[functorch] pytree output support for vmap
diff --git a/functorch/functorch/_src/eager_transforms.py b/functorch/functorch/_src/eager_transforms.py
index 68ae2a8..2d79fc8 100644
--- a/functorch/functorch/_src/eager_transforms.py
+++ b/functorch/functorch/_src/eager_transforms.py
@@ -4,6 +4,7 @@
import torch.nn as nn
import torch.nn.functional as F
from torch.utils._pytree import tree_flatten, tree_unflatten
+from .pytree_hacks import tree_map, tree_map_
import gc
from .vmap import vmap
@@ -16,16 +17,6 @@
_grad_decrement_nesting,
)
-# TODO: replace this with tree_map from core
-def tree_map(fn, pytree):
- flat_args, spec = tree_flatten(pytree)
- return tree_unflatten([fn(arg) for arg in flat_args], spec)
-
-def tree_map_(fn_, pytree):
- flat_args, _ = tree_flatten(pytree)
- [fn_(arg) for arg in flat_args]
- return pytree
-
# TODO: replace all of these with pytrees
def _create_differentiable(tensor_or_tuple_of_tensors, level=None):
if isinstance(tensor_or_tuple_of_tensors, torch.Tensor):
diff --git a/functorch/functorch/_src/pytree_hacks.py b/functorch/functorch/_src/pytree_hacks.py
new file mode 100644
index 0000000..2aef9f6
--- /dev/null
+++ b/functorch/functorch/_src/pytree_hacks.py
@@ -0,0 +1,39 @@
+import torch.utils._pytree as _pytree
+from torch.utils._pytree import tree_flatten, tree_unflatten
+
+# TODO: The following function should only be used with vmap.
+# torch.return_types should be registered as PyTree nodes.
+# I can't figure out how to do that, so we are turning all of them
+# into normal Tuples for now (this is what vmap used to do anyways).
+# We probably want some special behavior for named tuples?
+def tree_flatten_hack(pytree):
+ if _pytree._is_leaf(pytree) and not isinstance(pytree, tuple):
+ return [pytree], _pytree.LeafSpec()
+
+ if isinstance(pytree, tuple):
+ typ = tuple
+ else:
+ typ = type(pytree)
+
+ flatten_fn = _pytree.SUPPORTED_NODES[typ].flatten_fn
+ child_pytrees, context = flatten_fn(pytree)
+
+ # Recursively flatten the children
+ result : List[Any] = []
+ children_specs : List['TreeSpec'] = []
+ for child in child_pytrees:
+ flat, child_spec = tree_flatten_hack(child)
+ result += flat
+ children_specs.append(child_spec)
+
+ return result, _pytree.TreeSpec(typ, context, children_specs)
+
+# TODO: replace this with tree_map from core
+def tree_map(fn, pytree):
+ flat_args, spec = tree_flatten(pytree)
+ return tree_unflatten([fn(arg) for arg in flat_args], spec)
+
+def tree_map_(fn_, pytree):
+ flat_args, _ = tree_flatten(pytree)
+ [fn_(arg) for arg in flat_args]
+ return pytree
diff --git a/functorch/functorch/_src/vmap.py b/functorch/functorch/_src/vmap.py
index 066c03f..028a94f 100644
--- a/functorch/functorch/_src/vmap.py
+++ b/functorch/functorch/_src/vmap.py
@@ -3,6 +3,8 @@
from torch import Tensor
from typing import Any, Callable, Optional, Tuple, Union, List
from torch.utils._pytree import tree_flatten, tree_unflatten, _broadcast_to_and_flatten
+from .pytree_hacks import tree_flatten_hack, tree_map_
+from functools import partial
import warnings
from functorch._C import (
@@ -96,46 +98,54 @@
batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
out_dims: out_dims_t,
vmap_level: int, batch_size: int, func: Callable) -> Tuple:
- num_outputs = _num_outputs(batched_outputs)
- out_dims_as_tuple = _as_tuple(
- out_dims, num_outputs,
- lambda: f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must '
- f'have one dim per output (got {num_outputs} outputs) of {_get_name(func)}.')
+ flat_batched_outputs, output_spec = tree_flatten_hack(batched_outputs)
- # NOTE [Ignored _remove_batch_dim, _add_batch_dim]
- # There is something wrong with our type bindings for functions that begin
- # with '_', see #40397.
- if isinstance(batched_outputs, Tensor):
- out_dim = out_dims_as_tuple[0]
- return _remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore
- return tuple(_remove_batch_dim(out, vmap_level, batch_size, out_dim) # type: ignore
- for out, out_dim in zip(batched_outputs, out_dims_as_tuple))
-
-# Checks that `fn` returned one or more Tensors and nothing else.
-# NB: A python function that return multiple arguments returns a single tuple,
-# so we are effectively checking that `outputs` is a single Tensor or a tuple of
-# Tensors.
-def _validate_outputs(outputs: Any, func: Callable) -> None:
- if isinstance(outputs, Tensor):
- return
- if not isinstance(outputs, tuple):
- raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return '
- f'Tensors, got type {type(outputs)} as the return.')
- for idx, output in enumerate(outputs):
- if isinstance(output, Tensor):
+ for out in flat_batched_outputs:
+ if isinstance(out, torch.Tensor):
continue
raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return '
- f'Tensors, got type {type(output)} for return {idx}.')
+ f'Tensors, got type {type(out)} as a return.')
-def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, func: Callable) -> None:
+ def incompatible_error():
+ raise ValueError(
+ f'vmap({_get_name(func)}, ..., out_dims={out_dims})(<inputs>): '
+ f'out_dims is not compatible with the structure of `outputs`. '
+ f'out_dims has structure {tree_flatten(out_dims)[1]} but outputs '
+ f'has structure {output_spec}.')
+
+ if isinstance(batched_outputs, torch.Tensor):
+ # Some weird edge case requires us to spell out the following
+ # see test_out_dims_edge_case
+ if isinstance(out_dims, int):
+ flat_out_dims = [out_dims]
+ elif isinstance(out_dims, tuple) and len(out_dims) == 1:
+ flat_out_dims = out_dims
+ out_dims = out_dims[0]
+ else:
+ incompatible_error()
+ else:
+ flat_out_dims = _broadcast_to_and_flatten(out_dims, output_spec)
+ if flat_out_dims is None:
+ incompatible_error()
+
+ flat_outputs = [
+ _remove_batch_dim(batched_output, vmap_level, batch_size, out_dim)
+ for batched_output, out_dim in zip(flat_batched_outputs, flat_out_dims)
+ ]
+ return tree_unflatten(flat_outputs, output_spec)
+
+def _check_int(x, func, out_dims):
+ if isinstance(x, int):
+ return
+ raise ValueError(
+ f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be '
+ f'an int or a python collection of ints representing where in the outputs the '
+ f'vmapped dimension should appear.')
+
+def _check_out_dims_is_int_or_int_pytree(out_dims: out_dims_t, func: Callable) -> None:
if isinstance(out_dims, int):
return
- if not isinstance(out_dims, tuple) or \
- not all([isinstance(out_dim, int) for out_dim in out_dims]):
- raise ValueError(
- f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be '
- f'an int or a tuple of int representing where in the outputs the '
- f'vmapped dimension should appear.')
+ tree_map_(partial(_check_int, func=func, out_dims=out_dims), out_dims)
def _get_name(func: Callable):
if hasattr(func, '__name__'):
@@ -250,13 +260,12 @@
def _vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
@functools.wraps(func)
def wrapped(*args):
- _check_out_dims_is_int_or_int_tuple(out_dims, func)
+ _check_out_dims_is_int_or_int_pytree(out_dims, func)
vmap_level = _vmap_increment_nesting()
torch._C._vmapmode_increment_nesting()
try:
batched_inputs, batch_size = _create_batched_inputs(in_dims, args, vmap_level, func)
batched_outputs = func(*batched_inputs)
- _validate_outputs(batched_outputs, func)
return _unwrap_batched(batched_outputs, out_dims, vmap_level, batch_size, func)
finally:
torch._C._vmapmode_decrement_nesting()
diff --git a/functorch/test/test_vmap.py b/functorch/test/test_vmap.py
index 24f2e92..3ac1b9a 100644
--- a/functorch/test/test_vmap.py
+++ b/functorch/test/test_vmap.py
@@ -27,13 +27,13 @@
class TestVmapAPI(TestCase):
def test_non_tensor_output_raises(self):
- with self.assertRaisesRegex(ValueError, "got type <class 'float'> as the return"):
+ with self.assertRaisesRegex(ValueError, "got type <class 'float'> as a return"):
output = vmap(lambda x: 3.14)(torch.ones(3))
def multiple_outputs(x):
return x, 3
- with self.assertRaisesRegex(ValueError, "got type <class 'int'> for return 1"):
+ with self.assertRaisesRegex(ValueError, "got type <class 'int'> as a return"):
vmap(multiple_outputs)(torch.ones(3))
def test_different_map_dim_size_raises(self):
@@ -90,7 +90,7 @@
self.assertEqual(outputs[0], x * x)
self.assertEqual(outputs[1], x * x * x)
- def test_multiple_outputs_error_cases(self):
+ def test_multiple_outputs(self):
# This is the same thing as
# def returns_tuple_of_tensors(x):
# return x, x
@@ -107,13 +107,8 @@
# should not throw
vmap(returns_tuple_of_tensors)(x)
-
- # jax supports these, but we don't yet
- msg = "must only return Tensors, got type <class 'list'>"
- with self.assertRaisesRegex(ValueError, msg):
- vmap(returns_list_of_two_tensors)(x)
- with self.assertRaisesRegex(ValueError, msg):
- vmap(returns_list_of_one_tensor)(x)
+ vmap(returns_list_of_two_tensors)(x)
+ vmap(returns_list_of_one_tensor)(x)
def test_nested_with_same_map_dim(self):
x = torch.randn(2, 3, 5)
@@ -267,8 +262,59 @@
result = vmap(foo, out_dims=(1,))(tensor)
self.assertEqual(result, expected)
- def test_out_dims_must_be_int_or_tuple_of_int_err_msg(self):
- msg = '`out_dims` must be an int or a tuple of int'
+ def test_pytree_returns(self):
+ x = torch.randn(2, 3)
+
+ def f(x):
+ y = x.sin()
+ return y, (y, y), [y, (y, y)]
+
+ y0, (y1, y2), (y3, (y4, y5)) = vmap(f)(x)
+ self.assertEqual(y0, x.sin())
+ self.assertEqual(y0, y1)
+ self.assertEqual(y2, y1)
+ self.assertEqual(y2, y3)
+ self.assertEqual(y4, y3)
+ self.assertEqual(y5, y4)
+
+ def test_pytree_returns_outdims(self):
+ x = torch.randn(2, 3)
+
+ def f(x):
+ y = x.sin()
+ return y, (y, y)
+
+ y0, (y1, y2) = vmap(f, out_dims=(0, (0, 1)))(x)
+ self.assertEqual(y0, x.sin())
+ self.assertEqual(y1, x.sin())
+ self.assertEqual(y2, x.sin().t())
+
+ def test_pytree_returns_broadcast_simple(self):
+ x = torch.randn(2, 3)
+
+ def f(x):
+ y = x.sin()
+ return y, (y, y)
+
+ y0, (y1, y2) = vmap(f, out_dims=1)(x)
+ self.assertEqual(y0, x.sin().t())
+ self.assertEqual(y1, y0)
+ self.assertEqual(y2, y0)
+
+ def test_pytree_returns_broadcast_nested(self):
+ x = torch.randn(2, 3)
+
+ def f(x):
+ y = x.sin()
+ return y, (y, y)
+
+ y0, (y1, y2) = vmap(f, out_dims=(0, 1))(x)
+ self.assertEqual(y0, x.sin())
+ self.assertEqual(y1, y0.t())
+ self.assertEqual(y2, y0.t())
+
+ def test_out_dims_must_be_int_or_collection_of_int_err_msg(self):
+ msg = 'must be an int or a python collection of ints'
tensor = torch.randn(2, 3)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims='lol')(tensor)
@@ -280,7 +326,7 @@
vmap(lambda x: x, out_dims=(None,))(tensor)
def test_out_dims_and_num_outputs_mismatch_err_msg(self):
- msg = '`out_dims` must have one dim per output'
+ msg = 'not compatible'
x = torch.randn(2, 3, 5)
# Too many out_dims
@@ -2639,9 +2685,9 @@
self.assertEqual(loop_out, batched_out)
-instantiate_device_type_tests(TestVmapOperators, globals())
-
only_for = ("cpu", "cuda")
+instantiate_device_type_tests(TestVmapOperators, globals(), only_for=only_for)
+
instantiate_device_type_tests(
TestVmapBatchedGradient,
globals(),