command_cb(Monitor *mon, const char *cmdline, void *opaque)
{
monitor_suspend(mon);
monitor_handle_command(mon, cmdline);
monitor_resume(mon);
}
int monitor_suspend(Monitor *mon)
{
if (!mon->rs)
return -ENOTTY;
mon->suspend_cnt++;
return 0;
}
void monitor_resume(Monitor *mon)
{
if (!mon->rs)
return;
if (--mon->suspend_cnt == 0)
readline_show_prompt(mon->rs);
}
static void monitor_event(void *opaque, int event)
{
Monitor *mon = opaque;
switch (event) {
case CHR_EVENT_MUX_IN:
readline_restart(mon->rs);
monitor_resume(mon);
monitor_flush(mon);
break;
case CHR_EVENT_MUX_OUT:
if (mon->suspend_cnt == 0)
monitor_printf(mon, "\n");
monitor_flush(mon);
monitor_suspend(mon);
break;
case CHR_EVENT_RESET:
monitor_printf(mon, "QEMU %s monitor - type 'help' for more "
"information\n", QEMU_VERSION);
if (mon->chr->focus == 0)
readline_show_prompt(mon->rs);
break;
}
}
/*
* Local variables:
* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 8
* End:
*/
void monitor_init(CharDriverState *chr, int flags)
{
static int is_first_init = 1;
Monitor *mon;
if (is_first_init) {
key_timer = qemu_new_timer(vm_clock, release_keys, NULL);
is_first_init = 0;
}
mon = qemu_mallocz(sizeof(*mon));
mon->chr = chr;
mon->flags = flags;
if (mon->chr->focus != 0)
mon->suspend_cnt = 1; /* mux'ed monitors start suspended */
if (flags & MONITOR_USE_READLINE) {
mon->rs = readline_init(mon, monitor_find_completion);
monitor_read_command(mon, 0);
}
qemu_chr_add_handlers(chr, monitor_can_read, monitor_read, monitor_event,
mon);
LIST_INSERT_HEAD(&mon_list, mon, entry);
if (!cur_mon || (flags & MONITOR_IS_DEFAULT))
cur_mon = mon;
}
static void bdrv_password_cb(Monitor *mon, const char *password, void *opaque)
{
BlockDriverState *bs = opaque;
int ret = 0;
if (bdrv_set_key(bs, password) != 0) {
monitor_printf(mon, "invalid password\n");
ret = -EPERM;
}
if (mon->password_completion_cb)
mon->password_completion_cb(mon->password_opaque, ret);
monitor_read_command(mon, 1);
}
void monitor_read_bdrv_key_start(Monitor *mon, BlockDriverState *bs,
BlockDriverCompletionFunc *completion_cb,
void *opaque)
{
int err;
if (!bdrv_key_required(bs)) {
if (completion_cb)
completion_cb(opaque, 0);
return;
}
monitor_printf(mon, "%s (%s) is encrypted.\n", bdrv_get_device_name(bs),
bdrv_get_encrypted_filename(bs));
mon->password_completion_cb = completion_cb;
mon->password_opaque = opaque;
err = monitor_read_password(mon, bdrv_password_cb, bs);
if (err && completion_cb)
completion_cb(opaque, err);
}