Enable custom device support in fsdp checkpoint (#107289)
Fixes https://github.com/pytorch/pytorch/issues/104390
Enable custom device(privateuse1 backend) support in checkpointing by a dynamic abstract device module.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107289
Approved by: https://github.com/wz337
diff --git a/torch/_utils.py b/torch/_utils.py
index bcb2c3c..36142a6 100644
--- a/torch/_utils.py
+++ b/torch/_utils.py
@@ -1,4 +1,5 @@
import copyreg
+import functools
import sys
import traceback
import warnings
@@ -839,3 +840,13 @@
# Whether we are compiling with torch.compile or not
def is_compiling():
return False
+
+
+@functools.lru_cache(2)
+def _get_device_module(device_type: str):
+ device_module = getattr(torch, device_type, None)
+ if device_module is None:
+ raise RuntimeError(
+ f"Device '{device_type}' does not have a corresponding module registered as 'torch.{device_type}'."
+ )
+ return device_module
diff --git a/torch/distributed/checkpoint/_fsspec_filesystem.py b/torch/distributed/checkpoint/_fsspec_filesystem.py
index b8d1c24..0d37924 100644
--- a/torch/distributed/checkpoint/_fsspec_filesystem.py
+++ b/torch/distributed/checkpoint/_fsspec_filesystem.py
@@ -18,6 +18,7 @@
import torch
from fsspec.core import url_to_fs
from torch import Tensor
+from torch._utils import _get_device_module
from torch.distributed._shard._utils import narrow_tensor_by_index
from torch.distributed.checkpoint.metadata import Metadata, MetadataIndex
@@ -114,7 +115,7 @@
def __init__(
self,
resolve_fun: Callable,
- stream: Union[None, io.RawIOBase, torch._C._CudaStreamBase] = None,
+ stream: Union[None, io.RawIOBase, torch.Stream] = None,
inflight_threshhold: int = 1_000_000,
):
self.resolve_fun = resolve_fun
@@ -124,9 +125,11 @@
self.current_items: collections.deque = collections.deque()
self.idx = 0
self.started = False
- self.stream = stream or torch.cuda.current_stream()
- if self.stream != torch.cuda.current_stream():
- self.stream.wait_stream(torch.cuda.current_stream())
+ self.device_type = stream.device_type if stream else torch.device("cuda").type
+ self.device_module = _get_device_module(self.device_type)
+ self.stream = stream or self.device_module.current_stream()
+ if self.stream != self.device_module.current_stream():
+ self.stream.wait_stream(self.device_module.current_stream())
@property
def _done(self):
@@ -143,7 +146,7 @@
return drained
def _refill(self):
- with torch.cuda.stream(self.stream):
+ with self.device_module.stream(self.stream):
while (
not self._done
and self.in_flight_data < self.inflight_threshhold
@@ -151,7 +154,7 @@
_, obj = self.items[self.idx]
self.idx += 1
tensor = self.resolve_fun(obj).detach()
- if tensor.is_cuda:
+ if tensor.device.type == self.device_type:
tensor = tensor.to(device="cpu", non_blocking=True)
elif tensor.device == torch.device("cpu"):
if tensor.storage().size() != tensor.numel():
@@ -232,7 +235,7 @@
def _write_item(
- stream: Optional[Union[io.RawIOBase, torch._C._CudaStreamBase]],
+ stream: Optional[Union[io.RawIOBase, torch.Stream]],
data: Union[io.BytesIO, torch.Tensor],
write_item: WriteItem,
storage_key: str,
@@ -294,7 +297,7 @@
)
for tensor, write_item in loader.values():
- assert not tensor.is_cuda
+ assert tensor.is_cpu
write_results.append(
_write_item(stream, tensor, write_item, storage_key)
)
diff --git a/torch/distributed/checkpoint/_sharded_tensor_utils.py b/torch/distributed/checkpoint/_sharded_tensor_utils.py
index 8d39be2..07bbdc9 100644
--- a/torch/distributed/checkpoint/_sharded_tensor_utils.py
+++ b/torch/distributed/checkpoint/_sharded_tensor_utils.py
@@ -26,7 +26,7 @@
STATE_DICT_ITEM,
)
-from .utils import _element_wise_add
+from .utils import _element_wise_add, _normalize_device_info
# TODO: We need to refactor this code.
@@ -83,6 +83,7 @@
st_meta: ShardedTensorMetadata = copy.deepcopy(value.metadata())
other_rank = 0 if dist.get_rank() > 0 else 1
+ device_info = _normalize_device_info(inner_shard.tensor.device.type, 0)
# Remove the outer ST shard the inner ST covers
for i, shard_md in enumerate(st_meta.shards_metadata):
@@ -92,7 +93,7 @@
# Attribute other rank for the other shards
for shard_md in st_meta.shards_metadata:
- shard_md.placement = _remote_device(f"rank:{other_rank}/cuda:0")
+ shard_md.placement = _remote_device(f"rank:{other_rank}/{device_info}")
# Add other inner shards from the inner tensor
for inner_md in inner_st.metadata().shards_metadata:
@@ -104,7 +105,7 @@
inner_md.shard_offsets,
),
shard_sizes=inner_md.shard_sizes,
- placement=f"rank:{other_rank}/cuda:0",
+ placement=f"rank:{other_rank}/{device_info}",
)
)
diff --git a/torch/distributed/checkpoint/filesystem.py b/torch/distributed/checkpoint/filesystem.py
index c6ef58c..d23bf27 100644
--- a/torch/distributed/checkpoint/filesystem.py
+++ b/torch/distributed/checkpoint/filesystem.py
@@ -39,6 +39,7 @@
from .utils import _create_file_view
from torch.distributed._shard._utils import narrow_tensor_by_index
+from torch._utils import _get_device_module
__all__ = [
"FileSystemWriter",
@@ -126,9 +127,11 @@
self.current_items: collections.deque = collections.deque()
self.idx = 0
self.started = False
- self.stream = stream or torch.cuda.current_stream()
- if self.stream != torch.cuda.current_stream():
- self.stream.wait_stream(torch.cuda.current_stream())
+ self.device_type = stream.device_type if stream else torch.device("cuda").type
+ self.device_module = _get_device_module(self.device_type)
+ self.stream = stream or self.device_module.current_stream()
+ if self.stream != self.device_module.current_stream():
+ self.stream.wait_stream(self.device_module.current_stream())
@property
def _done(self):
@@ -145,7 +148,7 @@
return drained
def _refill(self):
- with torch.cuda.stream(self.stream):
+ with self.device_module.stream(self.stream):
while (
not self._done
and self.in_flight_data < self.inflight_threshhold
@@ -153,7 +156,7 @@
_, obj = self.items[self.idx]
self.idx += 1
tensor = self.resolve_fun(obj).detach()
- if tensor.is_cuda:
+ if tensor.device.type == self.device_type:
tensor = tensor.to(device="cpu", non_blocking=True)
elif tensor.device == torch.device("cpu"):
if tensor.storage().size() != tensor.numel():
@@ -292,7 +295,7 @@
)
for tensor, write_item in loader.values():
- assert not tensor.is_cuda
+ assert tensor.is_cpu
write_results.append(
_write_item(stream, tensor, write_item, storage_key)
)
diff --git a/torch/distributed/checkpoint/optimizer.py b/torch/distributed/checkpoint/optimizer.py
index 67e4504..0d359aa 100644
--- a/torch/distributed/checkpoint/optimizer.py
+++ b/torch/distributed/checkpoint/optimizer.py
@@ -38,8 +38,11 @@
from torch.distributed.checkpoint.utils import (
_element_wise_add,
_element_wise_sub,
+ _normalize_device_info
)
+from torch._utils import _get_device_module
+
STATE_DICT_2D_LAYOUT = Dict[str, Tuple[Optional[Sequence[int]], Sequence[int]]]
@@ -49,23 +52,27 @@
]
-def _gen_rank_device(global_rank: int) -> str:
- if torch.cuda.is_available():
- return f"cuda:{global_rank % torch.cuda.device_count()}"
+def _gen_rank_device(global_rank: int, device_type: str = "cuda") -> str:
+ if device_type == "cpu":
+ return "cpu"
+ device_module = _get_device_module(device_type)
+ if device_module.is_available():
+ return _normalize_device_info(device_type, global_rank % device_module.device_count())
return "cpu"
def _create_colwise_spec(
pg: Optional[dist.ProcessGroup] = None,
) -> ChunkShardingSpec:
+ pg_device_type = dist.distributed_c10d._get_pg_default_device(pg).type
if pg is None:
placements = [
- f"rank:{idx}/{_gen_rank_device(idx)}"
+ f"rank:{idx}/{_gen_rank_device(idx, pg_device_type)}"
for idx in range(dist.get_world_size())
]
else:
placements = [
- f"rank:{idx}/{_gen_rank_device(dist.get_global_rank(pg, idx))}"
+ f"rank:{idx}/{_gen_rank_device(dist.get_global_rank(pg, idx), pg_device_type)}"
for idx in range(pg.size())
]
return ChunkShardingSpec(
@@ -92,14 +99,14 @@
return False
-def _alloc_tensor(props: TensorProperties, size: Sequence[int]) -> torch.Tensor:
+def _alloc_tensor(props: TensorProperties, size: Sequence[int], device_type: str = "cuda") -> torch.Tensor:
return torch.empty(
size=size,
dtype=props.dtype,
layout=props.layout,
requires_grad=props.requires_grad,
pin_memory=props.pin_memory,
- device=cast(torch.device, torch.cuda.current_device()),
+ device=cast(torch.device, _get_device_module(device_type).current_device()),
)
@@ -255,15 +262,15 @@
metadata = storage_reader.read_metadata()
layout_specs, dp_pg = _get_state_dict_2d_layout(model_state_dict)
+ dp_pg_device_type = dist.distributed_c10d._get_pg_default_device(dp_pg).type
+ device_module = _get_device_module(dp_pg_device_type)
if dp_pg is None:
- sharding_spec = ChunkShardingSpec(
- dim=0,
- placements=[
- f"rank:{i}/cuda:{i % torch.cuda.device_count()}"
- for i in range(dist.get_world_size())
- ],
- )
+ placements = []
+ for i in range(dist.get_world_size()):
+ device_info = _normalize_device_info(dp_pg_device_type, i % device_module.device_count())
+ placements.append(f"rank:{i}/{device_info}")
+ sharding_spec = ChunkShardingSpec(dim=0, placements=placements) # type: ignore[arg-type]
else:
sharding_spec = _create_colwise_spec(dp_pg)
@@ -282,10 +289,10 @@
# value: TensorStorageMetadata
if value.size.numel() == 1:
- state_dict[key] = _alloc_tensor(value.properties, value.size)
+ state_dict[key] = _alloc_tensor(value.properties, value.size, dp_pg_device_type)
elif dp_pg is None:
state_dict[key] = _shard_tensor(
- _alloc_tensor(value.properties, value.size), sharding_spec
+ _alloc_tensor(value.properties, value.size, dp_pg_device_type), sharding_spec
)
else:
spec_key = key_path[2]
@@ -305,7 +312,7 @@
local_shards.append(
Shard(
tensor=_alloc_tensor(
- value.properties, shard_md.shard_sizes
+ value.properties, shard_md.shard_sizes, dp_pg_device_type
),
metadata=shard_md,
)
diff --git a/torch/distributed/checkpoint/utils.py b/torch/distributed/checkpoint/utils.py
index 546b0bc..d110503 100644
--- a/torch/distributed/checkpoint/utils.py
+++ b/torch/distributed/checkpoint/utils.py
@@ -355,6 +355,7 @@
def _element_wise_sub(a: Sequence[int], b: Sequence[int]) -> List[int]:
return [i_a - i_b for i_a, i_b in zip(a, b)]
+
class _ReaderView(io.IOBase):
def __init__(self, base_stream: io.IOBase, offset: int, len: int):
super().__init__()
@@ -386,6 +387,16 @@
def read(self, size=-1):
return self.base_stream.read(size)
+
def _create_file_view(file: io.IOBase, offset: int, length: int) -> io.IOBase:
# FIXME (kumpera) torch.load fails if we wrap with io.BufferedReader
return _ReaderView(file, offset, length)
+
+
+def _normalize_device_info(device_type: str, device_id: int) -> str:
+ """
+ Device info normalization.
+ """
+ if device_type == "cpu":
+ return "cpu"
+ return f"{device_type}:{device_id}"
diff --git a/torch/distributed/utils.py b/torch/distributed/utils.py
index eb7dc5a..c7ab8b9 100644
--- a/torch/distributed/utils.py
+++ b/torch/distributed/utils.py
@@ -107,7 +107,7 @@
with device_mod.stream(stream):
output = obj.to(target_device)
# synchronize with the copy stream
- with torch.cuda.device(target_device.index):
+ with device_mod.device(target_device.index):
current_stream = device_mod.current_stream()
# Sync the current stream with the copy stream
current_stream.wait_stream(stream)