blob: 060a33ca175ef114ffb2864bbc19badc4c8f82d5 [file] [log] [blame]
#include <ATen/FunctionalInverses.h>
#include <ATen/ATen.h>
#include <ATen/ExpandUtils.h>
#include <ATen/WrapDimUtilsMulti.h>
#include <utility>
namespace at {
namespace functionalization {
// This logic is similar to autograd code for view backwards calls.
// We can't easily share it though, because (eventually) these functions
// will all call `permute/unsqueeze_copy()` instead of `permute/unsqueeze`.
static Tensor permute_copy_inverse(const Tensor& self, IntArrayRef dims, bool reapply_views) {
// invert the permutation
auto ndims = dims.size();
std::vector<int64_t> dims_(ndims);
for(const auto i : c10::irange(ndims)) {
dims_[at::maybe_wrap_dim(dims[i], ndims)] = i;
}
if (reapply_views) {
return at::permute(self, dims_);
} else {
return at::permute_copy(self, dims_);
}
}
static Tensor unsqueeze_copy_to(const Tensor & self, c10::SymIntArrayRef sizes, bool reapply_views) {
auto result = self;
int64_t nDims = sizes.size();
for(const auto dim : c10::irange(nDims)) {
if (sizes[dim] == 1) {
if (reapply_views) {
result = at::unsqueeze(result, dim);
} else {
result = at::unsqueeze_copy(result, dim);
}
}
}
return result;
}
static Tensor unsqueeze_copy_to(const Tensor & self, IntArrayRef dim, c10::SymIntArrayRef sizes, bool reapply_views) {
const auto ndim = sizes.size();
const auto mask = at::dim_list_to_bitset(dim, ndim);
// in NumPy it's not an error to unsqueeze a scalar, but we still need to avoided
// unsqueezing in the backward.
if (ndim == 0) {
return self;
}
Tensor result = self;
for (const auto d : c10::irange(ndim)) {
if (mask.test(d) && sizes[d] == 1) {
if (reapply_views) {
result = at::unsqueeze(result, d);
} else {
result = at::unsqueeze_copy(result, d);
}
}
}
return result;
}
// Note [Functionalization Pass: View Inverses].
// This file contains the implementation of each "view inverse".
// These aren't really true inverses in the mathematically sense: each view inverse describes how to undo
// the original view (although it takes in different arguments).
//
// E.g. Below is an example of a program that has alias operations removed, and the role that view inverses play:
//
// normal program with views and mutations:
// view1 = input1.view_op(args...)
// view1.add_(1) (perform a mutation on the view, which should also modify input)
// version of the program with no aliasing, that instead uses view_inverse functions:
// view_copy1 = input1.view_copy_op(args...)
// view_copy1.add_(1) (perform a mutation on view_copy1. At this point, input1 is NOT modified)
// x = view_op_inverse(input1, view_copy1, args...)
//
// at this point, input1 and x should be equal
//
// Note that input1 is also passed as an argument to view_op_inverse in the above example.
// This isn't actually required for most view operators: it's only required for view ops
// where you can't figure out what the size of the base tensor is given just the view tensor and arguments.
// Examples are slice/select/scatter/squeeze/as_strided.
// We happen to be passing in the base tensor in all cases, mostly to make the codegen simpler.
// But you'll see below that the "base" argument is ignored by most view_inverse implementations.
// ----------------------------------------------------------
// Implementations of each view_inverse() function are below.
// One of these needs to be implemented for every existing non-composite view operator.
// The codegen automatically generates the corresponding function declaration.
// ----------------------------------------------------------
Tensor FunctionalInverses::_fw_primal_copy_inverse(const at::Tensor& base, const at::Tensor& mutated_view, bool reapply_views, int64_t level) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call _fw_primal() during the functionalization pass. For now, this is not supported.");
return Tensor();
}
Tensor FunctionalInverses::_make_dual_copy_inverse(const at::Tensor& base, const at::Tensor& mutated_view, bool reapply_views, const at::Tensor& tangent, int64_t level) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call _make_dual() during the functionalization pass. For now, this is not supported.");
return Tensor();
}
Tensor FunctionalInverses::view_as_real_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
if (reapply_views) {
return at::view_as_complex(mutated_view);
} else {
return at::view_as_complex_copy(mutated_view);
}
}
Tensor FunctionalInverses::view_as_complex_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
if (reapply_views) {
return at::view_as_real(mutated_view.resolve_conj());
} else {
return at::view_as_real_copy(mutated_view.resolve_conj());
}
}
Tensor FunctionalInverses::_conj_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
if (reapply_views) {
return at::_conj(mutated_view);
} else {
return at::_conj_copy(mutated_view);
}
}
Tensor FunctionalInverses::_neg_view_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
if (reapply_views) {
return at::_neg_view(mutated_view);
} else {
return at::_neg_view_copy(mutated_view);
}
}
Tensor FunctionalInverses::as_strided_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, at::SymIntArrayRef size, at::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset) {
// Pessimism: we can't reapply views for as_strided_scatter.
return base.as_strided_scatter_symint(mutated_view, size, stride, std::move(storage_offset));
}
Tensor FunctionalInverses::diagonal_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, int64_t offset, int64_t dim1, int64_t dim2) {
// Pessimism: we can't reapply views for slice_scatter.
return base.diagonal_scatter(mutated_view, offset, dim1, dim2);
}
Tensor FunctionalInverses::expand_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, at::SymIntArrayRef size, bool implicit) {
return at::sum_to(mutated_view, base.sym_sizes(),/*always_return_non_view=*/!reapply_views);
}
Tensor FunctionalInverses::permute_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, at::IntArrayRef dims) {
return at::functionalization::permute_copy_inverse(mutated_view, dims, reapply_views);
}
Tensor FunctionalInverses::_reshape_alias_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, at::SymIntArrayRef size, at::SymIntArrayRef stride) {
// Note that I'm directly calling reshape(), and ignoring the strides.
// _reshape_alias() isn't available from user code, and is an implementation detail of reshape().
// Specifically, passing in the strides directly can get us into trouble in cases like:
// b = a[0]; c = b.reshape(...); c.add_(1); print(a)
// When we eventually run the _reshape_alias_inverse() call here, if we were to pass in both sizes and strides,
// The call would fail because `mutated_view` doesn't have enough bytes of storage.
if (reapply_views) {
return at::_reshape_alias_symint(mutated_view, base.sym_sizes(), base.sym_strides());
} else {
return at::_reshape_alias_copy_symint(mutated_view, base.sym_sizes(), base.sym_strides());
}
}
Tensor FunctionalInverses::select_copy_int_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, int64_t dim, c10::SymInt index) {
// Pessimism: we can't reapply views for slice_scatter.
return base.select_scatter_symint(mutated_view, dim, std::move(index));
}
Tensor FunctionalInverses::detach_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
// the functionalization pass doesn't care about autograd metadata - as a view, I think detach() is just an identity function
return mutated_view;
}
Tensor FunctionalInverses::lift_fresh_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
return mutated_view;
}
Tensor FunctionalInverses::slice_copy_Tensor_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) {
// Pessimism: we can't reapply views for slice_scatter.
return base.slice_scatter_symint(mutated_view, dim, std::move(start), std::move(end), std::move(step));
}
Tensor FunctionalInverses::split_copy_Tensor_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, int64_t mutated_view_idx, c10::SymInt split_size, int64_t dim) {
// It would be nice if this logic could be re-used from autograd's split_backward(), but I don't think it can.
// For functionalization, we have only have one of the tensors from the TensorList outputed by split(), and we want to layer i
// on top of the base tensor.
// For autograd, we have all of the tensors outputted by split() and we just want to stack them.
dim = at::maybe_wrap_dim(dim, base.dim());
auto dim_size = base.sym_size(dim);
auto start = split_size * mutated_view_idx;
auto end = split_size + start;
if (end > dim_size) end = dim_size;
// Pessimism: we can't reapply views for slice_scatter.
return base.slice_scatter_symint(mutated_view, dim, start, end, 1);
}
Tensor FunctionalInverses::split_with_sizes_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, int64_t mutated_view_idx, c10::SymIntArrayRef split_sizes, int64_t dim) {
dim = at::maybe_wrap_dim(dim, base.dim());
auto dim_size = base.sym_size(dim);
c10::SymInt start = 0;
for (auto i = 0; i < mutated_view_idx; ++i) {
start += split_sizes[i];
}
auto end = start + split_sizes[mutated_view_idx];
if (end > dim_size) end = dim_size;
// Pessimism: we can't reapply views for slice_scatter.
return base.slice_scatter_symint(mutated_view, dim, start, end, 1);
}
Tensor FunctionalInverses::squeeze_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
return unsqueeze_copy_to(mutated_view, base.sym_sizes(), reapply_views);
}
Tensor FunctionalInverses::squeeze_copy_dim_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, int64_t dim) {
return unsqueeze_copy_to(mutated_view, dim, base.sym_sizes(), reapply_views);
}
Tensor FunctionalInverses::squeeze_copy_dims_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, IntArrayRef dim) {
return unsqueeze_copy_to(mutated_view, dim, base.sym_sizes(), reapply_views);
}
Tensor FunctionalInverses::t_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
if (reapply_views) {
return at::t(mutated_view);
} else {
return at::t_copy(mutated_view);
}
}
Tensor FunctionalInverses::transpose_copy_int_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, int64_t dim0, int64_t dim1) {
if (reapply_views) {
return transpose(mutated_view, dim0, dim1);
} else {
return transpose_copy(mutated_view, dim0, dim1);
}
}
Tensor FunctionalInverses::_nested_view_from_buffer_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, const Tensor& nested_sizes, const Tensor& nested_strides, const Tensor& storage_offsets) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call _nested_view_from_buffer() during the functionalization pass. For now, nested tensors aren't supported during functionalization");
return Tensor();
}
Tensor FunctionalInverses::unsqueeze_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, int64_t dim) {
if (reapply_views) {
return at::squeeze(mutated_view, dim);
} else {
return at::squeeze_copy(mutated_view, dim);
}
}
Tensor FunctionalInverses::_indices_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call _indices() during the functionalization pass. For now, sparse tensors aren't supported during functionalization");
return Tensor();
}
Tensor FunctionalInverses::_values_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call _values() during the functionalization pass. For now, sparse tensors aren't supported during functionalization");
return Tensor();
}
Tensor FunctionalInverses::indices_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call indices() during the functionalization pass. For now, sparse tensors aren't supported during functionalization");
return Tensor();
}
Tensor FunctionalInverses::values_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call values() during the functionalization pass. For now, sparse tensors aren't supported during functionalization");
return Tensor();
}
Tensor FunctionalInverses::_sparse_broadcast_to_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, at::IntArrayRef size) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call _sparse_broadcast_to() during the functionalization pass. For now, sparse tensors aren't supported during functionalization");
return Tensor();
}
Tensor FunctionalInverses::crow_indices_copy_inverse(const at::Tensor& base, const at::Tensor& mutated_view, bool reapply_views) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call crow_indices() during the functionalization pass. For now, sparse tensors aren't supported during functionalization");
return Tensor();
}
Tensor FunctionalInverses::col_indices_copy_inverse(const at::Tensor& base, const at::Tensor& mutated_view, bool reapply_views) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call col_indices() during the functionalization pass. For now, sparse tensors aren't supported during functionalization");
return Tensor();
}
Tensor FunctionalInverses::ccol_indices_copy_inverse(const at::Tensor& base, const at::Tensor& mutated_view, bool reapply_views) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call ccol_indices() during the functionalization pass. For now, sparse tensors aren't supported during functionalization");
return Tensor();
}
Tensor FunctionalInverses::row_indices_copy_inverse(const at::Tensor& base, const at::Tensor& mutated_view, bool reapply_views) {
TORCH_INTERNAL_ASSERT(false, "Attempted to call row_indices() during the functionalization pass. For now, sparse tensors aren't supported during functionalization");
return Tensor();
}
Tensor FunctionalInverses::unbind_copy_int_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, int64_t mutated_view_idx, int64_t dim) {
dim = at::maybe_wrap_dim(dim, base.sizes().size());
// Pessimism: we can't reapply views for select_scatter.
return base.select_scatter(mutated_view, dim, mutated_view_idx);
}
Tensor FunctionalInverses::view_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, at::SymIntArrayRef size) {
if (reapply_views) {
return mutated_view.view_symint(base.sym_sizes());
} else {
return at::view_copy_symint(mutated_view, base.sym_sizes());
}
}
Tensor FunctionalInverses::view_copy_dtype_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, at::ScalarType dtype) {
if (reapply_views) {
return mutated_view.view(base.scalar_type());
} else {
return at::view_copy(mutated_view, base.scalar_type());
}
}
Tensor FunctionalInverses::unfold_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views, int64_t dimension, int64_t size, int64_t step) {
// I think autograd and the functionalization pass want the exact same thing here, but need to test to confirm.
// unfold_backward() is safe to use here because it is NOT a view op.
// (note: technically, "reapply_views" won't do anything here and we'll have an extra memory copy.
// We'd need to add an aliasing version of unfold_backward to fix that though).
TORCH_CHECK(
!(reapply_views && size > step),
"While executing unfold, functionalization encountered a tensor being mutated that has internal overlap. \
When using torch.compile (or running functionalization directly), this is banned \
as the behavior is not well defined. Consider cloning the tensor before mutating it, \
or removing the mutation from your model."
);
return unfold_backward(mutated_view, base.sizes(), dimension, size, step);
}
Tensor FunctionalInverses::alias_copy_inverse(const Tensor& base, const Tensor& mutated_view, bool reapply_views) {
if (reapply_views) {
return at::alias(mutated_view);
} else {
return at::alias_copy(mutated_view);
}
}
} // functionalization
} // at