| # See README.md in this directory for more guidance |
| |
| # *********NB: _cast_* operators are DEPRECATED and will be removed |
| # eventually. These were previously used before TorchScript IR supported |
| # representing ScalarType's. They are now superseded by usage of |
| # `aten::to()`. The ops remain here for backward compatibility purposes. |
| |
| # DEPRECATED. DO NOT USE |
| - func: _cast_Byte(Tensor self, bool non_blocking=False) -> Tensor |
| variants: function |
| |
| # DEPRECATED. DO NOT USE |
| - func: _cast_Char(Tensor self, bool non_blocking=False) -> Tensor |
| variants: function |
| |
| # DEPRECATED. DO NOT USE |
| - func: _cast_Double(Tensor self, bool non_blocking=False) -> Tensor |
| variants: function |
| |
| # DEPRECATED. DO NOT USE |
| - func: _cast_Float(Tensor self, bool non_blocking=False) -> Tensor |
| variants: function |
| |
| # DEPRECATED. DO NOT USE |
| - func: _cast_Int(Tensor self, bool non_blocking=False) -> Tensor |
| variants: function |
| |
| # DEPRECATED. DO NOT USE |
| - func: _cast_Long(Tensor self, bool non_blocking=False) -> Tensor |
| variants: function |
| |
| # DEPRECATED. DO NOT USE |
| - func: _cast_Short(Tensor self, bool non_blocking=False) -> Tensor |
| variants: function |
| |
| # DEPRECATED. DO NOT USE |
| - func: _cast_Half(Tensor self, bool non_blocking=False) -> Tensor |
| variants: function |
| |
| # Computes the gradient of current tensor w.r.t. graph leaves. |
| - func: _backward(Tensor self, Tensor[] inputs, Tensor? gradient=None, bool? retain_graph=None, bool create_graph=False) -> () |
| manual_cpp_binding: True |
| variants: method |
| |
| # DEPRECATED. Sets the tensor data held by this `Variable` to be the same as |
| # `new_data`. It requires that `new_data` and `Variable` have compatible tensor |
| # type, by checking `_has_compatible_shallow_copy_type(this, new_data)`. |
| # |
| # This function is deprecated because it doesn't really make sense in a world |
| # where Variables *are* Tensors (as opposed to them containing tensors, which |
| # is what the previous interpretation was.) |
| - func: set_data(Tensor(a!) self, Tensor new_data) -> () |
| manual_cpp_binding: True |
| variants: method |
| |
| - func: data(Tensor self) -> Tensor |
| manual_cpp_binding: True |
| variants: method |
| |
| # True if this `Variable` is a leaf and thus does not have a `grad_fn`. |
| - func: is_leaf(Tensor self) -> bool |
| manual_cpp_binding: True |
| variants: method |
| |
| # Returns the output index of this variable from the forward operation that |
| # produced it. Conversely, it returns the input index of the gradient `Node` to |
| # which this `Variable` is connected (because in the gradient computation, |
| # inputs and outputs switch meaning). For example: |
| # |
| # y0, y1, y2 = f(x) |
| # assert y0.output_nr == 0 |
| # assert y1.output_nr == 1 |
| # assert y2.output_nr == 2 |
| # |
| - func: output_nr(Tensor self) -> int |
| manual_cpp_binding: True |
| variants: method |
| |
| - func: _version(Tensor self) -> int |
| manual_cpp_binding: True |
| variants: method |
| |
| - func: requires_grad_(Tensor(a!) self, bool requires_grad=True) -> Tensor(a!) |
| manual_cpp_binding: True |
| variants: method |
| |
| # Enables .grad attribute for non-leaf Tensors. |
| - func: retain_grad(Tensor(a!) self) -> () |
| manual_cpp_binding: True |
| variants: method |
| |
| - func: _fw_primal(Tensor(a) self, int level) -> Tensor(a) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: _fw_primal |
| |
| - func: _make_dual(Tensor(a) primal, Tensor tangent, int level) -> Tensor(a) |
| variants: function |
| |
| - func: _unpack_dual(Tensor(a) dual, int level) -> (Tensor(a) primal, Tensor tangent) |
| variants: function |
| |
| - func: rename_(Tensor(a!) self, Dimname[]? names) -> Tensor(a!) |
| variants: method |
| |
| - func: rename(Tensor(a) self, Dimname[]? names) -> Tensor(a) |
| variants: method |
| |
| - func: align_to(Tensor(a) self, Dimname[] names) -> Tensor(a) |
| variants: method |
| |
| - func: align_to.ellipsis_idx(Tensor(a) self, Dimname[] order, int ellipsis_idx) -> Tensor(a) |
| variants: method |
| |
| - func: align_as(Tensor self, Tensor other) -> Tensor |
| variants: method |
| |
| - func: align_tensors(Tensor[] tensors) -> Tensor[] |
| |
| # Not assert because it's a keyword; not Assert because FX already |
| # took that syntax |
| # TODO: need to specify this is side-effectful somehow |
| - func: _assert_async(Tensor self) -> () |
| dispatch: |
| CPU: _assert_async_cpu |
| CUDA: _assert_async_cuda |
| |
| - func: refine_names(Tensor(a) self, Dimname[] names) -> Tensor(a) |
| variants: method |
| |
| - func: _use_cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank) -> bool |
| dispatch: |
| CUDA: _use_cudnn_ctc_loss |
| |
| - func: _cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank, bool deterministic, bool zero_infinity) -> (Tensor, Tensor) |
| dispatch: |
| CUDA: _cudnn_ctc_loss |
| |
| - func: _use_cudnn_rnn_flatten_weight() -> bool |
| |
| - func: _cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, int input_size, int mode, int hidden_size, int proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor |
| dispatch: |
| CUDA: _cudnn_rnn_flatten_weight |
| |
| - func: _cudnn_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, int hidden_size, int proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: _cudnn_rnn |
| |
| - func: _cudnn_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[]) |
| dispatch: |
| CUDA: _cudnn_rnn_backward |
| |
| - func: _cudnn_init_dropout_state(float dropout, bool train, int dropout_seed, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor |
| dispatch: |
| CUDA: _cudnn_init_dropout_state |
| |
| - func: _debug_has_internal_overlap(Tensor self) -> int |
| variants: function |
| |
| - func: _fused_dropout(Tensor self, float p, Generator? generator=None) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CUDA: fused_dropout_cuda |
| |
| - func: _masked_scale(Tensor self, Tensor mask, float scale) -> Tensor |
| variants: function |
| dispatch: |
| CUDA: masked_scale_cuda |
| |
| - func: _sobol_engine_draw(Tensor quasi, int n, Tensor sobolstate, int dimension, int num_generated, ScalarType? dtype) -> (Tensor, Tensor) |
| |
| - func: _sobol_engine_ff_(Tensor(a!) self, int n, Tensor sobolstate, int dimension, int num_generated) -> Tensor(a!) |
| |
| - func: _sobol_engine_scramble_(Tensor(a!) self, Tensor ltm, int dimension) -> Tensor(a!) |
| |
| - func: _sobol_engine_initialize_state_(Tensor(a!) self, int dimension) -> Tensor(a!) |
| |
| - func: _reshape_from_tensor(Tensor self, Tensor shape) -> Tensor |
| |
| - func: _shape_as_tensor(Tensor self) -> Tensor |
| |
| - func: dropout(Tensor input, float p, bool train) -> Tensor |
| |
| - func: dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!) |
| |
| - func: feature_dropout(Tensor input, float p, bool train) -> Tensor |
| |
| - func: feature_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!) |
| |
| - func: alpha_dropout(Tensor input, float p, bool train) -> Tensor |
| |
| - func: alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!) |
| |
| - func: feature_alpha_dropout(Tensor input, float p, bool train) -> Tensor |
| |
| - func: feature_alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!) |
| |
| - func: abs(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: abs |
| |
| - func: abs_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: abs_ |
| |
| - func: abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: abs_out |
| |
| # Note [Adding an alias] |
| # To add an alias do the following: |
| # |
| # 1) Copy the original functions native_functions.yaml entry, but replace the |
| # original function's name with their own and delete any dispatch |
| # keys for the aliases. Specifying a dispatch key will prevent |
| # autograd from recording the operations the alias performs, which |
| # will stop it from "inheriting" the original operation's autograd behavior. |
| # 2) Implement the corresponding functions and have them redispatch to the |
| # original function. |
| # 3) Add entries for the alias (and original function, if needed) to |
| # aten/src/ATen/core/interned_strings.h |
| # (This may require removing an entry from ATen/core/aten_interned_strings.h.) |
| # 4) Add docstrings to the new function that reference the original function, |
| # and document the method as usual (if it exists.) |
| # (See torch/_torch_docs.py and docs/source/torch.rst if adding a function, |
| # torch/_tensor_docs.py and docs/source/tensors.rst if adding a method, |
| # or module-specific doc bindings (like torch/linalg/__init__.py) if |
| # adding an alias in a namespace.) |
| # 5) Update torch/overrides.py consistent with the original function. |
| # 6) Update the alias_map in torch/csrc/jit/passes/normalize_ops.cpp. |
| # 7) Add aliases argument to existing OpInfo/UnaryUfuncInfo or create new OpInfo/UnaryUfuncInfo entry |
| # in op_db list in torch/testing/_internal/common_methods_invocations.py |
| # |
| # See torch.absolute, an alias for torch.abs, as an example. |
| |
| # Absolute, alias for abs |
| - func: absolute(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: absolute_(Tensor(a!) self) -> Tensor(a!) |
| variants: method |
| |
| - func: absolute.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: angle(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: angle |
| |
| - func: angle.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: angle_out |
| |
| - func: view_as_real(Tensor(a) self) -> Tensor(a) |
| variants: function |
| dispatch: |
| CPU, CUDA: view_as_real |
| |
| - func: view_as_complex(Tensor(a) self) -> Tensor(a) |
| variants: function |
| dispatch: |
| CPU, CUDA: view_as_complex |
| |
| - func: sgn(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: sgn |
| |
| - func: sgn_(Tensor(a!) self) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: sgn_ |
| |
| - func: sgn.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: sgn_out |
| |
| - func: real(Tensor(a) self) -> Tensor(a) |
| variants: function |
| |
| - func: imag(Tensor(a) self) -> Tensor(a) |
| variants: function |
| |
| - func: conj(Tensor(a) self) -> Tensor(a) |
| variants: function, method |
| |
| - func: conj.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: conj_out |
| |
| - func: _conj(Tensor self) -> Tensor |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: _conj |
| |
| - func: acos(Tensor self) -> Tensor |
| variants: function, method |
| structured_delegate: acos.out |
| |
| - func: acos_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| structured_delegate: acos.out |
| |
| - func: acos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: acos_out |
| |
| # arccos, alias of acos |
| - func: arccos(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: arccos_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| |
| - func: arccos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, bool ceil_mode=False, bool count_include_pad=True) -> Tensor |
| |
| - func: adaptive_avg_pool1d(Tensor self, int[1] output_size) -> Tensor |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: adaptive_max_pool1d(Tensor self, int[1] output_size) -> (Tensor, Tensor) |
| |
| - func: add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor |
| structured_delegate: add.out |
| variants: function, method |
| dispatch: |
| SparseCPU, SparseCUDA: add_sparse |
| SparseCsrCPU: add_sparse_csr |
| MkldnnCPU: mkldnn_add |
| |
| - func: add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) |
| variants: method |
| structured_delegate: add.out |
| dispatch: |
| SparseCPU, SparseCUDA: add_sparse_ |
| SparseCsrCPU: add_sparse_csr_ |
| MkldnnCPU: mkldnn_add_ |
| |
| - func: add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: add_out |
| SparseCPU: add_out_sparse_cpu |
| SparseCUDA: add_out_sparse_cuda |
| SparseCsrCPU: add_out_sparse_csr_cpu |
| MkldnnCPU: mkldnn_add_out |
| |
| - func: _add_relu.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor |
| variants: function |
| dispatch: |
| CPU: add_relu |
| |
| - func: _add_relu_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: add_relu_ |
| |
| - func: _add_relu.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: add_relu_out |
| |
| # For C++ only, until we have conversion from C++ numbers to Tensor |
| - func: add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: add |
| |
| - func: add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: add_ |
| |
| - func: addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor |
| structured_delegate: addmv.out |
| variants: function, method |
| |
| - func: addmv_(Tensor(a!) self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) |
| structured_delegate: addmv.out |
| variants: function, method |
| |
| - func: addmv.out(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| dispatch: |
| CPU: addmv_out_cpu |
| CUDA: addmv_out_cuda |
| |
| - func: addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: addr |
| CompositeImplicitAutograd: math_addr |
| |
| - func: addr_(Tensor(a!) self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: addr_ |
| |
| - func: addr.out(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: addr_out |
| CompositeImplicitAutograd: math_addr_out |
| |
| - func: affine_grid_generator(Tensor theta, int[] size, bool align_corners) -> Tensor |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: affine_grid_generator |
| |
| - func: affine_grid_generator_backward(Tensor grad, int[] size, bool align_corners) -> Tensor |
| variants: function |
| |
| - func: all.dim(Tensor self, int dim, bool keepdim=False) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: all |
| |
| - func: all.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: all_out |
| |
| - func: all.dimname(Tensor self, Dimname dim, bool keepdim=False) -> Tensor |
| variants: function, method |
| |
| - func: all.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: allclose(Tensor self, Tensor other, float rtol=1e-05, float atol=1e-08, bool equal_nan=False) -> bool |
| variants: function, method |
| |
| - func: any.dim(Tensor self, int dim, bool keepdim=False) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: any |
| |
| - func: any.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: any_out |
| |
| - func: any.dimname(Tensor self, Dimname dim, bool keepdim=False) -> Tensor |
| variants: function, method |
| |
| - func: any.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: arange(Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: arange.start(Scalar start, Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: arange.start_step(Scalar start, Scalar end, Scalar step, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: arange.out(Scalar end, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: arange.start_out(Scalar start, Scalar end, Scalar step=1, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: arange_cpu_out |
| CUDA: arange_cuda_out |
| |
| # This function is a temporary hack to allow tracing of arange like constructs with dynamic |
| # bounds on arange. Normal arange is not traceable because it does not take any tensor inputs; |
| # if the range you need is based on another tensor, calling this function directly will |
| # preserve tracing. Get rid of this when arange can directly take tensors for bounds |
| # (so that it can be traced directly). |
| - func: _dim_arange(Tensor like, int dim) -> Tensor |
| |
| - func: argmax(Tensor self, int? dim=None, bool keepdim=False) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: argmax |
| |
| - func: argmax.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: argmax_out |
| |
| - func: argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: argmin |
| |
| - func: argmin.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: argmin_out |
| |
| - func: acosh(Tensor self) -> Tensor |
| variants: function, method |
| structured_delegate: acosh.out |
| |
| - func: acosh_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| structured_delegate: acosh.out |
| |
| - func: acosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: acosh_out |
| |
| # arccosh, alias for acosh |
| - func: arccosh(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: arccosh_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| |
| - func: arccosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: asinh(Tensor self) -> Tensor |
| variants: function, method |
| structured_delegate: asinh.out |
| |
| - func: asinh_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| structured_delegate: asinh.out |
| |
| - func: asinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: asinh_out |
| |
| # arcsinh, alias for asinh |
| - func: arcsinh(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: arcsinh_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| |
| - func: arcsinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: atanh(Tensor self) -> Tensor |
| structured_delegate: atanh.out |
| variants: function, method |
| |
| - func: atanh_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: atanh.out |
| variants: function, method |
| |
| - func: atanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: atanh_out |
| |
| # arctanh, alias for atanh |
| - func: arctanh(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: arctanh_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| |
| - func: arctanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: as_strided(Tensor(a) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a) |
| variants: function, method |
| dispatch: |
| CPU, CUDA, Meta: as_strided_tensorimpl |
| QuantizedCPU, QuantizedCUDA: as_strided_qtensorimpl |
| device_guard: False |
| |
| - func: as_strided_(Tensor(a!) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a!) |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: as_strided_ |
| |
| - func: asin(Tensor self) -> Tensor |
| variants: function, method |
| structured_delegate: asin.out |
| dispatch: |
| SparseCPU, SparseCUDA: asin_sparse |
| |
| - func: asin_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| structured_delegate: asin.out |
| dispatch: |
| SparseCPU, SparseCUDA: asin_sparse_ |
| |
| - func: asin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: asin_out |
| SparseCPU, SparseCUDA: asin_out_sparse |
| |
| # arcsin, alias of asin |
| - func: arcsin(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: arcsin_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| |
| - func: arcsin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: atan(Tensor self) -> Tensor |
| structured_delegate: atan.out |
| variants: function, method |
| |
| - func: atan_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: atan.out |
| variants: function, method |
| |
| - func: atan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: atan_out |
| |
| # arctan, alias of atan |
| - func: arctan(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: arctan_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| |
| - func: arctan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: atleast_1d(Tensor self) -> Tensor |
| variants: function |
| |
| - func: atleast_1d.Sequence(Tensor[] tensors) -> Tensor[] |
| |
| - func: atleast_2d(Tensor self) -> Tensor |
| variants: function |
| |
| - func: atleast_2d.Sequence(Tensor[] tensors) -> Tensor[] |
| variants: function |
| |
| - func: atleast_3d(Tensor self) -> Tensor |
| variants: function |
| |
| - func: atleast_3d.Sequence(Tensor[] tensors) -> Tensor[] |
| variants: function |
| |
| - func: baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: baddbmm_cpu |
| CUDA: baddbmm_cuda |
| |
| - func: baddbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: baddbmm__cpu |
| CUDA: baddbmm__cuda |
| |
| - func: _baddbmm_mkl_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) |
| variants: function |
| |
| - func: baddbmm.out(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: baddbmm_out_cpu |
| CUDA: baddbmm_out_cuda |
| |
| - func: bartlett_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: bartlett_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor |
| |
| - func: quantized_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor var, float eps, float output_scale, int output_zero_point) -> Tensor |
| dispatch: |
| QuantizedCPU: quantized_batch_norm |
| |
| - func: _batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int) |
| |
| - func: _batch_norm_impl_index_backward(int impl_index, Tensor input, Tensor grad_output, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var_transform, bool train, float eps, bool[3] output_mask, Tensor reservedSpace) -> (Tensor, Tensor, Tensor) |
| |
| # Sample bernoulli with values in `self` as probability. |
| - func: bernoulli(Tensor self, *, Generator? generator=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: bernoulli |
| |
| - func: bernoulli.out(Tensor self, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: bernoulli_out |
| |
| - func: bernoulli_.Tensor(Tensor(a!) self, Tensor p, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: bernoulli_ |
| |
| - func: bernoulli_.float(Tensor(a!) self, float p=0.5, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: bernoulli_ |
| |
| # This out-of-place version isn't used explicitly, but needed by jit. |
| # There is no default valid on `p` here because it would introduce ambiguity |
| # with `bernoulli(Tensor self, *, Generator? generator=None)` declaration. |
| - func: bernoulli.p(Tensor self, float p, *, Generator? generator=None) -> Tensor |
| variants: function, method |
| |
| - func: bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias) -> Tensor |
| |
| - func: binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor |
| python_module: nn |
| variants: function |
| dispatch: |
| CPU: binary_cross_entropy_cpu |
| CUDA: binary_cross_entropy_cuda |
| |
| - func: binary_cross_entropy.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| variants: function |
| dispatch: |
| CPU: binary_cross_entropy_out_cpu |
| CUDA: binary_cross_entropy_out_cuda |
| |
| - func: binary_cross_entropy_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor |
| python_module: nn |
| variants: function |
| dispatch: |
| CPU: binary_cross_entropy_backward_cpu |
| CUDA: binary_cross_entropy_backward_cuda |
| |
| - func: binary_cross_entropy_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| variants: function |
| dispatch: |
| CPU: binary_cross_entropy_backward_out_cpu |
| CUDA: binary_cross_entropy_backward_out_cuda |
| |
| - func: binary_cross_entropy_with_logits(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=Mean) -> Tensor |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: binary_cross_entropy_with_logits |
| |
| - func: binary_cross_entropy_with_logits_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=Mean) -> Tensor |
| variants: function |
| |
| - func: bincount(Tensor self, Tensor? weights=None, int minlength=0) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: _bincount_cpu |
| CUDA: _bincount_cuda |
| |
| - func: bitwise_not(Tensor self) -> Tensor |
| structured_delegate: bitwise_not.out |
| variants: function, method |
| |
| - func: bitwise_not_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: bitwise_not.out |
| variants: method |
| |
| - func: bitwise_not.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: bitwise_not_out |
| |
| - func: copysign.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: copysign_out |
| |
| - func: copysign.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| structured_delegate: copysign.out |
| |
| - func: copysign_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| structured_delegate: copysign.out |
| |
| - func: copysign.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: copysign |
| |
| - func: copysign_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: copysign_ |
| |
| - func: copysign.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: copysign_out |
| |
| - func: logical_not(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: logical_not_(Tensor(a!) self) -> Tensor(a!) |
| variants: method |
| |
| - func: logical_not.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: logical_not_out |
| |
| - func: logical_xor(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: logical_xor_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: logical_xor.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: logical_xor_out |
| |
| - func: logical_and(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: logical_and_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: logical_and.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: logical_and_out |
| |
| - func: logical_or(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: logical_or_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: logical_or.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: logical_or_out |
| |
| - func: blackman_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: blackman_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: bmm(Tensor self, Tensor mat2) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: bmm_cpu |
| CUDA: bmm_cuda |
| SparseCPU: bmm_sparse_cpu |
| SparseCUDA: bmm_sparse_cuda |
| |
| - func: _bmm(Tensor self, Tensor mat2, *, bool deterministic=False) -> Tensor |
| variants: function |
| dispatch: |
| SparseCUDA: _bmm_sparse_cuda |
| |
| - func: bmm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: bmm_out_cpu |
| CUDA: bmm_out_cuda |
| SparseCPU: bmm_out_sparse_cpu |
| SparseCUDA: bmm_out_sparse_cuda |
| |
| - func: _bmm.out(Tensor self, Tensor mat2, *, bool deterministic=False, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| SparseCUDA: _bmm_out_sparse_cuda |
| |
| - func: broadcast_tensors(Tensor[] tensors) -> Tensor[] |
| device_guard: False |
| |
| - func: broadcast_to(Tensor(a) self, int[] size) -> Tensor(a) |
| variants: function, method |
| |
| - func: cat(Tensor[] tensors, int dim=0) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: cat |
| |
| - func: cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: cat_out |
| |
| - func: cat.names(Tensor[] tensors, Dimname dim) -> Tensor |
| |
| - func: cat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: block_diag(Tensor[] tensors) -> Tensor |
| variants: function |
| |
| - func: ceil(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: ceil |
| |
| - func: ceil_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: ceil_ |
| |
| - func: ceil.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: ceil_out |
| |
| # alias for torch.linalg.multi_dot |
| - func: chain_matmul(Tensor[] matrices) -> Tensor |
| variants: function |
| |
| # alias for torch.linalg.multi_dot |
| - func: chain_matmul.out(Tensor[] matrices, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: unsafe_chunk(Tensor self, int chunks, int dim=0) -> Tensor[] |
| variants: function, method |
| device_guard: False |
| |
| - func: chunk(Tensor(a) self, int chunks, int dim=0) -> Tensor(a)[] |
| variants: function, method |
| device_guard: False |
| |
| - func: tensor_split.sections(Tensor(a) self, int sections, int dim=0) -> Tensor(a)[] |
| variants: function, method |
| |
| - func: tensor_split.indices(Tensor(a) self, int[] indices, int dim=0) -> Tensor(a)[] |
| variants: function, method |
| |
| - func: tensor_split.tensor_indices_or_sections(Tensor(a) self, Tensor tensor_indices_or_sections, int dim=0) -> Tensor(a)[] |
| variants: function, method |
| |
| - func: clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: clamp |
| QuantizedCPU: clamp_quantized_cpu |
| |
| - func: clamp_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: clamp_ |
| |
| - func: clamp.out(Tensor self, Scalar? min=None, Scalar? max=None, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: clamp_out |
| |
| - func: clamp_max(Tensor self, Scalar max) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: clamp_max |
| |
| - func: clamp_max_(Tensor(a!) self, Scalar max) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: clamp_max_ |
| |
| - func: clamp_max.out(Tensor self, Scalar max, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: clamp_max_out |
| |
| - func: clamp_min(Tensor self, Scalar min) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: clamp_min |
| |
| - func: clamp_min_(Tensor(a!) self, Scalar min) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: clamp_min_ |
| |
| - func: clamp_min.out(Tensor self, Scalar min, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: clamp_min_out |
| |
| # clip is an alias for clamp |
| - func: clip(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor |
| variants: function, method |
| |
| - func: clip_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!) |
| variants: function, method |
| |
| - func: clip.out(Tensor self, Scalar? min=None, Scalar? max=None, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: cudnn_is_acceptable(Tensor self) -> bool |
| device_guard: False |
| |
| - func: complex(Tensor real, Tensor imag) -> Tensor |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: complex |
| |
| - func: complex.out(Tensor real, Tensor imag, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: complex_out |
| |
| - func: polar(Tensor abs, Tensor angle) -> Tensor |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: polar |
| |
| - func: polar.out(Tensor abs, Tensor angle, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: polar_out |
| |
| - func: constant_pad_nd(Tensor self, int[] pad, Scalar value=0) -> Tensor |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: constant_pad_nd |
| |
| - func: contiguous(Tensor(a) self, *, MemoryFormat memory_format=contiguous_format) -> Tensor(a) |
| variants: method |
| manual_cpp_binding: True |
| |
| - func: convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups) -> Tensor |
| |
| - func: convolution_overrideable(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: convolution_overrideable |
| |
| - func: convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) |
| dispatch: |
| CompositeExplicitAutograd: convolution_backward_overrideable |
| |
| - func: _convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> Tensor |
| |
| - func: _convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> Tensor |
| |
| - func: _convolution_mode(Tensor input, Tensor weight, Tensor? bias, int[] stride, str padding, int[] dilation, int groups) -> Tensor |
| |
| - func: _convolution_nogroup(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding) -> Tensor |
| |
| - func: _convolution_double_backward(Tensor? ggI, Tensor? ggW, Tensor? ggb, Tensor gO, Tensor weight, Tensor self, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, bool[3] output_mask) -> (Tensor, Tensor, Tensor) |
| |
| - func: conv1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=1, int[1] padding=0, int[1] dilation=1, int groups=1) -> Tensor |
| |
| - func: conv2d(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1, int groups=1) -> Tensor |
| |
| - func: conv3d(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] dilation=1, int groups=1) -> Tensor |
| |
| - func: conv1d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=1, str padding="valid", int[1] dilation=1, int groups=1) -> Tensor |
| cpp_no_default_args: ['bias', 'stride', 'padding'] |
| |
| - func: conv2d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, str padding="valid", int[2] dilation=1, int groups=1) -> Tensor |
| cpp_no_default_args: ['bias', 'stride', 'padding'] |
| |
| - func: conv3d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=1, str padding="valid", int[3] dilation=1, int groups=1) -> Tensor |
| cpp_no_default_args: ['bias', 'stride', 'padding'] |
| |
| - func: conv_tbc(Tensor self, Tensor weight, Tensor bias, int pad=0) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: conv_tbc |
| |
| - func: conv_tbc_backward(Tensor self, Tensor input, Tensor weight, Tensor bias, int pad) -> (Tensor, Tensor, Tensor) |
| |
| # NB: we inherit the goofy argument order from PyTorch torch.nn.functional |
| - func: conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=1, int[1] padding=0, int[1] output_padding=0, int groups=1, int[1] dilation=1) -> Tensor |
| |
| - func: conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] output_padding=0, int groups=1, int[2] dilation=1) -> Tensor |
| |
| - func: conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] output_padding=0, int groups=1, int[3] dilation=1) -> Tensor |
| |
| - func: copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| dispatch: |
| MkldnnCPU: copy_mkldnn_ |
| CompositeExplicitAutograd: copy_ |
| |
| - func: _copy_from(Tensor self, Tensor dst, bool non_blocking=False) -> Tensor |
| dispatch: {} |
| |
| - func: cos(Tensor self) -> Tensor |
| variants: function, method |
| structured_delegate: cos.out |
| |
| - func: cos_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| structured_delegate: cos.out |
| |
| - func: cos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: cos_out |
| |
| - func: cosh(Tensor self) -> Tensor |
| variants: function, method |
| structured_delegate: cosh.out |
| |
| - func: cosh_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| structured_delegate: cosh.out |
| |
| - func: cosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: cosh_out |
| |
| - func: cosine_embedding_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor |
| |
| - func: count_nonzero.dim_IntList(Tensor self, int[] dim) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: count_nonzero |
| |
| - func: count_nonzero(Tensor self, int? dim=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: count_nonzero |
| |
| - func: cudnn_affine_grid_generator(Tensor theta, int N, int C, int H, int W) -> Tensor grid |
| dispatch: |
| CUDA: cudnn_affine_grid_generator_forward |
| |
| # TODO: Why do I have to call this grad?! |
| - func: cudnn_affine_grid_generator_backward(Tensor grad, int N, int C, int H, int W) -> Tensor grad_theta |
| dispatch: |
| CUDA: cudnn_affine_grid_generator_backward |
| |
| - func: cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: cudnn_batch_norm |
| |
| # NB: You can only use this if you used cudnn_batch_norm training=True |
| - func: cudnn_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon, Tensor reserveSpace) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: cudnn_batch_norm_backward |
| |
| - func: cudnn_convolution.deprecated(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_deprecated |
| |
| - func: cudnn_convolution.deprecated2(Tensor self, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_deprecated2 |
| |
| - func: cudnn_convolution(Tensor self, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution |
| |
| - func: cudnn_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_backward_input |
| |
| - func: cudnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool allow_tf32, bool[2] output_mask) -> (Tensor, Tensor) |
| dispatch: |
| CUDA: cudnn_convolution_backward |
| |
| - func: cudnn_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_backward_weight |
| |
| - func: cudnn_convolution_transpose.deprecated(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_transpose_deprecated |
| |
| - func: cudnn_convolution_transpose.deprecated2(Tensor self, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_transpose_deprecated2 |
| |
| - func: cudnn_convolution_transpose(Tensor self, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_transpose |
| |
| # NB: output_padding not strictly needed here, but it's helpful for the float |
| # backwards |
| - func: cudnn_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool allow_tf32, bool[2] output_mask) -> (Tensor, Tensor) |
| dispatch: |
| CUDA: cudnn_convolution_transpose_backward |
| |
| - func: cudnn_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_transpose_backward_input |
| |
| - func: cudnn_convolution_transpose_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_transpose_backward_weight |
| |
| - func: cudnn_convolution_relu(Tensor self, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, int groups) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_relu |
| |
| - func: cudnn_convolution_add_relu(Tensor self, Tensor weight, Tensor z, Scalar? alpha, Tensor? bias, int[] stride, int[] padding, int[] dilation, int groups) -> Tensor |
| dispatch: |
| CUDA: cudnn_convolution_add_relu |
| |
| # NB: input is special cased in a way I don't quite understand |
| - func: cudnn_grid_sampler(Tensor self, Tensor grid) -> Tensor output |
| dispatch: |
| CUDA: cudnn_grid_sampler_forward |
| |
| - func: cudnn_grid_sampler_backward(Tensor self, Tensor grid, Tensor grad_output) -> (Tensor grad_self, Tensor grad_grid) |
| dispatch: |
| CUDA: cudnn_grid_sampler_backward |
| |
| - func: cummax(Tensor self, int dim) -> (Tensor values, Tensor indices) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: cummax |
| |
| - func: cummax.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CompositeExplicitAutograd: cummax_out |
| |
| - func: cummax.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices) |
| variants: function, method |
| |
| - func: cummax.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| |
| - func: _cummax_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> () |
| variants: function |
| dispatch: |
| CPU: cummax_helper_cpu |
| CUDA: cummax_helper_cuda |
| |
| - func: cummin(Tensor self, int dim) -> (Tensor values, Tensor indices) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: cummin |
| |
| - func: cummin.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CompositeExplicitAutograd: cummin_out |
| |
| - func: cummin.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices) |
| variants: function, method |
| |
| - func: cummin.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| |
| - func: _cummin_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> () |
| variants: function |
| dispatch: |
| CPU: cummin_helper_cpu |
| CUDA: cummin_helper_cuda |
| |
| - func: cummaxmin_backward(Tensor grad, Tensor input, Tensor indices, int dim) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: cumprod(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: cumprod |
| |
| - func: cumprod_(Tensor(a!) self, int dim, *, ScalarType? dtype=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: cumprod_ |
| |
| - func: cumprod.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: cumprod_out |
| |
| - func: cumprod.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| |
| - func: cumprod_.dimname(Tensor(a!) self, Dimname dim, *, ScalarType? dtype=None) -> Tensor(a!) |
| variants: method |
| |
| - func: cumprod.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: cumprod_backward(Tensor grad, Tensor input, int dim, Tensor output) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: cumsum(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: cumsum |
| |
| - func: cumsum_(Tensor(a!) self, int dim, *, ScalarType? dtype=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: cumsum_ |
| |
| - func: cumsum.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: cumsum_out |
| |
| - func: cumsum.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| |
| - func: cumsum_.dimname(Tensor(a!) self, Dimname dim, *, ScalarType? dtype=None) -> Tensor(a!) |
| variants: method |
| |
| - func: cumsum.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor |
| |
| # convenience function that converts to intlists for you |
| - func: ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor |
| |
| - func: _ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor) |
| dispatch: |
| CPU: ctc_loss_cpu |
| CUDA: ctc_loss_gpu |
| |
| - func: _ctc_loss_backward(Tensor grad, Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, Tensor neg_log_likelihood, Tensor log_alpha, int blank, bool zero_infinity=False) -> Tensor |
| dispatch: |
| CPU: ctc_loss_backward_cpu |
| CUDA: ctc_loss_backward_gpu |
| |
| - func: diag_embed(Tensor self, int offset=0, int dim1=-2, int dim2=-1) -> Tensor |
| variants: function, method |
| |
| - func: diagflat(Tensor self, int offset=0) -> Tensor |
| variants: function, method |
| |
| - func: diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> Tensor(a) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: diagonal |
| |
| - func: diagonal.Dimname(Tensor(a) self, *, Dimname outdim, Dimname dim1, Dimname dim2, int offset=0) -> Tensor(a) |
| variants: function, method |
| |
| - func: diagonal_backward(Tensor grad, int[] input_sizes, int offset, int dim1, int dim2) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: fill_diagonal_(Tensor(a!) self, Scalar fill_value, bool wrap=False) -> Tensor(a!) |
| variants: method |
| |
| - func: diff(Tensor self, int n=1, int dim=-1, Tensor? prepend=None, Tensor? append=None) -> Tensor |
| variants: function, method |
| |
| - func: diff.out(Tensor self, int n=1, int dim=-1, Tensor? prepend=None, Tensor? append=None, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| |
| - func: div.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| structured_delegate: div.out |
| dispatch: |
| SparseCPU, SparseCUDA: div_sparse |
| |
| - func: div_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| structured_delegate: div.out |
| dispatch: |
| SparseCPU, SparseCUDA: div_sparse_ |
| |
| - func: div.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: div_out |
| SparseCPU, SparseCUDA: div_out_sparse_zerodim |
| |
| - func: div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor |
| variants: function, method |
| structured_delegate: div.out_mode |
| |
| - func: div_.Tensor_mode(Tensor(a!) self, Tensor other, *, str? rounding_mode) -> Tensor(a!) |
| variants: method |
| structured_delegate: div.out_mode |
| |
| - func: div.out_mode(Tensor self, Tensor other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: div_out_mode |
| |
| # For C++ only, until we have conversion from C++ numbers to Tensor |
| - func: div.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: div |
| |
| - func: div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: div_ |
| |
| - func: div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: div |
| |
| - func: div_.Scalar_mode(Tensor(a!) self, Scalar other, *, str? rounding_mode) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: div_ |
| |
| # divide, alias for div |
| - func: divide.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: divide.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: function, method |
| |
| - func: divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: divide.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor |
| variants: function, method |
| |
| - func: divide_.Tensor_mode(Tensor(a!) self, Tensor other, *, str? rounding_mode) -> Tensor(a!) |
| variants: method |
| |
| - func: divide.out_mode(Tensor self, Tensor other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: divide.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor |
| variants: function, method |
| |
| - func: divide_.Scalar_mode(Tensor(a!) self, Scalar other, *, str? rounding_mode) -> Tensor(a!) |
| variants: method |
| |
| # true_divide, an alias for div |
| - func: true_divide.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: true_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: true_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: true_divide.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: function, method |
| |
| - func: true_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: dot(Tensor self, Tensor tensor) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: dot |
| CUDA: dot_cuda |
| |
| - func: dot.out(Tensor self, Tensor tensor, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: dot_out |
| |
| - func: vdot(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: vdot |
| CUDA: vdot_cuda |
| |
| - func: vdot.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: vdot_out |
| |
| - func: einsum(str equation, Tensor[] tensors) -> Tensor |
| |
| - func: embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: embedding |
| |
| - func: embedding_backward(Tensor grad, Tensor indices, int num_weights, int padding_idx, bool scale_grad_by_freq, bool sparse) -> Tensor |
| |
| - func: embedding_dense_backward(Tensor grad_output, Tensor indices, int num_weights, int padding_idx, bool scale_grad_by_freq) -> Tensor |
| dispatch: |
| CPU: embedding_dense_backward_cpu |
| CUDA: embedding_dense_backward_cuda |
| |
| - func: embedding_renorm_(Tensor(a!) self, Tensor indices, float max_norm, float norm_type) -> Tensor(a!) |
| dispatch: |
| CPU: embedding_renorm_cpu_ |
| CUDA: embedding_renorm_cuda_ |
| |
| - func: embedding_sparse_backward(Tensor grad, Tensor indices, int num_weights, int padding_idx, bool scale_grad_by_freq) -> Tensor |
| |
| # NOTE [ embedding_bag Native Functions ] |
| # The `_embedding_bag.*` variants assume that input tensors except for `weight`, |
| # e.g. `indices` and `offsets` (and `offset2bag`), are contiguous. |
| # We really only need to enforce this for `_embedding_bag` (the forward) because |
| # the backward inputs are the same as forward ones. |
| # The above `embedding_bag` wrapper is created to achieve this, e.g., |
| # applying indices = indices.contiguous(). |
| # The backward functions apply a check that these input tensors are contiguous. |
| |
| |
| - func: _embedding_bag_forward_only(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1) -> (Tensor, Tensor, Tensor, Tensor) |
| dispatch: |
| CPU: _embedding_bag_forward_only_cpu |
| CUDA: _embedding_bag_forward_only_cuda |
| |
| - func: _rowwise_prune(Tensor weight, Tensor mask, ScalarType compressed_indices_dtype) -> (Tensor, Tensor) |
| |
| # row_stack is the alias of vstack |
| - func: row_stack(Tensor[] tensors) -> Tensor |
| |
| - func: row_stack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor) |
| |
| # To keep backward and forward compatibility, and to avoid ambiguity with the |
| # original signature above, scale_grad_by_freq, mode, sparse, |
| # per_sample_weights, and include_last_offset parameters do not have default |
| # values. Once the original signature is removed, default values can be added. |
| - func: embedding_bag.padding_idx(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, bool include_last_offset, int? padding_idx) -> (Tensor, Tensor, Tensor, Tensor) |
| |
| - func: _embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1) -> (Tensor, Tensor, Tensor, Tensor) |
| dispatch: |
| CPU: _embedding_bag_cpu |
| CUDA: _embedding_bag_cuda |
| |
| - func: _embedding_bag_backward(Tensor grad, Tensor indices, Tensor offsets, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, int num_weights, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor |
| |
| - func: _embedding_bag_sparse_backward(Tensor grad, Tensor indices, Tensor offsets, Tensor offset2bag, Tensor bag_size, int num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor |
| |
| - func: _embedding_bag_dense_backward(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, int num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor |
| dispatch: |
| CPU: _embedding_bag_dense_backward_cpu |
| CUDA: _embedding_bag_dense_backward_cuda |
| |
| - func: _embedding_bag_per_sample_weights_backward(Tensor grad, Tensor weight, Tensor indices, Tensor offsets, Tensor offset2bag, int mode, int padding_idx=-1) -> Tensor |
| dispatch: |
| CPU: _embedding_bag_per_sample_weights_backward_cpu |
| CUDA: _embedding_bag_per_sample_weights_backward_cuda |
| |
| - func: empty.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor |
| device_guard: False |
| |
| - func: empty.memory_format(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor |
| dispatch: |
| CPU: empty_cpu |
| CUDA: empty_cuda |
| Meta: empty_meta |
| MkldnnCPU: empty_mkldnn |
| SparseCPU, SparseCUDA: empty_sparse |
| |
| - func: new_empty(Tensor self, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| variants: method |
| |
| - func: new_empty_strided(Tensor self, int[] size, int[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| variants: method |
| |
| - func: new_full(Tensor self, int[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| variants: method |
| |
| - func: new_zeros(Tensor self, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| variants: method |
| |
| # other overrides are to provide a more helpful error message that dtype is required |
| - func: _empty_affine_quantized(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor |
| dispatch: |
| CPU: empty_affine_quantized_other_backends_stub |
| QuantizedCPU, QuantizedCUDA: empty_affine_quantized |
| |
| # it's a factory function receiving a tensor argument, thus overriding explicitly |
| # other overrides are to provide a more helpful error message that dtype is required |
| - func: _empty_per_channel_affine_quantized(int[] size, *, Tensor scales, Tensor zero_points, int axis, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=contiguous_format) -> Tensor |
| category_override: factory |
| dispatch: |
| CPU: empty_per_channel_affine_quantized_other_backends_stub |
| QuantizedCPU, QuantizedCUDA: empty_per_channel_affine_quantized |
| |
| - func: resize_(Tensor(a!) self, int[] size, *, MemoryFormat? memory_format=None) -> Tensor(a!) |
| use_const_ref_for_mutable_tensors: True |
| variants: method |
| device_guard: False |
| dispatch: |
| CPU, Meta: resize_ |
| CUDA: resize_cuda_ |
| QuantizedCPU: quantized_resize_cpu_ |
| |
| - func: empty_quantized(int[] size, Tensor qtensor) -> Tensor |
| variants: function |
| dispatch: |
| QuantizedCPU, QuantizedCUDA: empty_quantized |
| |
| - func: empty.out(int[] size, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!) |
| device_guard: False |
| |
| - func: empty_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor |
| device_guard: False |
| |
| - func: empty_strided(int[] size, int[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| dispatch: |
| CPU: empty_strided_cpu |
| CUDA: empty_strided_cuda |
| Meta: empty_strided_meta |
| |
| - func: erf(Tensor self) -> Tensor |
| structured_delegate: erf.out |
| variants: function, method |
| |
| - func: erf_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: erf.out |
| variants: function, method |
| |
| - func: erf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: erf_out |
| |
| - func: erfc(Tensor self) -> Tensor |
| structured_delegate: erfc.out |
| variants: function, method |
| |
| - func: erfc_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: erfc.out |
| variants: function, method |
| |
| - func: erfc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: erfc_out |
| |
| - func: exp(Tensor self) -> Tensor |
| structured_delegate: exp.out |
| variants: function, method |
| |
| - func: exp_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: exp.out |
| variants: function, method |
| |
| - func: exp.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: exp_out |
| |
| - func: exp2(Tensor self) -> Tensor |
| structured_delegate: exp2.out |
| variants: function, method |
| |
| - func: exp2_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: exp2.out |
| variants: function, method |
| |
| - func: exp2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: exp2_out |
| |
| - func: expm1(Tensor self) -> Tensor |
| structured_delegate: expm1.out |
| variants: function, method |
| |
| - func: expm1_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: expm1.out |
| variants: function, method |
| |
| - func: expm1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: expm1_out |
| |
| - func: expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a) |
| variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too. |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: expand |
| |
| - func: expand_as(Tensor(a) self, Tensor other) -> Tensor(a) |
| variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too. |
| device_guard: False |
| |
| - func: eye(int n, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: eye.m(int n, int m, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: eye.out(int n, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: eye_out_cpu |
| CUDA: eye_out_cuda |
| |
| - func: eye.m_out(int n, int m, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: eye_out_cpu |
| CUDA: eye_out_cuda |
| |
| - func: flatten.using_ints(Tensor(a) self, int start_dim=0, int end_dim=-1) -> Tensor(a) |
| variants: function, method |
| |
| - func: flatten.named_out_dim(Tensor(a) self, int start_dim, int end_dim, Dimname out_dim) -> Tensor(a) |
| variants: function, method |
| |
| - func: flatten.using_names(Tensor(a) self, Dimname start_dim, Dimname end_dim, Dimname out_dim) -> Tensor(a) |
| variants: function, method |
| |
| - func: flatten.DimnameList(Tensor(a) self, Dimname[] dims, Dimname out_dim) -> Tensor(a) |
| variants: function, method |
| |
| - func: unflatten.int(Tensor(a) self, int dim, int[] sizes, Dimname[]? names=None) -> Tensor(a) |
| variants: method |
| |
| - func: unflatten.Dimname(Tensor(a) self, Dimname dim, int[] sizes, Dimname[] names) -> Tensor(a) |
| variants: method |
| |
| - func: fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CPU, CUDA, QuantizedCPU, QuantizedCUDA: fill_ |
| Meta: fill_meta_ |
| |
| - func: fill_.Tensor(Tensor(a!) self, Tensor value) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CPU, CUDA, QuantizedCPU, QuantizedCUDA: fill_ |
| Meta: fill_meta_ |
| |
| - func: floor(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: floor |
| |
| - func: floor_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: floor_ |
| |
| - func: floor.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: floor_out |
| |
| - func: floor_divide(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: floor_divide |
| SparseCPU, SparseCUDA: floor_divide_sparse |
| |
| - func: floor_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: floor_divide_ |
| SparseCPU, SparseCUDA: floor_divide_sparse_ |
| |
| - func: floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: floor_divide_out |
| SparseCPU, SparseCUDA: floor_divide_out_sparse_zerodim |
| |
| - func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: function, method |
| |
| - func: floor_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: frac(Tensor self) -> Tensor |
| structured_delegate: frac.out |
| variants: function, method |
| |
| - func: frac_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: frac.out |
| variants: function, method |
| |
| - func: frac.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: frac_out |
| |
| - func: full.names(int[] size, Scalar fill_value, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| device_guard: False |
| |
| - func: full(int[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: full.out(int[] size, Scalar fill_value, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: full_like(Tensor self, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor |
| |
| - func: from_file(str filename, bool? shared=None, int? size=0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| dispatch: |
| CPU: from_file |
| |
| - func: gcd.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: gcd_out |
| |
| - func: gcd(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: gcd_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: function, method |
| |
| - func: lcm.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: lcm_out |
| |
| - func: lcm(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: lcm_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: function, method |
| |
| # NOTE [ grid_sampler Native Functions ] |
| # `grid_sampler` does all the shape checking and then dispatches to one of |
| # `cudnn_grid_sampler`, `grid_sampler_2d`, or `grid_sampler_3d`, each of which |
| # has the corresponding backward defined as native functions as well. Therefore, |
| # in these functions and their backwards, no more shape checking is done. |
| # |
| # There is also _grid_sampler_2d_backward_cpu_fallback which is an |
| # implementation detail of grid_sampler_2d and is only exposed here for testing |
| # purposes. |
| # |
| # Additionally, arguments `padding_mode` and `interpolation_mode` are cast to |
| # enums defined in `native/GridSampler.h`. `cudnn_grid_sampler` doesn't take in |
| # `interpolation_mode` because it only supports Bilinear interpolation mode. |
| # Nor does it take in `align_corners` because it only supports the mode |
| # `align_corners = True`. |
| - func: grid_sampler(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor |
| |
| - func: grid_sampler_2d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor |
| dispatch: |
| CPU: grid_sampler_2d_cpu |
| CUDA: grid_sampler_2d_cuda |
| |
| - func: grid_sampler_2d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor) |
| dispatch: |
| CPU: grid_sampler_2d_backward_cpu |
| CUDA: grid_sampler_2d_backward_cuda |
| |
| # See NOTE [ grid_sample CPU fallback ] |
| - func: _grid_sampler_2d_cpu_fallback(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: _grid_sampler_2d_cpu_fallback |
| |
| - func: _grid_sampler_2d_cpu_fallback_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor) |
| |
| - func: grid_sampler_3d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor |
| dispatch: |
| CPU: grid_sampler_3d_cpu |
| CUDA: grid_sampler_3d_cuda |
| |
| - func: grid_sampler_3d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor) |
| dispatch: |
| CPU: grid_sampler_3d_backward_cpu |
| CUDA: grid_sampler_3d_backward_cuda |
| |
| - func: hann_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: hann_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: hamming_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: hamming_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: hamming_window.periodic_alpha(int window_length, bool periodic, float alpha, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: hamming_window.periodic_alpha_beta(int window_length, bool periodic, float alpha, float beta, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: kaiser_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: kaiser_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: kaiser_window.beta(int window_length, bool periodic, float beta, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: hinge_embedding_loss(Tensor self, Tensor target, float margin=1.0, int reduction=Mean) -> Tensor |
| |
| - func: group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor |
| |
| - func: native_group_norm(Tensor input, Tensor? weight, Tensor? bias, int N, int C, int HxW, int group, float eps) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CPU, CUDA: native_group_norm |
| CompositeImplicitAutograd: math_group_norm |
| |
| - func: native_group_norm_backward(Tensor grad_out, Tensor input, Tensor mean, Tensor rstd, Tensor? weight, int N, int C, int HxW, int group, bool[3] output_mask) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CPU, CUDA: native_group_norm_backward |
| |
| # Real to complex forward FFT |
| - func: _fft_r2c(Tensor self, int[] dim, int normalization, bool onesided) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _fft_r2c_mkl |
| CUDA: _fft_r2c_cufft |
| |
| - func: _fft_r2c.out(Tensor self, int[] dim, int normalization, bool onesided, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: _fft_r2c_mkl_out |
| CUDA: _fft_r2c_cufft_out |
| |
| # Complex to real inverse FFT |
| - func: _fft_c2r(Tensor self, int[] dim, int normalization, int last_dim_size) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _fft_c2r_mkl |
| CUDA: _fft_c2r_cufft |
| |
| - func: _fft_c2r.out(Tensor self, int[] dim, int normalization, int last_dim_size, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: _fft_c2r_mkl_out |
| CUDA: _fft_c2r_cufft_out |
| |
| # Standard complex to complex FFT (forward or backward) |
| - func: _fft_c2c(Tensor self, int[] dim, int normalization, bool forward) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _fft_c2c_mkl |
| CUDA: _fft_c2c_cufft |
| |
| - func: _fft_c2c.out(Tensor self, int[] dim, int normalization, bool forward, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: _fft_c2c_mkl_out |
| CUDA: _fft_c2c_cufft_out |
| |
| - func: _cufft_get_plan_cache_size(int device_index) -> int |
| |
| - func: _cufft_get_plan_cache_max_size(int device_index) -> int |
| |
| - func: _cufft_set_plan_cache_max_size(int device_index, int max_size) -> () |
| |
| - func: _cufft_clear_plan_cache(int device_index) -> () |
| |
| - func: index.Tensor(Tensor self, Tensor?[] indices) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: index |
| QuantizedCPU: quantized_index |
| # NB: This function is special-cased in tools/autograd/gen_variable_type.py |
| # NB: The following functions are declared in aten/src/ATen/templates/TensorBody.h and defined in aten/src/ATen/TensorIndexing.cpp: |
| # - Tensor Tensor::index(ArrayRef<TensorIndex> indices) |
| # - Tensor Tensor::index(std::initializer_list<TensorIndex> indices) |
| |
| - func: index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: index_copy_ |
| |
| - func: index_copy(Tensor self, int dim, Tensor index, Tensor source) -> Tensor |
| variants: function, method |
| |
| - func: index_copy_.dimname(Tensor(a!) self, Dimname dim, Tensor index, Tensor source) -> Tensor(a!) |
| variants: method |
| |
| - func: index_copy.dimname(Tensor self, Dimname dim, Tensor index, Tensor source) -> Tensor |
| variants: function, method |
| |
| - func: index_put_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: index_put_ |
| # NB: The following functions are declared in aten/src/ATen/templates/TensorBody.h and defined in aten/src/ATen/TensorIndexing.cpp: |
| # - Tensor & Tensor::index_put_(ArrayRef<TensorIndex> indices, Tensor const & rhs) |
| # - Tensor & Tensor::index_put_(ArrayRef<TensorIndex> indices, Scalar v) |
| # - Tensor & Tensor::index_put_(std::initializer_list<TensorIndex> indices, Tensor const & rhs) |
| # - Tensor & Tensor::index_put_(std::initializer_list<TensorIndex> indices, Scalar v) |
| |
| - func: index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor |
| variants: function, method |
| |
| - func: _index_put_impl_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: _index_put_impl_ |
| |
| - func: instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, float momentum, float eps, bool cudnn_enabled) -> Tensor |
| variants: function |
| |
| - func: inverse(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: inverse |
| |
| - func: inverse.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: inverse_out |
| |
| - func: _inverse_helper(Tensor self) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _inverse_helper_cpu |
| CUDA: _inverse_helper_cuda |
| |
| - func: isclose(Tensor self, Tensor other, float rtol=1e-05, float atol=1e-08, bool equal_nan=False) -> Tensor |
| variants: function, method |
| |
| - func: isnan(Tensor self) -> Tensor |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CPU, CUDA: isnan |
| SparseCPU, SparseCUDA: isnan_sparse |
| |
| - func: is_distributed(Tensor self) -> bool |
| variants: function, method |
| device_guard: False |
| |
| - func: is_floating_point(Tensor self) -> bool |
| variants: function, method |
| device_guard: False |
| manual_cpp_binding: True |
| |
| - func: is_complex(Tensor self) -> bool |
| variants: function, method |
| device_guard: False |
| manual_cpp_binding: True |
| |
| - func: isreal(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: is_nonzero(Tensor self) -> bool |
| variants: function, method |
| device_guard: False |
| |
| - func: is_same_size(Tensor self, Tensor other) -> bool |
| variants: function, method |
| device_guard: False |
| |
| - func: is_signed(Tensor self) -> bool |
| variants: function, method |
| device_guard: False |
| manual_cpp_binding: True |
| |
| - func: kl_div(Tensor self, Tensor target, int reduction=Mean, *, bool log_target=False) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: kl_div |
| |
| - func: kl_div_backward(Tensor grad_output, Tensor self, Tensor target, int reduction=Mean, *, bool log_target=False) -> Tensor |
| dispatch: |
| CPU: kl_div_backward_cpu |
| CUDA: kl_div_backward_cuda |
| |
| - func: kron(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: kron.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: kthvalue(Tensor self, int k, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: kthvalue |
| |
| - func: kthvalue.values(Tensor self, int k, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CPU: kthvalue_out_cpu |
| CUDA: kthvalue_out_cuda |
| |
| - func: kthvalue.dimname(Tensor self, int k, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| |
| - func: kthvalue.dimname_out(Tensor self, int k, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| |
| - func: layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor |
| |
| - func: native_layer_norm(Tensor input, int[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CPU: layer_norm_cpu |
| CUDA: layer_norm_cuda |
| CompositeImplicitAutograd: math_native_layer_norm |
| |
| - func: native_layer_norm_backward(Tensor grad_out, Tensor input, int[] normalized_shape, Tensor mean, Tensor rstd, Tensor? weight, Tensor? bias, bool[3] output_mask) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CPU: layer_norm_backward_cpu |
| CUDA: layer_norm_backward_cuda |
| |
| - func: nan_to_num(Tensor self, float? nan=None, float? posinf=None, float? neginf=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: nan_to_num |
| |
| - func: nan_to_num_(Tensor(a!) self, float? nan=None, float? posinf=None, float? neginf=None) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: nan_to_num_ |
| |
| - func: nan_to_num.out(Tensor self, float? nan=None, float? posinf=None, float? neginf=None, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: nan_to_num_out |
| |
| - func: linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor |
| python_module: nn |
| |
| - func: mkldnn_linear(Tensor self, Tensor weight, Tensor? bias=None) -> Tensor |
| python_module: nn |
| dispatch: |
| MkldnnCPU: mkldnn_linear |
| |
| - func: mkldnn_linear_backward_input(int[] input_size, Tensor grad_output, Tensor weight) -> Tensor |
| dispatch: |
| MkldnnCPU: mkldnn_linear_backward_input |
| |
| - func: mkldnn_linear_backward_weights(Tensor grad_output, Tensor input, Tensor weight, bool bias_defined) -> (Tensor, Tensor) |
| dispatch: |
| MkldnnCPU: mkldnn_linear_backward_weights |
| |
| - func: mkldnn_linear_backward(Tensor self, Tensor grad_output, Tensor weight, bool[3] output_mask) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| MkldnnCPU: mkldnn_linear_backward |
| |
| - func: fbgemm_linear_int8_weight_fp32_activation(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor |
| |
| - func: fbgemm_linear_int8_weight(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor |
| |
| - func: fbgemm_linear_quantize_weight(Tensor input) -> (Tensor, Tensor, float, int) |
| |
| - func: fbgemm_pack_gemm_matrix_fp16(Tensor input) -> Tensor |
| |
| - func: fbgemm_linear_fp16_weight_fp32_activation(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor |
| |
| - func: fbgemm_linear_fp16_weight(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor |
| |
| - func: fbgemm_pack_quantized_matrix(Tensor input) -> Tensor |
| |
| - func: fbgemm_pack_quantized_matrix.KN(Tensor input, int K, int N) -> Tensor |
| |
| - func: ldexp.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: ldexp_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: function, method |
| |
| - func: ldexp.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: linspace(Scalar start, Scalar end, int? steps=None, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: linspace.out(Scalar start, Scalar end, int? steps=None, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: linspace_cpu_out |
| CUDA: linspace_cuda_out |
| |
| - func: log(Tensor self) -> Tensor |
| structured_delegate: log.out |
| variants: function, method |
| |
| - func: log_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: log.out |
| variants: function, method |
| |
| - func: log.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: log_out |
| |
| - func: log10(Tensor self) -> Tensor |
| structured_delegate: log10.out |
| variants: function, method |
| |
| - func: log10_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: log10.out |
| variants: function, method |
| |
| - func: log10.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: log10_out |
| |
| - func: log1p(Tensor self) -> Tensor |
| structured_delegate: log1p.out |
| variants: function, method |
| dispatch: |
| SparseCPU, SparseCUDA: log1p_sparse |
| |
| - func: log1p_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: log1p.out |
| variants: function, method |
| dispatch: |
| SparseCPU, SparseCUDA: log1p_sparse_ |
| |
| - func: log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: log1p_out |
| SparseCPU, SparseCUDA: log1p_out_sparse |
| |
| - func: log2(Tensor self) -> Tensor |
| structured_delegate: log2.out |
| variants: function, method |
| |
| - func: log2_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: log2.out |
| variants: function, method |
| |
| - func: log2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: log2_out |
| |
| - func: logaddexp.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: logaddexp_out |
| |
| - func: logaddexp(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: logaddexp |
| |
| - func: logaddexp2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: logaddexp2_out |
| |
| - func: logaddexp2(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: logaddexp2 |
| |
| - func: xlogy.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: xlogy |
| |
| - func: xlogy.Scalar_Self(Scalar self, Tensor other) -> Tensor |
| variants: function |
| dispatch: |
| CPU, CUDA: xlogy |
| |
| - func: xlogy.Scalar_Other(Tensor self, Scalar other) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: xlogy |
| |
| # xlogy: inplace variant |
| - func: xlogy_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CPU, CUDA: xlogy_ |
| |
| - func: xlogy_.Scalar_Other(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CPU, CUDA: xlogy_ |
| |
| # xlogy: out variant |
| - func: xlogy.OutTensor(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: xlogy_out |
| |
| - func: xlogy.OutScalar_Self(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: xlogy_out |
| |
| - func: xlogy.OutScalar_Other(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: xlogy_out |
| |
| - func: logdet(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: logdet |
| |
| - func: logspace(Scalar start, Scalar end, int? steps=None, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: logspace.out(Scalar start, Scalar end, int? steps=None, float base=10.0, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: logspace_cpu_out |
| CUDA: logspace_cuda_out |
| |
| # log_softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models. |
| - func: log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| |
| - func: log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| |
| - func: _log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor |
| dispatch: |
| CPU: log_softmax_cpu |
| CUDA: log_softmax_cuda |
| |
| - func: _log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor |
| dispatch: |
| CPU: log_softmax_backward_cpu |
| CUDA: log_softmax_backward_cuda |
| |
| - func: _logcumsumexp(Tensor self, int dim) -> Tensor |
| dispatch: |
| CPU: _logcumsumexp_cpu |
| CUDA: _logcumsumexp_cuda |
| |
| - func: _logcumsumexp.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: _logcumsumexp_out_cpu |
| CUDA: _logcumsumexp_out_cuda |
| |
| - func: logcumsumexp(Tensor self, int dim) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: logcumsumexp |
| |
| - func: logcumsumexp.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: logcumsumexp_out |
| |
| - func: logcumsumexp.dimname(Tensor self, Dimname dim) -> Tensor |
| variants: function, method |
| |
| - func: logcumsumexp.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: logsumexp |
| |
| - func: logsumexp.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: logsumexp_out |
| |
| - func: logsumexp.names(Tensor self, Dimname[1] dim, bool keepdim=False) -> Tensor |
| variants: function, method |
| |
| - func: logsumexp.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor |
| |
| - func: matmul(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: matmul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: matrix_rank.tol(Tensor self, float tol, bool symmetric=False) -> Tensor |
| |
| - func: matrix_rank(Tensor self, bool symmetric=False) -> Tensor |
| |
| # Alias to linalg.matrix_power |
| - func: matrix_power(Tensor self, int n) -> Tensor |
| variants: function, method |
| |
| # Alias to linalg.matrix_power |
| - func: matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: matrix_exp(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: matrix_exp |
| |
| - func: matrix_exp_backward(Tensor self, Tensor grad) -> Tensor |
| |
| - func: _aminmax(Tensor self) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU, CUDA: _aminmax_all |
| |
| - func: _aminmax.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU, CUDA: _aminmax |
| |
| - func: _compute_linear_combination(Tensor input, Tensor coefficients) -> Tensor |
| dispatch: |
| CPU, CUDA: _compute_linear_combination |
| |
| - func: _compute_linear_combination.out(Tensor input, Tensor coefficients, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: _compute_linear_combination_out |
| |
| - func: max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| dispatch: |
| CPU, CUDA, QuantizedCPU, QuantizedCUDA: max |
| |
| - func: max.dim_max(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CPU, CUDA: max_out |
| |
| - func: max.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| |
| - func: max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices) |
| |
| - func: value_selecting_reduction_backward(Tensor grad, int dim, Tensor indices, int[] sizes, bool keepdim) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: amax(Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: amax |
| |
| - func: amax.out(Tensor self, int[1] dim=[], bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: amax_out |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor) |
| |
| - func: max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor |
| |
| - func: max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor |
| |
| - func: mkldnn_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor |
| dispatch: |
| MkldnnCPU: mkldnn_max_pool2d |
| |
| - func: mkldnn_max_pool2d_backward(Tensor grad_output, Tensor output, Tensor input, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor |
| dispatch: |
| MkldnnCPU: mkldnn_max_pool2d_backward |
| |
| - func: mkldnn_max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor |
| dispatch: |
| MkldnnCPU: mkldnn_max_pool3d |
| |
| - func: mkldnn_max_pool3d_backward(Tensor grad_output, Tensor output, Tensor input, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor |
| dispatch: |
| MkldnnCPU: mkldnn_max_pool3d_backward |
| |
| - func: quantized_max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor |
| dispatch: |
| QuantizedCPU: quantized_max_pool1d |
| |
| - func: quantized_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor |
| dispatch: |
| QuantizedCPU: quantized_max_pool2d |
| |
| - func: max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor |
| |
| # The CPU and GPU dispatch variants are named weirdly here because otherwise there |
| # are namespacing issues in C++ |
| - func: mean(Tensor self, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: mean_cpu_gpu |
| QuantizedCPU: mean_quantized_cpu |
| |
| - func: mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: mean_cpu_gpu |
| QuantizedCPU: mean_quantized_cpu |
| |
| - func: mean.out(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: mean_out_cpu_gpu |
| QuantizedCPU: mean_out_quantized_cpu |
| |
| - func: mean.names_dim(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| |
| - func: mean.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: median(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: median_cpu |
| CUDA: median_cuda |
| |
| - func: median.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: median |
| |
| - func: median.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CPU: median_out_cpu |
| CUDA: median_out_cuda |
| |
| - func: median.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| |
| - func: median.names_dim_values(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| |
| - func: nanmedian(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: nanmedian_cpu |
| CUDA: nanmedian_cuda |
| |
| - func: nanmedian.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: nanmedian |
| |
| - func: nanmedian.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CPU: nanmedian_out_cpu |
| CUDA: nanmedian_out_cuda |
| |
| - func: nanmedian.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| |
| - func: nanmedian.names_dim_values(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| |
| - func: min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| dispatch: |
| CPU, CUDA, QuantizedCPU, QuantizedCUDA: min |
| |
| - func: min.dim_min(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CPU, CUDA: min_out |
| |
| - func: min.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| |
| - func: min.names_dim_min(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| |
| - func: amin(Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: amin |
| |
| - func: amin.out(Tensor self, int[1] dim=[], bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: amin_out |
| |
| - func: mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: mkldnn_convolution |
| |
| - func: mkldnn_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool bias_defined) -> Tensor |
| |
| - func: mkldnn_convolution_backward_weights(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool bias_defined) -> (Tensor, Tensor) |
| |
| - func: mkldnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CompositeExplicitAutograd: mkldnn_convolution_backward |
| |
| - func: miopen_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: miopen_batch_norm |
| |
| - func: miopen_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: miopen_batch_norm_backward |
| |
| - func: miopen_convolution(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: miopen_convolution |
| |
| - func: miopen_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: miopen_convolution_backward_input |
| |
| - func: miopen_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: miopen_convolution_backward |
| |
| - func: miopen_convolution_backward_bias(Tensor grad_output) -> Tensor |
| dispatch: |
| CUDA: miopen_convolution_backward_bias |
| |
| - func: miopen_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: miopen_convolution_backward_weight |
| |
| - func: miopen_convolution_transpose(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: miopen_convolution_transpose |
| |
| # NB: output_padding not strictly needed here, but it's helpful for the float |
| # backwards |
| - func: miopen_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: miopen_convolution_transpose_backward |
| |
| - func: miopen_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: miopen_convolution_transpose_backward_input |
| |
| - func: miopen_convolution_transpose_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: miopen_convolution_transpose_backward_weight |
| |
| - func: miopen_depthwise_convolution(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: miopen_depthwise_convolution |
| |
| - func: miopen_depthwise_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: miopen_depthwise_convolution_backward_input |
| |
| - func: miopen_depthwise_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: miopen_depthwise_convolution_backward |
| |
| - func: miopen_depthwise_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor |
| dispatch: |
| CUDA: miopen_depthwise_convolution_backward_weight |
| |
| - func: miopen_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: miopen_rnn |
| |
| - func: miopen_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[]) |
| dispatch: |
| CUDA: miopen_rnn_backward |
| |
| - func: mm(Tensor self, Tensor mat2) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: mm_cpu |
| CUDA: mm_cuda |
| SparseCPU, SparseCUDA, SparseCsrCPU: _sparse_mm |
| |
| - func: mm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: mm_cpu_out |
| CUDA: mm_out_cuda |
| SparseCPU, SparseCUDA: _sparse_mm_out |
| SparseCsrCPU: _sparse_csr_mm_out |
| |
| - func: _sparse_mm(Tensor sparse, Tensor dense) -> Tensor |
| |
| - func: _sparse_sparse_matmul(Tensor self, Tensor other) -> Tensor |
| dispatch: |
| SparseCPU: sparse_sparse_matmul_cpu |
| SparseCUDA: sparse_sparse_matmul_cuda |
| |
| - func: _sparse_mask_helper(Tensor t, Tensor mask_indices) -> Tensor |
| dispatch: |
| SparseCPU: sparse_mask_helper_cpu |
| SparseCUDA: sparse_mask_helper_cuda |
| |
| - func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| dispatch: |
| CPU, CUDA: mode |
| |
| - func: mode.values(Tensor self, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CompositeExplicitAutograd: mode_out |
| |
| - func: mode.dimname(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) |
| variants: function, method |
| |
| - func: mode.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| |
| - func: mul.Tensor(Tensor self, Tensor other) -> Tensor |
| structured_delegate: mul.out |
| variants: function, method |
| dispatch: |
| SparseCPU, SparseCUDA: mul_sparse |
| MkldnnCPU: mkldnn_mul |
| |
| - func: mul_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| structured_delegate: mul.out |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: mul_sparse_ |
| MkldnnCPU: mkldnn_mul_ |
| |
| - func: mul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: mul_out |
| SparseCPU: mul_out_sparse_cpu |
| SparseCUDA: mul_out_sparse_cuda |
| MkldnnCPU: mkldnn_mul_out |
| |
| # For C++ only, until we have conversion from C++ numbers to Tensor |
| - func: mul.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: mul |
| |
| - func: mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: mul_ |
| |
| # multiply, alias for mul |
| - func: multiply.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: multiply_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: multiply.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: multiply.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: function, method |
| |
| - func: multiply_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: mv(Tensor self, Tensor vec) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: mv |
| SparseCPU, SparseCUDA, SparseCsrCPU: mv_sparse |
| |
| - func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: mv_out |
| |
| - func: mvlgamma(Tensor self, int p) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: mvlgamma |
| |
| - func: mvlgamma_(Tensor(a!) self, int p) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: mvlgamma_ |
| |
| - func: narrow_copy(Tensor self, int dim, int start, int length) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: narrow_copy_dense_cpu |
| SparseCPU, SparseCUDA: narrow_copy_sparse |
| CompositeExplicitAutograd: narrow_copy_dense |
| |
| - func: narrow_copy.out(Tensor self, int dim, int start, int length, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: narrow_copy_dense_cpu_out |
| |
| - func: narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| |
| - func: narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| |
| - func: native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CPU: batch_norm_cpu |
| CUDA: batch_norm_cuda |
| MkldnnCPU: mkldnn_batch_norm |
| |
| - func: native_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| dispatch: |
| CUDA: batch_norm_cuda_out |
| |
| - func: batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor) |
| dispatch: |
| CUDA: batch_norm_stats_cuda |
| |
| - func: batch_norm_elemt(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps) -> Tensor |
| dispatch: |
| CUDA: batch_norm_elemt_cuda |
| |
| - func: batch_norm_elemt.out(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CUDA: batch_norm_elemt_cuda_out |
| |
| # for backward compatibility |
| - func: batch_norm_gather_stats(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, int count) -> (Tensor, Tensor) |
| dispatch: |
| CUDA: batch_norm_gather_stats_cuda |
| |
| - func: batch_norm_gather_stats_with_counts(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, Tensor counts) -> (Tensor, Tensor) |
| dispatch: |
| CUDA: batch_norm_gather_stats_with_counts_cuda |
| |
| - func: native_batch_norm_backward(Tensor grad_out, Tensor input, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_invstd, bool train, float eps, bool[3] output_mask) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CPU: batch_norm_backward_cpu |
| CUDA: batch_norm_backward_cuda |
| MkldnnCPU: mkldnn_batch_norm_backward |
| |
| - func: batch_norm_backward_reduce(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, bool input_g, bool weight_g, bool bias_g) -> (Tensor, Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: batch_norm_backward_reduce_cuda |
| |
| - func: batch_norm_backward_elemt(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, Tensor mean_dy, Tensor mean_dy_xmu, Tensor count) -> Tensor |
| dispatch: |
| CUDA: batch_norm_backward_elemt_cuda |
| |
| - func: batch_norm_update_stats(Tensor input, Tensor? running_mean, Tensor? running_var, float momentum) -> (Tensor, Tensor) |
| dispatch: |
| CPU: batch_norm_update_stats_cpu |
| CUDA: batch_norm_update_stats_cuda |
| |
| - func: is_vulkan_available() -> bool |
| |
| - func: _nnpack_available() -> bool |
| |
| - func: _nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, int[2] padding, int[2] stride=1) -> Tensor |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: _nnpack_spatial_convolution |
| |
| - func: _nnpack_spatial_convolution_backward(Tensor input, Tensor grad_output, Tensor weight, int[2] padding, bool[3] output_mask) -> (Tensor, Tensor, Tensor) |
| variants: function |
| |
| - func: _nnpack_spatial_convolution_backward_input(Tensor input, Tensor grad_output, Tensor weight, int[2] padding) -> Tensor |
| variants: function |
| |
| - func: _nnpack_spatial_convolution_backward_weight(Tensor input, int[] weightsize, Tensor grad_output, int[2] padding) -> Tensor |
| variants: function |
| |
| - func: ones.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| device_guard: False |
| |
| - func: ones(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: ones.out(int[] size, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: ones_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor |
| |
| - func: pairwise_distance(Tensor x1, Tensor x2, float p=2, float eps=1e-06, bool keepdim=False) -> Tensor |
| |
| - func: cdist(Tensor x1, Tensor x2, float p=2, int? compute_mode=None) -> Tensor |
| |
| - func: _euclidean_dist(Tensor x1, Tensor x2) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: _euclidean_dist |
| |
| - func: _cdist_forward(Tensor x1, Tensor x2, float p, int? compute_mode) -> Tensor |
| dispatch: |
| CPU, CUDA: _cdist_forward |
| |
| - func: _cdist_backward(Tensor grad, Tensor x1, Tensor x2, float p, Tensor cdist) -> Tensor |
| dispatch: |
| CPU, CUDA: _cdist_backward |
| |
| - func: pdist(Tensor self, float p=2) -> Tensor |
| |
| - func: _pdist_forward(Tensor self, float p=2) -> Tensor |
| dispatch: |
| CPU, CUDA: _pdist_forward |
| |
| - func: _pdist_backward(Tensor grad, Tensor self, float p, Tensor pdist) -> Tensor |
| dispatch: |
| CPU, CUDA: _pdist_backward |
| |
| - func: cosine_similarity(Tensor x1, Tensor x2, int dim=1, float eps=1e-08) -> Tensor |
| variants: function |
| |
| - func: permute(Tensor(a) self, int[] dims) -> Tensor(a) |
| variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too. |
| dispatch: |
| CompositeExplicitAutograd: permute |
| |
| - func: movedim.intlist(Tensor(a) self, int[] source, int[] destination) -> Tensor(a) |
| variants: function, method |
| |
| - func: movedim.int(Tensor(a) self, int source, int destination) -> Tensor(a) |
| variants: function, method |
| |
| # moveaxis, alias for movedim |
| - func: moveaxis.intlist(Tensor(a) self, int[] source, int[] destination) -> Tensor(a) |
| variants: function, method |
| |
| - func: moveaxis.int(Tensor(a) self, int source, int destination) -> Tensor(a) |
| variants: function, method |
| |
| # Only exposed from C++ -- in Python, |
| # we expose it as an attribute `T`, not a function. |
| # |
| # I'd like to name this "T" in C++ too, but |
| # calling a native function "T" causes undefined |
| # behavior on Windows, for reasons I don't understand |
| # (maybe related to capital letter collation somehow...) |
| - func: numpy_T(Tensor(a) self) -> Tensor(a) |
| variants: method |
| |
| - func: pixel_shuffle(Tensor self, int upscale_factor) -> Tensor |
| |
| - func: pixel_unshuffle(Tensor self, int downscale_factor) -> Tensor |
| |
| - func: channel_shuffle(Tensor self, int groups) -> Tensor |
| dispatch: |
| CPU: channel_shuffle |
| QuantizedCPU: channel_shuffle_quantized_cpu |
| |
| - func: is_pinned(Tensor self) -> bool |
| variants: method |
| |
| - func: pin_memory(Tensor(a) self) -> Tensor(a) |
| variants: method |
| |
| - func: pinverse(Tensor self, float rcond=1e-15) -> Tensor |
| variants: function, method |
| |
| - func: poisson_nll_loss(Tensor input, Tensor target, bool log_input, bool full, float eps, int reduction) -> Tensor |
| variants: function |
| |
| - func: rad2deg(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: rad2deg |
| |
| - func: rad2deg_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: rad2deg_ |
| |
| - func: rad2deg.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: rad2deg_out |
| |
| - func: deg2rad(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: deg2rad |
| |
| - func: deg2rad_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: deg2rad_ |
| |
| - func: deg2rad.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: deg2rad_out |
| |
| - func: scalar_tensor(Scalar s, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: rand.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| device_guard: False |
| |
| - func: rand.generator_with_names(int[] size, *, Generator? generator, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| device_guard: False |
| |
| - func: rand(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: rand.generator(int[] size, *, Generator? generator, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: rand.out(int[] size, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: rand.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: rand_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor |
| |
| - func: randint(int high, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: randint.generator(int high, int[] size, *, Generator? generator, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: randint.low(int low, int high, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: randint.low_generator(int low, int high, int[] size, *, Generator? generator, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: randint.out(int high, int[] size, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: randint.generator_out(int high, int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: randint.low_out(int low, int high, int[] size, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: randint.low_generator_out(int low, int high, int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: randint_like(Tensor self, int high, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor |
| |
| - func: randint_like.low_dtype(Tensor self, int low, int high, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor |
| |
| - func: randn(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: randn.generator(int[] size, *, Generator? generator, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: randn.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| device_guard: False |
| |
| - func: randn.generator_with_names(int[] size, *, Generator? generator, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| device_guard: False |
| |
| - func: randn.out(int[] size, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: randn.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: randn_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor |
| |
| - func: randperm(int n, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: randperm.generator(int n, *, Generator? generator, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: randperm.out(int n, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: randperm.generator_out(int n, *, Generator? generator, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: randperm_out_cpu |
| CUDA: randperm_out_cuda |
| |
| - func: range.step(Scalar start, Scalar end, Scalar step=1, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: range(Scalar start, Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: range.out(Scalar start, Scalar end, Scalar step=1, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: range_cpu_out |
| CUDA: range_cuda_out |
| |
| - func: ravel(Tensor(a) self) -> Tensor(a) |
| variants: function, method |
| |
| - func: reciprocal(Tensor self) -> Tensor |
| structured_delegate: reciprocal.out |
| variants: function, method |
| |
| - func: reciprocal_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: reciprocal.out |
| variants: function, method |
| |
| - func: reciprocal.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: reciprocal_out |
| |
| - func: neg(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA, SparseCPU, SparseCUDA: neg |
| |
| - func: neg_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CPU, CUDA: neg_ |
| SparseCPU, SparseCUDA: neg_sparse_ |
| |
| - func: neg.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: neg_out |
| SparseCPU, SparseCUDA: neg_out_sparse |
| |
| # Alias for neg |
| - func: negative(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: negative_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| |
| - func: negative.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: repeat(Tensor self, int[] repeats) -> Tensor |
| variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too. |
| dispatch: |
| CompositeExplicitAutograd: repeat |
| |
| - func: repeat_interleave.Tensor(Tensor repeats) -> Tensor |
| variants: function |
| dispatch: |
| CPU: repeat_interleave_cpu |
| CUDA: repeat_interleave_cuda |
| |
| - func: repeat_interleave.self_Tensor(Tensor self, Tensor repeats, int? dim=None) -> Tensor |
| variants: function, method |
| |
| - func: repeat_interleave.self_int(Tensor self, int repeats, int? dim=None) -> Tensor |
| variants: function, method |
| |
| - func: reshape(Tensor(a) self, int[] shape) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| |
| - func: _mkldnn_reshape(Tensor self, int[] shape) -> Tensor |
| device_guard: False |
| dispatch: |
| MkldnnCPU: mkldnn_reshape |
| |
| - func: reshape_as(Tensor(a) self, Tensor other) -> Tensor(a) |
| variants: method |
| device_guard: False |
| |
| - func: round(Tensor self) -> Tensor |
| structured_delegate: round.out |
| variants: function, method |
| |
| - func: round_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: round.out |
| variants: function, method |
| |
| - func: round.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU: round_out |
| CUDA: round_out |
| |
| - func: rrelu(Tensor self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor |
| |
| - func: rrelu_(Tensor(a!) self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!) |
| |
| - func: relu(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: relu |
| MkldnnCPU: mkldnn_relu |
| QuantizedCPU: relu_quantized_cpu |
| |
| - func: relu_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CPU, CUDA: relu_ |
| MkldnnCPU: mkldnn_relu_ |
| QuantizedCPU: relu_quantized_cpu_ |
| |
| - func: relu6(Tensor self) -> Tensor |
| python_module: nn |
| |
| - func: relu6_(Tensor(a!) self) -> Tensor(a!) |
| python_module: nn |
| |
| - func: prelu(Tensor self, Tensor weight) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: prelu_cpu |
| CUDA: prelu_cuda |
| |
| - func: prelu_backward(Tensor grad_output, Tensor self, Tensor weight) -> (Tensor, Tensor) |
| variants: function, method |
| dispatch: |
| CPU: prelu_backward_cpu |
| CUDA: prelu_backward_cuda |
| |
| - func: gelu(Tensor self) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: gelu_cpu |
| CUDA: gelu_cuda |
| |
| - func: gelu_backward(Tensor grad, Tensor self) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: gelu_backward_cpu |
| CUDA: gelu_backward_cuda |
| |
| - func: infinitely_differentiable_gelu_backward(Tensor grad, Tensor self) -> Tensor |
| variants: function |
| python_module: nn |
| device_guard: False |
| |
| - func: hardshrink(Tensor self, Scalar lambd=0.5) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: hardshrink |
| |
| - func: hardshrink_backward(Tensor grad_out, Tensor self, Scalar lambd) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: hardshrink_backward |
| |
| - func: rsqrt(Tensor self) -> Tensor |
| structured_delegate: rsqrt.out |
| variants: function, method |
| |
| - func: rsqrt_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: rsqrt.out |
| variants: function, method |
| |
| - func: rsqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: rsqrt_out |
| |
| - func: select.Dimname(Tensor(a) self, Dimname dim, int index) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| |
| - func: select.int(Tensor(a) self, int dim, int index) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: select |
| |
| - func: select_backward(Tensor grad, int[] input_sizes, int dim, int index) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: selu(Tensor self) -> Tensor |
| |
| - func: selu_(Tensor(a!) self) -> Tensor(a!) |
| |
| - func: celu(Tensor self, Scalar alpha=1.0) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: celu |
| |
| - func: celu_(Tensor(a!) self, Scalar alpha=1.0) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: celu_ |
| |
| - func: silu(Tensor self) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: silu |
| |
| - func: silu_(Tensor(a!) self) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: silu_ |
| |
| - func: silu.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: silu_out |
| |
| - func: silu_backward(Tensor grad_output, Tensor self) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: silu_backward |
| CompositeImplicitAutograd: math_silu_backward |
| |
| - func: sigmoid(Tensor self) -> Tensor |
| structured_delegate: sigmoid.out |
| variants: function, method |
| dispatch: |
| QuantizedCPU: sigmoid_quantized_cpu |
| MkldnnCPU: mkldnn_sigmoid |
| |
| - func: sigmoid_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: sigmoid.out |
| variants: function, method |
| dispatch: |
| MkldnnCPU: mkldnn_sigmoid_ |
| |
| - func: sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: sigmoid_out |
| |
| - func: logit(Tensor self, float? eps=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: logit |
| |
| - func: logit_(Tensor(a!) self, float? eps=None) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CPU, CUDA: logit_ |
| |
| - func: logit.out(Tensor self, float? eps=None, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: logit_out |
| |
| - func: sin(Tensor self) -> Tensor |
| structured_delegate: sin.out |
| variants: function, method |
| |
| - func: sin_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: sin.out |
| variants: function, method |
| |
| - func: sin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: sin_out |
| |
| - func: sinc(Tensor self) -> Tensor |
| structured_delegate: sinc.out |
| variants: function, method |
| |
| - func: sinc_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: sinc.out |
| variants: function, method |
| |
| - func: sinc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: sinc_out |
| |
| - func: sinh(Tensor self) -> Tensor |
| structured_delegate: sinh.out |
| variants: function, method |
| |
| - func: sinh_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: sinh.out |
| variants: function, method |
| |
| - func: sinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: sinh_out |
| |
| # Returns a copy of this `Variable` that is detached from its autograd graph. |
| # This method is OK to call if the `Variable` is a view. |
| # |
| # NOTE: Previously, if we change the tensor metadata (e.g. sizes / strides / |
| # storage / storage_offset) of a tensor created from `detach()`, those metadata |
| # in the original tensor will also be updated. However, the new behavior is that |
| # those metadata changes to the detached tensor will not update the original tensor |
| # anymore, and in the `detach()` function we need to set `allow_tensor_metadata_change_` |
| # to false to make such changes explicitly illegal, in order to prevent users from |
| # changing metadata of the detached tensor and expecting the original tensor to also |
| # be updated. |
| - func: detach(Tensor(a) self) -> Tensor(a) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: detach |
| |
| # Like `detach()`, but modifies this `Variable` in-place. This method may |
| # only be called on non-view `Variable`s. You can use `is_view()` to check |
| # this. If this `Variable` is a view, throws an `std::runtime_error()`. |
| - func: detach_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: detach_ |
| |
| - func: size.int(Tensor self, int dim) -> int |
| variants: function |
| device_guard: False |
| manual_cpp_binding: True |
| |
| - func: size.Dimname(Tensor self, Dimname dim) -> int |
| variants: function, method |
| device_guard: False |
| |
| - func: slice.Tensor(Tensor(a) self, int dim=0, int? start=0, int? end=9223372036854775807, int step=1) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: slice |
| |
| - func: slice_backward(Tensor grad, int[] input_sizes, int dim, int start, int end, int step) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: slogdet |
| |
| - func: smm(Tensor self, Tensor mat2) -> Tensor |
| variants: function, method |
| |
| # softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models. |
| - func: softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| |
| - func: softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| |
| - func: _softmax(Tensor self, int dim, bool half_to_float) -> Tensor |
| dispatch: |
| CPU: softmax_cpu |
| CUDA: softmax_cuda |
| MkldnnCPU: mkldnn_softmax |
| |
| - func: _softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor |
| dispatch: |
| CPU: softmax_backward_cpu |
| CUDA: softmax_backward_cuda |
| |
| - func: unsafe_split.Tensor(Tensor self, int split_size, int dim=0) -> Tensor[] |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: unsafe_split |
| |
| - func: split.Tensor(Tensor(a) self, int split_size, int dim=0) -> Tensor(a)[] |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: split |
| |
| - func: unsafe_split_with_sizes(Tensor self, int[] split_sizes, int dim=0) -> Tensor[] |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: unsafe_split_with_sizes |
| |
| - func: split_with_sizes(Tensor(a) self, int[] split_sizes, int dim=0) -> Tensor(a)[] |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: split_with_sizes |
| |
| - func: squeeze(Tensor(a) self) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: squeeze |
| |
| - func: squeeze.dim(Tensor(a) self, int dim) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: squeeze |
| |
| - func: squeeze.dimname(Tensor(a) self, Dimname dim) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| |
| - func: squeeze_(Tensor(a!) self) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: squeeze_ |
| |
| - func: squeeze_.dim(Tensor(a!) self, int dim) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: squeeze_ |
| |
| - func: squeeze_.dimname(Tensor(a!) self, Dimname dim) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| |
| - func: sspaddmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor |
| variants: function, method |
| |
| - func: sspaddmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: _sspaddmm_out_only_sparse |
| CUDA: _sspaddmm_out_only_sparse_cuda |
| SparseCPU: _sspaddmm_out_cpu |
| SparseCUDA: _sspaddmm_out_cuda |
| |
| - func: stack(Tensor[] tensors, int dim=0) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: stack |
| |
| - func: stack.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: stack_out |
| |
| - func: _stack(Tensor[] tensors, int dim=0) -> Tensor |
| dispatch: # match the backends supported by _cat |
| CPU: _stack_cpu |
| CompositeExplicitAutograd: _stack |
| |
| - func: _stack.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: # match the backends supported by _cat_out |
| CPU: _stack_out_cpu |
| CompositeExplicitAutograd: _stack_out |
| |
| - func: hstack(Tensor[] tensors) -> Tensor |
| |
| - func: hstack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: vstack(Tensor[] tensors) -> Tensor |
| |
| - func: vstack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: dstack(Tensor[] tensors) -> Tensor |
| |
| - func: dstack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) |
| |
| # The signature is designed to be consistent with librosa except that it is |
| # missing the `pad_mode` and `center` arguments, which are taken care of at |
| # `torch.functional.py`. They shall be moved here once we have mapping between |
| # Python strings and C++ Enum in codegen. |
| - func: stft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool normalized=False, bool? onesided=None, bool? return_complex=None) -> Tensor |
| variants: function, method |
| |
| - func: istft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool center=True, bool normalized=False, bool? onesided=None, int? length=None, bool return_complex=False) -> Tensor |
| variants: function, method |
| |
| - func: stride.int(Tensor self, int dim) -> int |
| variants: function |
| device_guard: False |
| manual_cpp_binding: True |
| |
| - func: stride.Dimname(Tensor self, Dimname dim) -> int |
| variants: function, method |
| device_guard: False |
| |
| - func: sum(Tensor self, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: sum |
| |
| - func: sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: sum |
| |
| - func: sum.dim_DimnameList(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| |
| - func: sum.IntList_out(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: sum_out |
| |
| - func: sum.DimnameList_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: nansum(Tensor self, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: nansum |
| |
| - func: nansum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: nansum |
| |
| - func: nansum.IntList_out(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: nansum_out |
| |
| - func: sum_to_size(Tensor self, int[] size) -> Tensor |
| variants: method |
| device_guard: False |
| |
| - func: sqrt(Tensor self) -> Tensor |
| structured_delegate: sqrt.out |
| variants: function, method |
| dispatch: |
| SparseCPU, SparseCUDA: sqrt_sparse |
| |
| - func: sqrt_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: sqrt.out |
| variants: function, method |
| |
| - func: sqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: sqrt_out |
| SparseCPU, SparseCUDA: sqrt_out_sparse |
| |
| - func: square(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: square_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| |
| - func: square.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: square_out |
| |
| - func: std(Tensor self, bool unbiased=True) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: std |
| |
| - func: std.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: std |
| |
| - func: std_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU, CUDA: std_mean |
| |
| - func: std_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU, CUDA: std_mean |
| |
| - func: std_mean.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) |
| variants: function |
| |
| - func: std.out(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: std_out |
| |
| - func: std.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor |
| variants: function, method |
| |
| - func: std.names_out(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: prod(Tensor self, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: prod |
| |
| - func: prod.dim_int(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: prod |
| |
| - func: prod.int_out(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: prod_out |
| |
| - func: prod.dim_Dimname(Tensor self, Dimname dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor |
| variants: function, method |
| |
| - func: prod.Dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: t(Tensor(a) self) -> Tensor(a) |
| device_guard: False |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: t |
| |
| - func: t_(Tensor(a!) self) -> Tensor(a!) |
| device_guard: False |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: t_ |
| |
| - func: tan(Tensor self) -> Tensor |
| structured_delegate: tan.out |
| variants: function, method |
| |
| - func: tan_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: tan.out |
| variants: function, method |
| |
| - func: tan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: tan_out |
| |
| - func: tanh(Tensor self) -> Tensor |
| structured_delegate: tanh.out |
| variants: function, method |
| dispatch: |
| QuantizedCPU: tanh_quantized_cpu |
| MkldnnCPU: mkldnn_tanh |
| |
| - func: tanh_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: tanh.out |
| variants: function, method |
| dispatch: |
| MkldnnCPU: mkldnn_tanh_ |
| - func: tanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: tanh_out |
| |
| - func: tensordot(Tensor self, Tensor other, int[] dims_self, int[] dims_other) -> Tensor |
| variants: function |
| |
| - func: tensordot.out(Tensor self, Tensor other, int[] dims_self, int[] dims_other, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: tensordot_out |
| |
| # TODO: namespace threshold in 'nn' |
| - func: threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor |
| variants: function |
| dispatch: |
| CPU: threshold |
| CUDA: threshold_cuda |
| QuantizedCPU: threshold_quantized_cpu |
| |
| - func: threshold_(Tensor(a!) self, Scalar threshold, Scalar value) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: threshold_ |
| CUDA: threshold__cuda |
| |
| - func: threshold.out(Tensor self, Scalar threshold, Scalar value, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: threshold_out |
| CUDA: threshold_out_cuda |
| |
| - func: threshold_backward(Tensor grad_output, Tensor self, Scalar threshold) -> Tensor |
| variants: function |
| dispatch: |
| CPU: threshold_backward |
| CUDA: threshold_backward_cuda |
| MkldnnCPU: mkldnn_relu_backward |
| |
| - func: tile(Tensor self, int[] dims) -> Tensor |
| variants: function, method |
| |
| - func: transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: transpose |
| |
| - func: transpose.Dimname(Tensor(a) self, Dimname dim0, Dimname dim1) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| |
| - func: _mkldnn_transpose(Tensor self, int dim0, int dim1) -> Tensor |
| device_guard: False |
| dispatch: |
| MkldnnCPU: mkldnn_transpose |
| |
| - func: transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: transpose_ |
| |
| - func: _mkldnn_transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!) |
| device_guard: False |
| dispatch: |
| MkldnnCPU: mkldnn_transpose_ |
| |
| - func: one_hot(Tensor self, int num_classes=-1) -> Tensor |
| python_module: nn |
| variants: function |
| |
| - func: flip(Tensor self, int[] dims) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, QuantizedCPU: flip_cpu |
| CUDA: flip_cuda |
| |
| - func: fliplr(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: flipud(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: roll(Tensor self, int[1] shifts, int[1] dims=[]) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: roll_cpu |
| CUDA: roll_cuda |
| |
| # default int[] value [0,1] should not add space after comma, since codegen parser uses ', ' to split args |
| |
| - func: rot90(Tensor self, int k=1, int[] dims=[0,1]) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: rot90 |
| |
| - func: trapz.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor |
| |
| - func: trapz.dx(Tensor y, *, float dx=1, int dim=-1) -> Tensor |
| |
| - func: _trilinear(Tensor i1, Tensor i2, Tensor i3, int[] expand1, int[] expand2, int[] expand3, int[] sumdim, int unroll_dim=1) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: _trilinear |
| |
| - func: triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, float margin=1.0, float p=2, float eps=1e-06, bool swap=False, int reduction=Mean) -> Tensor |
| |
| - func: trunc(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: trunc |
| |
| - func: trunc_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: trunc_ |
| |
| - func: trunc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: trunc_out |
| |
| # Alias for trunc |
| - func: fix(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: fix_(Tensor(a!) self) -> Tensor(a!) |
| variants: function, method |
| |
| - func: fix.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: type_as(Tensor self, Tensor other) -> Tensor |
| variants: method |
| |
| - func: _has_compatible_shallow_copy_type(Tensor self, Tensor from) -> bool |
| variants: function |
| |
| - func: _unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU: _unique_cpu |
| CUDA: _unique_cuda |
| |
| - func: unique_dim(Tensor self, int dim, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU: unique_dim_cpu |
| CUDA: unique_dim_cuda |
| |
| - func: unique_consecutive(Tensor self, bool return_inverse=False, bool return_counts=False, int? dim=None) -> (Tensor, Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU: unique_consecutive_cpu |
| CUDA: unique_consecutive_cuda |
| |
| - func: unique_dim_consecutive(Tensor self, int dim, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU: unique_dim_consecutive_cpu |
| CUDA: unique_dim_consecutive_cuda |
| |
| # _unique and _unique_dim are fragile and modifying them easily cause internal break |
| # the below operator is a temporary hack for adding return_counts support |
| # Please don't rely on these two operators, they will be removed soon |
| |
| - func: _unique2(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU: _unique2_cpu |
| CUDA: _unique2_cuda |
| |
| - func: _unsafe_view(Tensor self, int[] size) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: _unsafe_view |
| |
| - func: unsqueeze(Tensor(a) self, int dim) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: unsqueeze |
| |
| - func: unsqueeze_(Tensor(a!) self, int dim) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: unsqueeze_ |
| |
| - func: vander(Tensor x, int? N=None, bool increasing=False) -> Tensor |
| |
| - func: var(Tensor self, bool unbiased=True) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: var |
| |
| - func: var.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA: var |
| |
| - func: var.out(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: var_out |
| |
| - func: var.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor |
| variants: function, method |
| |
| - func: var.names_out(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: var_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU, CUDA: var_mean |
| |
| - func: var_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU, CUDA: var_mean |
| |
| - func: var_mean.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) |
| variants: function |
| |
| - func: view_as(Tensor(a) self, Tensor other) -> Tensor(a) |
| variants: method |
| device_guard: False |
| |
| # we define both of these because 'where' does the broadcast and '_s_where' doesn't; |
| # this allows us to implicitly calculate the broadcast derivative, while only dealing with the |
| # _s_where derivative. |
| - func: where.self(Tensor condition, Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: where.ScalarSelf(Tensor condition, Scalar self, Tensor other) -> Tensor |
| variants: function |
| |
| - func: where.ScalarOther(Tensor condition, Tensor self, Scalar other) -> Tensor |
| variants: function |
| |
| - func: where.Scalar(Tensor condition, Scalar self, Scalar other) -> Tensor |
| variants: function |
| |
| - func: where(Tensor condition) -> Tensor[] |
| variants: function |
| |
| - func: _s_where(Tensor condition, Tensor self, Tensor other) -> Tensor |
| variants: function |
| dispatch: |
| CPU, CUDA: _s_where |
| |
| - func: norm_except_dim(Tensor v, int pow=2, int dim=0) -> Tensor |
| variants: function |
| |
| # VariableType::_weight_norm does not want to be given a gap in the autograd graph, |
| # so we don't define "dispatch" variants for it. |
| - func: _weight_norm(Tensor v, Tensor g, int dim=0) -> Tensor |
| variants: function |
| |
| - func: _weight_norm_cuda_interface(Tensor v, Tensor g, int dim=0) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CUDA: weight_norm_cuda |
| |
| - func: _weight_norm_cuda_interface_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CUDA: weight_norm_cuda_backward |
| |
| - func: _weight_norm_differentiable_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor) |
| variants: function |
| |
| - func: zeros.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| device_guard: False |
| |
| - func: zeros(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: zeros.out(int[] size, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: zeros_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor |
| |
| - func: _standard_gamma_grad(Tensor self, Tensor output) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _standard_gamma_grad_cpu |
| CUDA: _standard_gamma_grad_cuda |
| |
| - func: _standard_gamma(Tensor self, Generator? generator=None) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _s_gamma_cpu |
| CUDA: _s_gamma_cuda |
| |
| - func: _dirichlet_grad(Tensor x, Tensor alpha, Tensor total) -> Tensor |
| dispatch: |
| CPU: _dirichlet_grad_cpu |
| CUDA: _dirichlet_grad_cuda |
| |
| - func: _sample_dirichlet(Tensor self, Generator? generator=None) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _s_dirichlet_cpu |
| CUDA: _s_dirichlet_cuda |
| |
| - func: poisson(Tensor self, Generator? generator=None) -> Tensor |
| dispatch: |
| CPU: _s_poisson_cpu |
| CUDA: _s_poisson_cuda |
| |
| - func: binomial(Tensor count, Tensor prob, Generator? generator=None) -> Tensor |
| dispatch: |
| CPU: _s_binomial_cpu |
| CUDA: _s_binomial_cuda |
| |
| # When more variants get ported to native, this dispatch will get more |
| # complicated |
| |
| - func: native_norm(Tensor self, Scalar p=2) -> Tensor |
| dispatch: |
| SparseCPU, SparseCUDA: norm_sparse |
| |
| - func: native_norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, ScalarType? dtype) -> Tensor |
| dispatch: |
| SparseCPU, SparseCUDA: norm_sparse |
| |
| # TODO: reduce signatures down to one when optional args is available |
| - func: _sparse_sum(Tensor self) -> Tensor |
| |
| - func: _sparse_sum.dtype(Tensor self, *, ScalarType dtype) -> Tensor |
| |
| - func: _sparse_sum.dim(Tensor self, int[1] dim) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: _sparse_sum |
| |
| - func: _sparse_sum.dim_dtype(Tensor self, int[1] dim, *, ScalarType dtype) -> Tensor |
| |
| - func: _sparse_sum_backward(Tensor grad, Tensor self, int[] dim) -> Tensor |
| dispatch: |
| SparseCPU: _sparse_sum_backward_cpu |
| SparseCUDA: _sparse_sum_backward_cuda |
| |
| - func: _sparse_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor |
| variants: function |
| |
| - func: _sparse_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor |
| variants: function |
| |
| - func: _sparse_softmax(Tensor self, int dim, bool half_to_float) -> Tensor |
| dispatch: |
| SparseCPU: softmax_sparse_cpu |
| SparseCUDA: softmax_sparse_cuda |
| |
| - func: _sparse_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor |
| dispatch: |
| SparseCPU: softmax_backward_sparse_cpu |
| SparseCUDA: softmax_backward_sparse_cuda |
| |
| - func: _sparse_log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor |
| variants: function |
| |
| - func: _sparse_log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor |
| variants: function |
| |
| - func: _sparse_log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor |
| dispatch: |
| SparseCPU: log_softmax_sparse_cpu |
| SparseCUDA: log_softmax_sparse_cuda |
| |
| - func: _sparse_log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor |
| dispatch: |
| SparseCPU: log_softmax_backward_sparse_cpu |
| SparseCUDA: log_softmax_backward_sparse_cuda |
| |
| - func: norm.ScalarOpt_dtype(Tensor self, Scalar? p, *, ScalarType dtype) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA, SparseCPU, SparseCUDA: norm |
| |
| - func: norm.Scalar(Tensor self, Scalar p=2) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA, SparseCPU, SparseCUDA: norm |
| |
| - func: norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA, SparseCPU, SparseCUDA: norm |
| |
| - func: norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU, CUDA, SparseCPU, SparseCUDA: norm |
| |
| - func: norm.dtype_out(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: norm_out |
| |
| - func: norm.out(Tensor self, Scalar? p, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: norm_out |
| |
| # These four redispatch in their implementation, so OK to be CompositeImplicitAutograd |
| - func: norm.names_ScalarOpt_dim_dtype(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor |
| variants: function, method |
| |
| - func: norm.names_ScalarOpt_dim(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim=False) -> Tensor |
| variants: function, method |
| |
| - func: norm.names_dtype_out(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: norm.names_out(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: frexp.Tensor(Tensor self) -> (Tensor mantissa, Tensor exponent) |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: frexp |
| |
| - func: frexp.Tensor_out(Tensor self, *, Tensor(a!) mantissa, Tensor(b!) exponent) -> (Tensor(a!) mantissa, Tensor(b!) exponent) |
| dispatch: |
| CPU, CUDA: frexp_out |
| |
| - func: frobenius_norm(Tensor self) -> Tensor |
| variants: function |
| |
| - func: frobenius_norm.dim(Tensor self, int[1] dim, bool keepdim=False) -> Tensor |
| variants: function |
| |
| - func: frobenius_norm.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| |
| - func: nuclear_norm(Tensor self, bool keepdim=False) -> Tensor |
| variants: function |
| |
| - func: nuclear_norm.out(Tensor self, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| |
| - func: nuclear_norm.dim(Tensor self, int[2] dim, bool keepdim=False) -> Tensor |
| variants: function |
| |
| - func: nuclear_norm.dim_out(Tensor self, int[2] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| |
| - func: clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: clone |
| SparseCPU, SparseCUDA: clone_sparse |
| MkldnnCPU: mkldnn_clone |
| QuantizedCPU, QuantizedCUDA: quantized_clone |
| |
| - func: resize_as_(Tensor(a!) self, Tensor the_template, *, MemoryFormat? memory_format=None) -> Tensor(a!) |
| use_const_ref_for_mutable_tensors: True |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: resize_as_ |
| |
| - func: resize_as_sparse_(Tensor(a!) self, Tensor the_template) -> Tensor(a!) |
| use_const_ref_for_mutable_tensors: True |
| variants: function |
| dispatch: |
| SparseCPU, SparseCUDA: resize_as_sparse_ |
| SparseCsrCPU: resize_as_sparse_csr_ |
| |
| - func: zero_(Tensor(a!) self) -> Tensor(a!) |
| variants: method, function |
| dispatch: |
| CPU, CUDA: zero_ |
| Meta: zero_meta_ |
| SparseCPU, SparseCUDA: zero_sparse_ |
| MkldnnCPU: mkldnn_zero_ |
| |
| - func: sub.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: sub_out |
| SparseCPU, SparseCUDA: sub_out_sparse |
| |
| - func: sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor |
| variants: function, method |
| structured_delegate: sub.out |
| dispatch: |
| SparseCPU, SparseCUDA: sub_sparse |
| |
| - func: sub_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) |
| variants: method |
| structured_delegate: sub.out |
| dispatch: |
| SparseCPU, SparseCUDA: sub_sparse_ |
| |
| # For C++ only, until we have conversion from C++ numbers to Tensor |
| - func: sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: sub |
| |
| - func: sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: sub_ |
| |
| # subtract, alias for sub |
| - func: subtract.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: subtract.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor |
| variants: function, method |
| |
| - func: subtract_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) |
| variants: method |
| |
| # For C++ only, until we have conversion from C++ numbers to Tensor |
| - func: subtract.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor |
| variants: function, method |
| |
| - func: subtract_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) |
| variants: method |
| |
| - func: rsub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor |
| variants: function |
| dispatch: |
| CPU, CUDA: rsub |
| |
| - func: heaviside.out(Tensor self, Tensor values, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: heaviside_out |
| |
| - func: heaviside(Tensor self, Tensor values) -> Tensor |
| variants: function, method |
| |
| - func: heaviside_(Tensor(a!) self, Tensor values) -> Tensor(a!) |
| variants: method |
| |
| # For C++ only, until we have conversion from C++ numbers to Tensor |
| - func: rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: rsub |
| |
| # Functionally the same as addmm, but we give it a different derivative formula |
| # that doesn't propagate gradients to non-present entries on sparse. |
| - func: _sparse_addmm(Tensor self, Tensor sparse, Tensor dense, *, Scalar beta=1, Scalar alpha=1) -> Tensor |
| dispatch: |
| CompositeExplicitAutograd: _sparse_addmm |
| |
| - func: addmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: addmm_cpu_out |
| CUDA: addmm_out_cuda |
| SparseCPU: addmm_out_sparse_dense_cpu |
| SparseCUDA: addmm_out_sparse_dense_cuda |
| SparseCsrCPU: addmm_out_sparse_csr_dense_cpu |
| |
| - func: addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: addmm_cpu |
| CUDA: addmm_cuda |
| SparseCPU: addmm_sparse_dense_cpu |
| SparseCUDA: addmm_sparse_dense_cuda |
| SparseCsrCPU: addmm_sparse_csr_dense_cpu |
| |
| - func: addmm_(Tensor(a!) self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: addmm_cpu_ |
| CUDA: addmm__cuda |
| # Warning! For whatever reason, the inplace sparse addmm is NON |
| # broadcasting |
| SparseCPU: s_addmm_sparse_dense_cpu_ |
| SparseCUDA: s_addmm_sparse_dense_cuda_ |
| |
| # NOTE [ Sparse: autograd and API ] |
| # |
| # |
| # Sparse Tensor Constructors |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # |
| # The API entry points to sparse tensor construction should be |
| # `sparse_coo tensor` and `_sparse_coo_tensor_unsafe`. Depending on whether the |
| # indices and values tensors are given, they eventually dispatch to either |
| # `sparse_coo_tensor_with_dims` or `sparse_coo_tensor_with_dims_and_tensors`. |
| # |
| # The autograd support for ctor is implement on `sparse_coo_tensor_with_dims_and_tensors`. |
| # |
| # The API methods `sparse_coo tensor` and `_sparse_coo_tensor_unsafe` |
| # **must not** have specific type dispatches because otherwise codegen will |
| # consider them as abstract methods (see Note [Abstract ATen methods]), dispatch |
| # using **Tensor** type, and thus lose autograd tracking on the actual method |
| # they dispatch to, e.g., `sparse_coo_tensor_with_dims_and_tensors`. |
| # |
| # |
| # Sparse Methods API Design |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # |
| # Goals: 1. Flexible API for users to write custom sparse ops |
| # 2. ctor and member accessor with autograd support |
| # |
| # To achieve 1, we need to provide a set of *dangerous* APIs (dangerous in the |
| # sense that misusing them will break sparse tensor invariant and may out in |
| # unexpected behavior, e.g., crash). These methods are all prefixed with |
| # underscore "_" to indicate that they should be used with care. We provide: |
| # |
| # + `_indices()`: returns the *raw* indices within the sparse tensor (not just |
| # sharing storage). Any inplace operation will change the |
| # actual indices, including t_, set_, as_strided_, resize_, |
| # etc. |
| # + `_values()`: returns the *raw* values within the sparse tensor. Similar |
| # semantics as `_indices()` |
| # + `_nnz()`: returns the number of non-zero entries. This will always be |
| # determined by the shapes of indices and values. |
| # + `_coalesced_(bool)`: inplace sets whether the tensor is coalesced, and |
| # returns itself. |
| # |
| # These methods are very useful in writing new operations, e.g., a custom |
| # autograd Function. |
| # |
| # We also provide other public *safe* APIs: |
| # + `indices()`: returns a **view** of the indices tensor if the sparse tensor |
| # is **coalesced**. |
| # + `values()`: returns a **view** of the values tensor if the containing |
| # sparse tensor is **coalesced**. |
| # + `sparse_dim()`: number of sparse dimensions |
| # + `dense_dim()`: number of dense dimensions |
| # + `is_coalesced()`: whether the sparse tensor is coalesced |
| # |
| # `_indices()` and `_values()` should returns the raw indices and values dense |
| # tensors within a sparse tensor. They can be quite unsafe with inplace |
| # operations like `t_()`, and exposes uncoalesced indices and values. The public |
| # recommended API is `indices()` and `values()`, both of which first check that |
| # the tensor is coalesced and return views on those tensors. |
| # |
| # |
| # Autograd Support |
| # ~~~~~~~~~~~~~~~~ |
| # |
| # Autograd is supported on `values()` and sparse tensor ctor with indices and |
| # values tensors. E.g., `torch.sparse_coo_tensor(i, v).values().sum()` is |
| # differentiable w.r.t. `v`. |
| # |
| # NB: The `values()` and `_values()` operators are special in that they are |
| # layout-aware, i.e., the output depends not just on the data it represents, but |
| # also on the input layout details (in this case, the `indices` tensor). See |
| # NOTE [ as_strided Backward and layout-aware/agnostic autograd ] in Functions.cpp |
| # for discussion on layout-aware vs layout-agnostic autograd. Since PyTorch ops |
| # operate in the layout-agnostic mode, similar to `as_strided`, backward of |
| # these two operators need to consider them in a layout-agnostic way: |
| # + `values()`: |
| # Input is coalesced. |
| # We just pretend having `input.indices()` as an additional argument |
| # `input_indices`, then forward is similar to |
| # `input.to(kStrided).index_select(input_indices)` regardless of the layout. |
| # Note that `values()` normally is layout-aware even if we constrain |
| # ourselves on sparse inputs since it may include all zeros values entries |
| # as "present" entries. |
| # + `_values()`: |
| # Input may be uncoalesced. |
| # It is not straightforward to construct a layout-agnostic version because |
| # duplicate indices entries may exist and additional parameterization is |
| # needed to distribute the value into different values entries. Furthermore, |
| # this op is intended to provide ways to write custom sparse ops, rather |
| # than being used in autograd graph, so it is marked as *non-differentiable* |
| # in derivatives.yaml. |
| # |
| # Before reading the following, see NOTE [ Autograd Variable Views ] in |
| # variable.h for details on views that are tracked by autograd, and views that |
| # are not. |
| # |
| # Moreover, these methods return tensors that share storage with inputs, so we |
| # mark these methods as view ops to support autograd history tracking. |
| # The sparse tensor ctor output should technically be view of both input indices |
| # and values tensors, but currently we only support setting as view of a single |
| # Variable, so it is only view of the values tensor. |
| # TODO: clone indices in sparse tensor ctor. |
| # |
| # For other methods that return outputs that share storage with inputs, i.e., |
| # `indices()` and `_indices()`. We mark their outputs as non-differentiable, so |
| # the view relation is not tracked by autograd, but the version counter is still |
| # shared. In other words, their outputs are non-differentiable views of the |
| # sparse tensor. |
| # FIXME: would be nicer if TensorOptions was optional based; not adding default arguments for options given |
| # the default would never make sense. |
| |
| - func: sparse_csr_tensor.crow_col_value_size(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor |
| |
| - func: sparse_csr_tensor.crow_col_value(Tensor crow_indices, Tensor col_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor |
| |
| - func: sparse_coo_tensor.size(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor |
| |
| - func: sparse_coo_tensor.indices(Tensor indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: sparse_coo_tensor.indices_size(Tensor indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: _sparse_coo_tensor_unsafe(Tensor indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: _validate_sparse_coo_tensor_args(Tensor indices, Tensor values, int[] size) -> () |
| |
| - func: _sparse_coo_tensor_with_dims(int sparse_dim, int dense_dim, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor |
| dispatch: |
| SparseCPU, SparseCUDA: new_with_dims_sparse |
| |
| - func: _sparse_coo_tensor_with_dims_and_tensors(int sparse_dim, int dense_dim, int[] size, Tensor indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor |
| dispatch: |
| SparseCPU, SparseCUDA: new_with_dims_and_tensor_sparse |
| |
| - func: sparse_resize_(Tensor(a!) self, int[] size, int sparse_dim, int dense_dim) -> Tensor(a!) |
| use_const_ref_for_mutable_tensors: True |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: sparse_resize_ |
| |
| - func: sparse_resize_and_clear_(Tensor(a!) self, int[] size, int sparse_dim, int dense_dim) -> Tensor(a!) |
| use_const_ref_for_mutable_tensors: True |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: sparse_resize_and_clear_ |
| |
| - func: sparse_mask(Tensor self, Tensor mask) -> Tensor |
| variants: method |
| dispatch: |
| SparseCPU: sparse_mask_cpu |
| SparseCUDA: sparse_mask_cuda |
| |
| - func: to_dense(Tensor self, ScalarType? dtype=None) -> Tensor |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA, SparseCsrCPU: sparse_to_dense |
| MkldnnCPU: mkldnn_to_dense |
| |
| - func: to_dense_backward(Tensor grad, Tensor input) -> Tensor |
| |
| - func: sparse_dim(Tensor self) -> int |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: sparse_dim_sparse |
| device_guard: False |
| |
| # legacy method |
| - func: _dimI(Tensor self) -> int |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: sparse_dim_sparse |
| device_guard: False |
| |
| - func: dense_dim(Tensor self) -> int |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: dense_dim_sparse |
| device_guard: False |
| |
| # legacy method |
| - func: _dimV(Tensor self) -> int |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: dense_dim_sparse |
| device_guard: False |
| |
| - func: _nnz(Tensor self) -> int |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: _nnz_sparse |
| SparseCsrCPU: _nnz_sparse_csr |
| device_guard: False |
| |
| # NOTE: [ coalesce autograd ] |
| # coalesce returns self directly for already coalesced sparse tensors. |
| # This means coalesce cannot have a derivative registered, otherwise it creates |
| # circular references in the autograd graph (see gh-52874). |
| # Instead, the derivative is registered on the slow-path "_coalesce" |
| - func: coalesce(Tensor(a) self) -> Tensor(a) |
| variants: method |
| |
| - func: _coalesce(Tensor self) -> Tensor |
| dispatch: |
| SparseCPU: _coalesce_sparse_cpu |
| SparseCUDA: _coalesce_sparse_cuda |
| |
| - func: is_coalesced(Tensor self) -> bool |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: is_coalesced_sparse |
| device_guard: False |
| |
| - func: _indices(Tensor(a) self) -> Tensor(a) |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: _indices_sparse |
| device_guard: False |
| |
| - func: _values(Tensor(a) self) -> Tensor(a) |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: _values_sparse |
| device_guard: False |
| |
| # This method doesn't do any check but only directly sets the flag. So it can be |
| # a bit unsafe. Similar to _indices and _values, this is useful for implementing |
| # custom sparse operations in Python/C++ extension. |
| - func: _coalesced_(Tensor(a!) self, bool coalesced) -> Tensor(a!) |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: _coalesced_sparse_ |
| device_guard: False |
| |
| - func: indices(Tensor(a) self) -> Tensor(a) |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: indices_sparse |
| device_guard: False |
| |
| - func: values(Tensor(a) self) -> Tensor(a) |
| variants: method |
| dispatch: |
| SparseCPU, SparseCUDA: values_sparse |
| SparseCsrCPU: values_sparse_csr |
| device_guard: False |
| |
| - func: crow_indices(Tensor(a) self) -> Tensor(a) |
| variants: method |
| dispatch: |
| SparseCsrCPU: crow_indices_sparse_csr |
| device_guard: False |
| |
| - func: col_indices(Tensor(a) self) -> Tensor(a) |
| variants: method |
| dispatch: |
| SparseCsrCPU: col_indices_sparse_csr |
| device_guard: False |
| |
| - func: hspmm.out(Tensor mat1, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| SparseCPU: hspmm_out_sparse_cpu |
| SparseCUDA: hspmm_out_sparse_cuda |
| |
| - func: hspmm(Tensor mat1, Tensor mat2) -> Tensor |
| dispatch: |
| SparseCPU: hspmm_sparse_cpu |
| SparseCUDA: hspmm_sparse_cuda |
| |
| - func: copy_sparse_to_sparse_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!) |
| variants: function |
| dispatch: |
| SparseCPU, SparseCUDA: copy_sparse_ |
| |
| - func: unbind.int(Tensor(a) self, int dim=0) -> Tensor(a)[] |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: unbind |
| |
| - func: unbind.Dimname(Tensor(a) self, Dimname dim) -> Tensor(a)[] |
| variants: function, method |
| |
| - func: to_sparse.sparse_dim(Tensor self, int sparse_dim) -> Tensor |
| variants: method |
| dispatch: |
| CPU, CUDA: dense_to_sparse |
| |
| - func: to_sparse(Tensor self) -> Tensor |
| variants: method |
| dispatch: |
| CPU, CUDA: dense_to_sparse |
| |
| - func: to_mkldnn(Tensor self, ScalarType? dtype=None) -> Tensor |
| variants: method |
| dispatch: |
| CPU: dense_to_mkldnn |
| |
| - func: mkldnn_reorder_conv2d_weight(Tensor self, int[2] padding=0, int[2] stride=1, int[2] dilation=1, int groups=1) -> Tensor |
| variants: function |
| python_module: nn |
| dispatch: |
| MkldnnCPU: mkldnn_reorder_conv2d_weight |
| |
| - func: mkldnn_reorder_conv3d_weight(Tensor self, int[3] padding=0, int[3] stride=1, int[3] dilation=1, int groups=1) -> Tensor |
| variants: function |
| python_module: nn |
| dispatch: |
| MkldnnCPU: mkldnn_reorder_conv3d_weight |
| |
| - func: to_mkldnn_backward(Tensor grad, Tensor input) -> Tensor |
| |
| - func: quantize_per_tensor(Tensor self, float scale, int zero_point, ScalarType dtype) -> Tensor |
| variants: function |
| dispatch: |
| CPU, CUDA: quantize_per_tensor |
| |
| - func: quantize_per_tensor.tensors(Tensor[] tensors, Tensor scales, Tensor zero_points, ScalarType dtype) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: quantize_per_tensor_list_cpu |
| |
| - func: quantize_per_channel(Tensor self, Tensor scales, Tensor zero_points, int axis, ScalarType dtype) -> Tensor |
| variants: function |
| dispatch: |
| CPU: quantize_per_channel_cpu |
| |
| - func: dequantize.self(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CPU: dequantize_cpu |
| QuantizedCPU, QuantizedCUDA: dequantize_quantized_cpu |
| |
| - func: dequantize.tensors(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| QuantizedCPU: dequantize_tensors_quantized_cpu |
| |
| - func: q_scale(Tensor self) -> float |
| variants: function, method |
| dispatch: |
| QuantizedCPU, QuantizedCUDA: q_scale_quant |
| |
| - func: q_zero_point(Tensor self) -> int |
| variants: function, method |
| dispatch: |
| QuantizedCPU, QuantizedCUDA: q_zero_point_quant |
| |
| - func: q_per_channel_scales(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| QuantizedCPU, QuantizedCUDA: q_per_channel_scales |
| |
| - func: q_per_channel_zero_points(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| QuantizedCPU, QuantizedCUDA: q_per_channel_zero_points |
| |
| - func: q_per_channel_axis(Tensor self) -> int |
| variants: function, method |
| dispatch: |
| QuantizedCPU, QuantizedCUDA: q_per_channel_axis |
| |
| - func: int_repr(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| QuantizedCPU: int_repr_quantized_cpu |
| QuantizedCUDA: int_repr_quantized_cuda |
| |
| - func: _make_per_tensor_quantized_tensor(Tensor self, float scale, int zero_point) -> Tensor |
| dispatch: |
| CPU: make_per_tensor_quantized_tensor_cpu |
| CUDA: make_per_tensor_quantized_tensor_cuda |
| |
| - func: _make_per_channel_quantized_tensor(Tensor self, Tensor scale, Tensor zero_point, int axis) -> Tensor |
| dispatch: |
| CPU: make_per_channel_quantized_tensor_cpu |
| |
| - func: qscheme(Tensor self) -> QScheme |
| variants: method |
| dispatch: |
| QuantizedCPU, QuantizedCUDA: qscheme_quant |
| |
| - func: fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> Tensor |
| variants: function |
| |
| - func: fake_quantize_per_tensor_affine_cachemask(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor output, Tensor mask) |
| variants: function |
| dispatch: |
| CPU, CUDA: fake_quantize_per_tensor_affine_cachemask |
| |
| - func: fake_quantize_per_tensor_affine_cachemask_backward(Tensor grad, Tensor mask) -> Tensor |
| variants: function |
| |
| - func: _fake_quantize_learnable_per_tensor_affine(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor |
| variants: function |
| dispatch: |
| CPU, CUDA: _fake_quantize_learnable_per_tensor_affine |
| |
| - func: _fake_quantize_learnable_per_tensor_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.0) -> (Tensor, Tensor, Tensor) |
| variants: function |
| |
| - func: fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> Tensor |
| variants: function |
| |
| - func: fake_quantize_per_channel_affine_cachemask(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor output, Tensor mask) |
| variants: function |
| dispatch: |
| CPU, CUDA: fake_quantize_per_channel_affine_cachemask |
| |
| - func: fake_quantize_per_channel_affine_cachemask_backward(Tensor grad, Tensor mask) -> Tensor |
| variants: function |
| |
| - func: _fake_quantize_learnable_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor |
| variants: function |
| dispatch: |
| CPU, CUDA: _fake_quantize_learnable_per_channel_affine |
| |
| - func: _fake_quantize_learnable_per_channel_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> (Tensor, Tensor, Tensor) |
| variants: function |
| |
| - func: _choose_qparams_per_tensor(Tensor self, bool reduce_range=False) -> (float, int) |
| variants: function |
| |
| - func: _saturate_weight_to_fp16(Tensor weight) -> Tensor |
| variants: function |
| |
| - func: choose_qparams_optimized(Tensor input, int numel, int n_bins, float ratio, int bit_width) -> (Tensor, Tensor) |
| variants: function |
| |
| # to(Device) must not exist because all constructors of Device also works for |
| # TensorOptions. Otherwise, an ambiguity error is thrown. |
| # See NOTE [ TensorOptions Constructors ]. |
| - func: to.dtype_layout(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor |
| variants: method |
| device_guard: False |
| |
| - func: to.device(Tensor self, Device device, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor |
| variants: method |
| device_guard: False |
| |
| - func: to.dtype(Tensor self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor |
| variants: method |
| device_guard: False |
| |
| - func: to.other(Tensor self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor |
| variants: method |
| device_guard: False |
| |
| - func: meshgrid(Tensor[] tensors) -> Tensor[] |
| |
| - func: cartesian_prod(Tensor[] tensors) -> Tensor |
| variants: function |
| |
| - func: combinations(Tensor self, int r=2, bool with_replacement=False) -> Tensor |
| variants: function |
| |
| - func: item(Tensor self) -> Scalar |
| variants: method |
| |
| - func: result_type.Tensor(Tensor tensor, Tensor other) -> ScalarType |
| variants: function |
| |
| - func: result_type.Scalar(Tensor tensor, Scalar other) -> ScalarType |
| variants: function |
| |
| - func: result_type.Scalar_Tensor(Scalar scalar, Tensor tensor) -> ScalarType |
| variants: function |
| |
| - func: result_type.Scalar_Scalar(Scalar scalar1, Scalar scalar2) -> ScalarType |
| |
| - func: can_cast(ScalarType from, ScalarType to) -> bool |
| variants: function |
| |
| - func: promote_types(ScalarType type1, ScalarType type2) -> ScalarType |
| variants: function |
| |
| # NB: Does NOT check precondition that numel == 1 |
| - func: _local_scalar_dense(Tensor self) -> Scalar |
| dispatch: |
| CPU: _local_scalar_dense_cpu |
| CUDA: _local_scalar_dense_cuda |
| variants: function |
| |
| # Fused RNN kernels |
| - func: _thnn_fused_lstm_cell(Tensor input_gates, Tensor hidden_gates, Tensor cx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: _thnn_fused_lstm_cell_cuda |
| |
| - func: _thnn_fused_lstm_cell_backward(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: _thnn_fused_lstm_cell_backward_cuda |
| |
| - func: _thnn_differentiable_lstm_cell_backward(Tensor? grad_hy, Tensor? grad_cy, Tensor input_gates, Tensor hidden_gates, Tensor? input_bias, Tensor? hidden_bias, Tensor cx, Tensor cy) -> (Tensor, Tensor, Tensor, Tensor, Tensor) |
| |
| - func: _thnn_fused_gru_cell(Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor) |
| dispatch: |
| CUDA: _thnn_fused_gru_cell_cuda |
| |
| - func: _thnn_fused_gru_cell_backward(Tensor grad_hy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor) |
| dispatch: |
| CUDA: _thnn_fused_gru_cell_backward_cuda |
| |
| - func: _thnn_differentiable_gru_cell_backward(Tensor grad_hy, Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias, Tensor? hidden_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor) |
| |
| # RNN cells and layers |
| - func: lstm.input(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor) |
| |
| - func: lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor, Tensor) |
| |
| - func: gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) |
| |
| - func: gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor) |
| |
| - func: rnn_tanh.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) |
| |
| - func: rnn_tanh.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor) |
| |
| - func: rnn_relu.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) |
| |
| - func: rnn_relu.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor) |
| |
| - func: lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor) |
| |
| - func: gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> Tensor |
| |
| - func: rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> Tensor |
| |
| - func: rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> Tensor |
| |
| # Quantized RNN layer registration has been moved to C10 dispatch in `RNN.cpp` |
| |
| # Quantized RNN layers |
| # - func: quantized_lstm(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor) |
| |
| |
| # - func: quantized_lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor) |
| |
| |
| # Quantized GRU layers |
| |
| # - func: quantized_gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) |
| # |
| |
| # - func: quantized_gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor) |
| # |
| |
| # Quantized RNN cells |
| - func: quantized_lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor, Tensor) |
| |
| - func: quantized_gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor |
| |
| - func: quantized_rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor |
| |
| - func: quantized_rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor |
| |
| # PackedSequence utilities |
| - func: _pack_padded_sequence(Tensor input, Tensor lengths, bool batch_first) -> (Tensor, Tensor) |
| dispatch: |
| CompositeExplicitAutograd: _pack_padded_sequence |
| |
| - func: _pack_padded_sequence_backward(Tensor grad, int[] input_size, Tensor batch_sizes, bool batch_first) -> Tensor |
| |
| - func: _pad_packed_sequence(Tensor data, Tensor batch_sizes, bool batch_first, Scalar padding_value, int total_length) -> (Tensor, Tensor) |
| |
| # wrappers for legacy TH methods |
| |
| - func: set_.source_Storage(Tensor(a!) self, Storage source) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| dispatch: |
| CPU, CUDA: set_ |
| |
| - func: set_.source_Storage_storage_offset(Tensor(a!) self, Storage source, int storage_offset, int[] size, int[] stride=[]) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| dispatch: |
| CPU: set_storage_cpu_ |
| CUDA: set_storage_cuda_ |
| QuantizedCPU, QuantizedCUDA: set_storage_quantized_ |
| |
| - func: set_.source_Tensor(Tensor(a!) self, Tensor source) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| dispatch: |
| CPU, CUDA: set_tensor_ |
| |
| - func: set_(Tensor(a!) self) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: set_cpu_ |
| CUDA: set_cuda_ |
| |
| - func: is_set_to(Tensor self, Tensor tensor) -> bool |
| variants: method |
| device_guard: False |
| dispatch: |
| CPU, CUDA: is_set_to |
| |
| - func: masked_fill_.Scalar(Tensor(a!) self, Tensor mask, Scalar value) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: masked_fill__cpu |
| CUDA: masked_fill__cuda |
| |
| - func: masked_fill.Scalar(Tensor self, Tensor mask, Scalar value) -> Tensor |
| variants: function, method |
| |
| - func: masked_fill_.Tensor(Tensor(a!) self, Tensor mask, Tensor value) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: masked_fill__cpu |
| CUDA: masked_fill__cuda |
| |
| - func: masked_fill.Tensor(Tensor self, Tensor mask, Tensor value) -> Tensor |
| variants: function, method |
| |
| - func: masked_scatter_(Tensor(a!) self, Tensor mask, Tensor source) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: masked_scatter__cpu |
| CUDA: masked_scatter__cuda |
| |
| - func: masked_scatter(Tensor self, Tensor mask, Tensor source) -> Tensor |
| variants: function, method |
| |
| - func: view(Tensor(a) self, int[] size) -> Tensor(a) |
| variants: method |
| device_guard: False |
| dispatch: |
| CPU, CUDA, Meta, QuantizedCPU, QuantizedCUDA: view |
| MkldnnCPU: mkldnn_view |
| |
| # Warning: If you want to change the name or overload name of this |
| # operator, you might also want to change the `isBlockListedSchema` |
| # function in `torch/csrc/jit/frontend/schema_catching.cpp`. |
| # The name and overload name of this operator is hardcoded in that |
| # function in order to workaround a bug: |
| # https://github.com/pytorch/pytorch/issues/47964 |
| - func: view.dtype(Tensor(a) self, ScalarType dtype) -> Tensor(a) |
| variants: method |
| device_guard: False |
| dispatch: |
| CompositeExplicitAutograd: view_dtype |
| |
| - func: put_(Tensor(a!) self, Tensor index, Tensor source, bool accumulate=False) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: put_ |
| |
| - func: put(Tensor self, Tensor index, Tensor source, bool accumulate=False) -> Tensor |
| variants: function, method |
| |
| - func: index_add_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!) |
| variants: method |
| |
| - func: index_add_.alpha(Tensor(a!) self, int dim, Tensor index, Tensor source, *, Scalar alpha) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: index_add_cpu_ |
| CUDA: index_add_cuda_ |
| |
| - func: index_add(Tensor self, int dim, Tensor index, Tensor source) -> Tensor |
| variants: function, method |
| |
| - func: index_add.alpha(Tensor self, int dim, Tensor index, Tensor source, *, Scalar alpha) -> Tensor |
| variants: function, method |
| |
| - func: index_add.dimname(Tensor self, Dimname dim, Tensor index, Tensor source, *, Scalar alpha=1) -> Tensor |
| variants: function, method |
| |
| - func: index_fill_.int_Scalar(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: index_fill_ |
| CUDA: index_fill_ |
| |
| - func: index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor |
| variants: function, method |
| |
| - func: index_fill_.int_Tensor(Tensor(a!) self, int dim, Tensor index, Tensor value) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: index_fill_ |
| |
| - func: index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor |
| variants: function, method |
| |
| - func: index_fill_.Dimname_Scalar(Tensor(a!) self, Dimname dim, Tensor index, Scalar value) -> Tensor(a!) |
| variants: method |
| |
| - func: index_fill_.Dimname_Tensor(Tensor(a!) self, Dimname dim, Tensor index, Tensor value) -> Tensor(a!) |
| variants: method |
| |
| - func: index_fill.Dimname_Scalar(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor |
| variants: function, method |
| |
| - func: index_fill.Dimname_Tensor(Tensor self, Dimname dim, Tensor index, Tensor value) -> Tensor |
| variants: function, method |
| |
| - func: scatter_.src(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: scatter_ |
| |
| - func: scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> Tensor |
| variants: function, method |
| |
| - func: scatter_.value(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: scatter_fill_ |
| |
| - func: scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> Tensor |
| variants: function, method |
| |
| - func: scatter.dimname_src(Tensor self, Dimname dim, Tensor index, Tensor src) -> Tensor |
| variants: function, method |
| |
| - func: scatter.dimname_value(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor |
| variants: function, method |
| |
| - func: scatter_.reduce(Tensor(a!) self, int dim, Tensor index, Tensor src, *, str reduce) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: scatter_reduce_ |
| |
| - func: scatter_.value_reduce(Tensor(a!) self, int dim, Tensor index, Scalar value, *, str reduce) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: scatter_scalar_reduce_ |
| |
| - func: scatter_add_(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: scatter_add_ |
| |
| - func: scatter_add(Tensor self, int dim, Tensor index, Tensor src) -> Tensor |
| variants: function, method |
| |
| - func: scatter_add.dimname(Tensor self, Dimname dim, Tensor index, Tensor src) -> Tensor |
| variants: function, method |
| |
| - func: eq_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: eq_ |
| |
| - func: eq_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: eq_ |
| |
| - func: bitwise_and.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: bitwise_and_out |
| |
| - func: bitwise_and.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: bitwise_and_out |
| |
| - func: bitwise_and.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: bitwise_and.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: bitwise_and_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: bitwise_and_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: __and__.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: __and__.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: __iand__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: __iand__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: bitwise_or.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: bitwise_or_out |
| |
| - func: bitwise_or.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: bitwise_or_out |
| |
| - func: bitwise_or.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: bitwise_or.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: bitwise_or_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: bitwise_or_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: __or__.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: __or__.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: __ior__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: __ior__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: bitwise_xor.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: bitwise_xor_out |
| |
| - func: bitwise_xor.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU, CUDA: bitwise_xor_out |
| |
| - func: bitwise_xor.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: bitwise_xor.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: bitwise_xor_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: bitwise_xor_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: __xor__.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: __xor__.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: __ixor__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: __ixor__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: __lshift__.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: __lshift__ |
| |
| - func: __lshift__.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: __lshift__ |
| |
| - func: __ilshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: __ilshift__ |
| |
| - func: __ilshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: __ilshift__ |
| |
| - func: __rshift__.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: __rshift__ |
| |
| - func: __rshift__.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: __rshift__ |
| |
| - func: __irshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: __irshift__ |
| |
| - func: __irshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: __irshift__ |
| |
| - func: tril_(Tensor(a!) self, int diagonal=0) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: tril_cpu_ |
| CUDA: tril_cuda_ |
| |
| - func: triu_(Tensor(a!) self, int diagonal=0) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: triu_cpu_ |
| CUDA: triu_cuda_ |
| |
| - func: digamma_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: digamma.out |
| variants: method |
| |
| - func: renorm_(Tensor(a!) self, Scalar p, int dim, Scalar maxnorm) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: legacy::cpu::_th_renorm_ |
| CUDA: legacy::cuda::_th_renorm_ |
| |
| - func: lerp_.Scalar(Tensor(a!) self, Tensor end, Scalar weight) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: lerp_cpu_scalar_ |
| CUDA: lerp_cuda_scalar_ |
| |
| - func: lerp_.Tensor(Tensor(a!) self, Tensor end, Tensor weight) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU: lerp_cpu_tensor_ |
| CUDA: lerp_cuda_tensor_ |
| |
| - func: fmod_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: fmod_ |
| |
| - func: fmod_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: fmod_ |
| |
| - func: remainder_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: remainder_ |
| |
| - func: remainder_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: remainder_ |
| |
| - func: addbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: addbmm_ |
| |
| - func: addbmm.out(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: addbmm_out |
| |
| - func: addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: addbmm |
| |
| - func: addcdiv_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: addcdiv_ |
| |
| - func: random_.from(Tensor(a!) self, int from, int? to, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: random_ |
| Meta: random_meta_ |
| |
| - func: random_.to(Tensor(a!) self, int to, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: random_ |
| Meta: random_meta_ |
| |
| - func: random_(Tensor(a!) self, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: random_ |
| Meta: random_meta_ |
| |
| - func: uniform_(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: uniform_ |
| Meta: uniform_meta_ |
| |
| - func: cauchy_(Tensor(a!) self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: cauchy_ |
| |
| - func: log_normal_(Tensor(a!) self, float mean=1, float std=2, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: log_normal_ |
| |
| - func: exponential_(Tensor(a!) self, float lambd=1, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: exponential_ |
| |
| - func: geometric_(Tensor(a!) self, float p, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: geometric_ |
| |
| # wrappers for TH functions |
| |
| - func: diag.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: diag_cpu_out |
| CUDA: diag_cuda_out |
| |
| - func: diag(Tensor self, int diagonal=0) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: diag |
| |
| - func: diag_backward(Tensor grad, int[] input_sizes, int diagonal) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: cross.out(Tensor self, Tensor other, int? dim=None, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: cross_out |
| |
| - func: cross(Tensor self, Tensor other, int? dim=None) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: cross |
| |
| - func: triu.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: triu_cpu_out |
| CUDA: triu_cuda_out |
| |
| - func: triu(Tensor self, int diagonal=0) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: triu |
| |
| - func: tril.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: tril_cpu_out |
| CUDA: tril_cuda_out |
| |
| - func: tril(Tensor self, int diagonal=0) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: tril |
| |
| - func: tril_indices(int row, int col, int offset=0, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| dispatch: |
| CPU: tril_indices_cpu |
| CUDA: tril_indices_cuda |
| |
| - func: triu_indices(int row, int col, int offset=0, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| dispatch: |
| CPU: triu_indices_cpu |
| CUDA: triu_indices_cuda |
| |
| - func: trace(Tensor self) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU: trace_cpu |
| CUDA: trace_cuda |
| |
| - func: trace_backward(Tensor grad, int[] sizes) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: ne.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: ne_out |
| QuantizedCPU: ne_out_quantized_cpu |
| |
| - func: ne.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: ne |
| QuantizedCPU: ne_quantized_cpu |
| |
| - func: ne.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: ne_out |
| QuantizedCPU: ne_out_quantized_cpu |
| |
| - func: ne.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: ne |
| QuantizedCPU: ne_quantized_cpu |
| |
| - func: ne_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: ne_ |
| |
| - func: ne_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: ne_ |
| |
| # not_equal, alias for torch.ne |
| - func: not_equal.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: not_equal.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: not_equal.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: not_equal.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: not_equal_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: not_equal_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: eq.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: eq_out |
| QuantizedCPU: eq_out_quantized_cpu |
| |
| - func: eq.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: eq |
| QuantizedCPU: eq_quantized_cpu |
| |
| - func: eq.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: eq_out |
| QuantizedCPU: eq_out_quantized_cpu |
| |
| - func: eq.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: eq |
| QuantizedCPU: eq_quantized_cpu |
| |
| - func: ge.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: ge_out |
| QuantizedCPU: ge_out_quantized_cpu |
| |
| - func: ge.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: ge |
| QuantizedCPU: ge_quantized_cpu |
| |
| - func: ge.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: ge_out |
| QuantizedCPU: ge_out_quantized_cpu |
| |
| - func: ge.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: ge |
| QuantizedCPU: ge_quantized_cpu |
| |
| - func: ge_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: ge_ |
| |
| - func: ge_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: ge_ |
| |
| # greater_equal, alias for torch.ge |
| - func: greater_equal.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: greater_equal.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: greater_equal.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: greater_equal.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: greater_equal_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: greater_equal_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: le.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: le_out |
| QuantizedCPU: le_out_quantized_cpu |
| |
| - func: le.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: le |
| QuantizedCPU: le_quantized_cpu |
| |
| - func: le.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: le_out |
| QuantizedCPU: le_out_quantized_cpu |
| |
| - func: le.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: le |
| QuantizedCPU: le_quantized_cpu |
| |
| - func: le_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: le_ |
| |
| - func: le_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: le_ |
| |
| # less_equal, alias for torch.le |
| - func: less_equal.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: less_equal.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: less_equal.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: less_equal.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: less_equal_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: less_equal_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: gt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: gt_out |
| QuantizedCPU: gt_out_quantized_cpu |
| |
| - func: gt.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: gt |
| QuantizedCPU: gt_quantized_cpu |
| |
| - func: gt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: gt_out |
| QuantizedCPU: gt_out_quantized_cpu |
| |
| - func: gt.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: gt |
| QuantizedCPU: gt_quantized_cpu |
| |
| - func: gt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: gt_ |
| |
| - func: gt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: gt_ |
| |
| # greater, alias for torch.gt |
| - func: greater.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: greater.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: greater.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: greater.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: greater_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: greater_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: lt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: lt_out |
| QuantizedCPU: lt_out_quantized_cpu |
| |
| - func: lt.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: lt |
| QuantizedCPU: lt_quantized_cpu |
| |
| - func: lt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: lt_out |
| QuantizedCPU: lt_out_quantized_cpu |
| |
| - func: lt.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: lt |
| QuantizedCPU: lt_quantized_cpu |
| |
| - func: lt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: lt_ |
| |
| - func: lt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: lt_ |
| |
| # less, alias for torch.lt |
| - func: less.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: less.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| |
| - func: less.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: less.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: less_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) |
| variants: method |
| |
| - func: less_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| |
| - func: take.out(Tensor self, Tensor index, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: take_out |
| |
| - func: take(Tensor self, Tensor index) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: take |
| |
| - func: take_along_dim.out(Tensor self, Tensor indices, int? dim=None, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: take_along_dim(Tensor self, Tensor indices, int? dim=None) -> Tensor |
| variants: method, function |
| |
| - func: index_select.out(Tensor self, int dim, Tensor index, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: index_select_out_cpu_ |
| CUDA: index_select_out_cuda |
| |
| - func: index_select(Tensor self, int dim, Tensor index) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU: index_select_cpu_ |
| CUDA: index_select_cuda |
| SparseCPU: index_select_sparse |
| SparseCUDA: index_select_sparse |
| |
| - func: index_select.dimname_out(Tensor self, Dimname dim, Tensor index, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: index_select.dimname(Tensor self, Dimname dim, Tensor index) -> Tensor |
| variants: method, function |
| |
| - func: index_select_backward(Tensor grad, int[] self_sizes, int dim, Tensor index) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: masked_select.out(Tensor self, Tensor mask, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: masked_select_out_cpu |
| CUDA: masked_select_out_cuda |
| |
| - func: masked_select(Tensor self, Tensor mask) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU: masked_select_cpu |
| CUDA: masked_select_cuda |
| |
| - func: masked_select_backward(Tensor grad, Tensor input, Tensor mask) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: nonzero.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: legacy::cpu::_th_nonzero_out |
| CUDA: nonzero_out_cuda |
| |
| - func: nonzero(Tensor self) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU: legacy::cpu::_th_nonzero |
| CUDA: nonzero_cuda |
| |
| - func: nonzero_numpy(Tensor self) -> Tensor[] |
| variants: method, function |
| |
| - func: gather.out(Tensor self, int dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: gather_out_cpu_cuda |
| CUDA: gather_out_cpu_cuda |
| |
| - func: gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: gather |
| |
| - func: gather_backward(Tensor grad, Tensor self, int dim, Tensor index, bool sparse_grad) -> Tensor |
| variants: function |
| device_guard: False |
| |
| - func: gather.dimname_out(Tensor self, Dimname dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: gather.dimname(Tensor self, Dimname dim, Tensor index, *, bool sparse_grad=False) -> Tensor |
| variants: method, function |
| |
| - func: _gather_sparse_backward(Tensor self, int dim, Tensor index, Tensor grad) -> Tensor |
| |
| - func: addcmul.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: addcmul_out |
| |
| - func: addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: addcmul |
| |
| - func: addcmul_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: addcmul_ |
| |
| - func: addcdiv.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: addcdiv_out |
| |
| - func: addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: addcdiv |
| |
| - func: cross_entropy_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100) -> Tensor |
| python_module: nn |
| |
| - func: lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR) |
| dispatch: |
| CPU: legacy::cpu::_th_gels_out |
| CUDA: legacy::cuda::_th_gels_out |
| |
| - func: lstsq(Tensor self, Tensor A) -> (Tensor solution, Tensor QR) |
| variants: method, function |
| dispatch: |
| CPU: legacy::cpu::_th_gels |
| CUDA: legacy::cuda::_th_gels |
| |
| - func: triangular_solve.X(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, Tensor(a!) X, Tensor(b!) M) -> (Tensor(a!) solution, Tensor(b!) cloned_coefficient) |
| dispatch: |
| CPU, CUDA: triangular_solve_out |
| |
| - func: triangular_solve(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False) -> (Tensor solution, Tensor cloned_coefficient) |
| variants: method, function |
| dispatch: |
| CPU, CUDA: triangular_solve |
| |
| - func: symeig.e(Tensor self, bool eigenvectors=False, bool upper=True, *, Tensor(a!) e, Tensor(b!) V) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) |
| dispatch: |
| CompositeExplicitAutograd: symeig_out |
| |
| - func: symeig(Tensor self, bool eigenvectors=False, bool upper=True) -> (Tensor eigenvalues, Tensor eigenvectors) |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: symeig |
| |
| - func: _symeig_helper(Tensor self, bool eigenvectors, bool upper) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU: _symeig_helper_cpu |
| CUDA: _symeig_helper_cuda |
| |
| - func: eig.e(Tensor self, bool eigenvectors=False, *, Tensor(a!) e, Tensor(b!) v) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) |
| dispatch: |
| CompositeExplicitAutograd: eig_out |
| |
| - func: eig(Tensor self, bool eigenvectors=False) -> (Tensor eigenvalues, Tensor eigenvectors) |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: eig |
| |
| - func: svd.U(Tensor self, bool some=True, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) |
| |
| - func: svd(Tensor self, bool some=True, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor V) |
| variants: method, function |
| |
| - func: _svd_helper(Tensor self, bool some, bool compute_uv) -> (Tensor U, Tensor S, Tensor V) |
| variants: function |
| dispatch: |
| CPU: _svd_helper_cpu |
| CUDA: _svd_helper_cuda |
| |
| # swapaxes, alias for transpose |
| - func: swapaxes(Tensor(a) self, int axis0, int axis1) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| |
| - func: swapaxes_(Tensor(a!) self, int axis0, int axis1) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| |
| # swapdims, alias for transpose |
| - func: swapdims(Tensor(a) self, int dim0, int dim1) -> Tensor(a) |
| variants: function, method |
| device_guard: False |
| |
| - func: swapdims_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!) |
| variants: method |
| device_guard: False |
| |
| - func: cholesky.out(Tensor self, bool upper=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: cholesky_out |
| |
| - func: cholesky(Tensor self, bool upper=False) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: cholesky |
| |
| - func: _cholesky_helper(Tensor self, bool upper) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _cholesky_helper_cpu |
| CUDA: _cholesky_helper_cuda |
| |
| - func: cholesky_solve.out(Tensor self, Tensor input2, bool upper=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: cholesky_solve_out |
| |
| - func: cholesky_solve(Tensor self, Tensor input2, bool upper=False) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: cholesky_solve |
| |
| - func: _cholesky_solve_helper(Tensor self, Tensor A, bool upper) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _cholesky_solve_helper_cpu |
| CUDA: _cholesky_solve_helper_cuda |
| |
| - func: solve(Tensor self, Tensor A) -> (Tensor solution, Tensor LU) |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: solve |
| |
| - func: solve.solution(Tensor self, Tensor A, *, Tensor(a!) solution, Tensor(b!) lu) -> (Tensor(a!) solution, Tensor(b!) LU) |
| dispatch: |
| CompositeExplicitAutograd: solve_out |
| |
| - func: _solve_helper(Tensor self, Tensor A) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU: _solve_helper_cpu |
| CUDA: _solve_helper_cuda |
| |
| - func: cholesky_inverse(Tensor self, bool upper=False) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: cholesky_inverse |
| |
| - func: cholesky_inverse.out(Tensor self, bool upper=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: cholesky_inverse_out |
| |
| - func: qr.Q(Tensor self, bool some=True, *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R) |
| |
| - func: qr(Tensor self, bool some=True) -> (Tensor Q, Tensor R) |
| variants: method, function |
| |
| - func: geqrf.a(Tensor self, *, Tensor(a!) a, Tensor(b!) tau) -> (Tensor(a!) a, Tensor(b!) tau) |
| dispatch: |
| CPU: geqrf_out |
| CUDA: legacy::cuda::_th_geqrf_out |
| |
| - func: geqrf(Tensor self) -> (Tensor a, Tensor tau) |
| variants: method, function |
| dispatch: |
| CPU: geqrf |
| CUDA: legacy::cuda::_th_geqrf |
| |
| # orgqr, alias for linalg_householder_product |
| - func: orgqr(Tensor self, Tensor input2) -> Tensor |
| variants: method, function |
| |
| - func: orgqr.out(Tensor self, Tensor input2, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: ormqr.out(Tensor self, Tensor input2, Tensor input3, bool left=True, bool transpose=False, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: legacy::cpu::_th_ormqr_out |
| |
| - func: ormqr(Tensor self, Tensor input2, Tensor input3, bool left=True, bool transpose=False) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU: legacy::cpu::_th_ormqr |
| |
| - func: _lu_with_info(Tensor self, bool pivot=True, bool check_errors=True) -> (Tensor, Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU: _lu_with_info_cpu |
| CUDA: _lu_with_info_cuda |
| |
| - func: lu_solve.out(Tensor self, Tensor LU_data, Tensor LU_pivots, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: lu_solve_out |
| |
| - func: lu_solve(Tensor self, Tensor LU_data, Tensor LU_pivots) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: lu_solve |
| |
| - func: _lu_solve_helper(Tensor self, Tensor LU_data, Tensor LU_pivots) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _lu_solve_helper_cpu |
| CUDA: _lu_solve_helper_cuda |
| |
| # TODO: remove dispatch section when porting TH CUDA to ATen |
| - func: multinomial.out(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: multinomial_out |
| |
| - func: multinomial(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: multinomial |
| |
| - func: lgamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: lgamma_out |
| |
| - func: lgamma_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: lgamma.out |
| variants: method |
| |
| - func: lgamma(Tensor self) -> Tensor |
| structured_delegate: lgamma.out |
| variants: method, function |
| |
| - func: digamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: digamma_out |
| |
| - func: digamma(Tensor self) -> Tensor |
| structured_delegate: digamma.out |
| variants: method, function |
| |
| - func: polygamma.out(int n, Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: polygamma_out |
| |
| - func: polygamma(int n, Tensor self) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: polygamma |
| |
| - func: polygamma_(Tensor(a!) self, int n) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: polygamma_ |
| |
| - func: erfinv(Tensor self) -> Tensor |
| structured_delegate: erfinv.out |
| variants: method, function |
| |
| - func: erfinv_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: erfinv.out |
| variants: method |
| |
| - func: erfinv.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: erfinv_out |
| |
| - func: i0(Tensor self) -> Tensor |
| structured_delegate: i0.out |
| variants: function, method |
| |
| - func: i0_(Tensor(a!) self) -> Tensor(a!) |
| structured_delegate: i0.out |
| variants: function, method |
| |
| - func: i0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: i0_out |
| |
| - func: sign(Tensor self) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: sign |
| |
| - func: sign_(Tensor(a!) self) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: sign_ |
| |
| - func: sign.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: sign_out |
| |
| - func: signbit(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: signbit.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: signbit_out |
| CUDA: signbit_out |
| |
| - func: dist(Tensor self, Tensor other, Scalar p=2) -> Tensor |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: dist |
| |
| - func: atan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: atan2_out |
| |
| - func: atan2_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| structured_delegate: atan2.out |
| variants: method |
| |
| - func: atan2(Tensor self, Tensor other) -> Tensor |
| structured_delegate: atan2.out |
| variants: method, function |
| |
| - func: lerp.Scalar_out(Tensor self, Tensor end, Scalar weight, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: lerp_cpu_scalar_out |
| CUDA: lerp_cuda_scalar_out |
| |
| - func: lerp.Tensor_out(Tensor self, Tensor end, Tensor weight, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: lerp_cpu_tensor_out |
| CUDA: lerp_cuda_tensor_out |
| |
| - func: lerp.Scalar(Tensor self, Tensor end, Scalar weight) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU: lerp_cpu_scalar |
| CUDA: lerp_cuda_scalar |
| |
| - func: lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU: lerp_cpu_tensor |
| CUDA: lerp_cuda_tensor |
| |
| - func: histc.out(Tensor self, int bins=100, Scalar min=0, Scalar max=0, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: legacy::cpu::_th_histc_out |
| CUDA: _histc_out_cuda |
| |
| - func: histc(Tensor self, int bins=100, Scalar min=0, Scalar max=0) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU: legacy::cpu::_th_histc |
| CUDA: _histc_cuda |
| |
| - func: fmod.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: fmod_out |
| |
| - func: fmod.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: fmod |
| |
| - func: fmod.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: fmod_out |
| |
| - func: fmod.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: fmod |
| |
| - func: hypot.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: hypot_out |
| |
| - func: hypot(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: hypot |
| |
| - func: hypot_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: hypot_ |
| |
| - func: igamma.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: igamma_out |
| |
| - func: igamma(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: igamma |
| |
| - func: igamma_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: igamma_ |
| |
| - func: igammac.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: igammac_out |
| |
| - func: igammac(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: igammac |
| |
| - func: igammac_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: igammac_ |
| |
| - func: nextafter.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: nextafter_out |
| |
| - func: nextafter(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: nextafter |
| |
| - func: nextafter_(Tensor(a!) self, Tensor other) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CompositeExplicitAutograd: nextafter_ |
| |
| - func: remainder.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: remainder_out |
| |
| - func: remainder.Scalar(Tensor self, Scalar other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: remainder |
| |
| - func: remainder.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: remainder_out |
| |
| - func: remainder.Tensor(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: remainder |
| |
| - func: min(Tensor self) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: min |
| QuantizedCPU: min_quantized_cpu |
| |
| - func: fmin(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: fmin |
| |
| - func: fmin.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: fmin_out |
| |
| - func: max(Tensor self) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: max |
| QuantizedCPU: max_quantized_cpu |
| |
| - func: fmax(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: fmax |
| |
| - func: fmax.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: fmax_out |
| |
| - func: maximum(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: maximum |
| |
| - func: maximum.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: maximum_out |
| |
| # binary max, alias of maximum |
| # NOTE: max is not an alias for maximum, since there is also unary max |
| - func: max.other(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| - func: max.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: minimum(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: minimum |
| |
| - func: minimum.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: minimum_out |
| |
| # binary min, alias for minimum |
| # NOTE: min is not an alias for minimum, since there is also unary min |
| - func: min.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: min.other(Tensor self, Tensor other) -> Tensor |
| variants: method, function |
| |
| # The following quantile signatures are DEPRECATED in favor of the new ones with the interpolation kwarg. |
| - func: quantile.scalar_out(Tensor self, float q, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: quantile.scalar(Tensor self, float q, int? dim=None, bool keepdim=False) -> Tensor |
| variants: method, function |
| |
| - func: quantile.out(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: quantile(Tensor self, Tensor q, int? dim=None, bool keepdim=False) -> Tensor |
| variants: method, function |
| |
| - func: nanquantile.scalar_out(Tensor self, float q, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: nanquantile.scalar(Tensor self, float q, int? dim=None, bool keepdim=False) -> Tensor |
| variants: method, function |
| |
| - func: nanquantile.out(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: nanquantile(Tensor self, Tensor q, int? dim=None, bool keepdim=False) -> Tensor |
| variants: method, function |
| |
| # To keep backward and forward compatibility, and to avoid ambiguity with the original signatures, dim, keepdim and interpolation |
| # parameters are required for now. Once the deprecated signatures are removed they will be made optional. |
| - func: quantile.new_scalar_out(Tensor self, float q, int? dim, bool keepdim, *, str interpolation, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: quantile.new_scalar(Tensor self, float q, int? dim, bool keepdim, *, str interpolation) -> Tensor |
| variants: method, function |
| |
| - func: quantile.new_out(Tensor self, Tensor q, int? dim, bool keepdim, *, str interpolation, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: quantile.new(Tensor self, Tensor q, int? dim, bool keepdim, *, str interpolation) -> Tensor |
| variants: method, function |
| |
| - func: nanquantile.new_scalar_out(Tensor self, float q, int? dim, bool keepdim, *, str interpolation, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: nanquantile.new_scalar(Tensor self, float q, int? dim, bool keepdim, *, str interpolation) -> Tensor |
| variants: method, function |
| |
| - func: nanquantile.new_out(Tensor self, Tensor q, int? dim, bool keepdim, *, str interpolation, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: nanquantile.new(Tensor self, Tensor q, int? dim, bool keepdim, *, str interpolation) -> Tensor |
| variants: method, function |
| |
| - func: sort.values(Tensor self, int dim=-1, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CPU: sort_out_cpu |
| CUDA: sort_out_cuda |
| |
| - func: sort.values_stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CPU: sort_out_cpu_stable |
| CUDA: sort_out_stable_cuda |
| |
| - func: sort(Tensor self, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices) |
| variants: method, function |
| dispatch: |
| CPU: sort_cpu |
| CUDA: sort_cuda |
| QuantizedCPU: sort_quantized_cpu |
| |
| - func: sort.stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices) |
| variants: method, function |
| dispatch: |
| CPU: sort_cpu_stable |
| CUDA: sort_stable_cuda |
| QuantizedCPU: sort_quantized_cpu_stable |
| |
| - func: sort.dimname_values(Tensor self, Dimname dim, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| |
| - func: sort.dimname_values_stable(Tensor self, *, bool? stable, Dimname dim, bool descending=False, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| |
| - func: sort.dimname(Tensor self, Dimname dim, bool descending=False) -> (Tensor values, Tensor indices) |
| variants: method, function |
| |
| - func: sort.dimname_stable(Tensor self, *, bool? stable, Dimname dim, bool descending=False) -> (Tensor values, Tensor indices) |
| variants: method, function |
| |
| - func: msort.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: msort(Tensor self) -> Tensor |
| variants: method, function |
| |
| - func: argsort(Tensor self, int dim=-1, bool descending=False) -> Tensor |
| variants: method, function |
| |
| - func: argsort.dimname(Tensor self, Dimname dim, bool descending=False) -> Tensor |
| variants: method, function |
| |
| - func: topk.values(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) |
| dispatch: |
| CPU: topk_out_cpu |
| CUDA: legacy::cuda::_th_topk_out |
| |
| - func: topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices) |
| variants: method, function |
| dispatch: |
| CPU, CUDA: topk |
| QuantizedCPU: topk_quantized_cpu |
| |
| - func: all(Tensor self) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: all |
| |
| - func: any(Tensor self) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU, CUDA: any |
| SparseCPU, SparseCUDA: any_sparse |
| |
| - func: renorm.out(Tensor self, Scalar p, int dim, Scalar maxnorm, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: legacy::cpu::_th_renorm_out |
| CUDA: legacy::cuda::_th_renorm_out |
| |
| - func: renorm(Tensor self, Scalar p, int dim, Scalar maxnorm) -> Tensor |
| variants: method, function |
| dispatch: |
| CPU: legacy::cpu::_th_renorm |
| CUDA: legacy::cuda::_th_renorm |
| |
| - func: unfold(Tensor(a) self, int dimension, int size, int step) -> Tensor(a) |
| variants: method |
| device_guard: False |
| dispatch: |
| CPU, CUDA: unfold |
| QuantizedCPU, QuantizedCUDA: unfold |
| |
| - func: unfold_backward(Tensor grad_in, int[] input_sizes, int dim, int size, int step) -> Tensor |
| variants: function |
| dispatch: |
| CPU, CUDA: unfold_backward |
| |
| - func: equal(Tensor self, Tensor other) -> bool |
| variants: method, function |
| dispatch: |
| CPU: cpu_equal |
| CUDA: cuda_equal |
| QuantizedCPU: equal_quantized_cpu |
| |
| - func: pow.Tensor_Tensor_out(Tensor self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: pow_Tensor_Tensor_out |
| |
| - func: pow.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor |
| structured_delegate: pow.Tensor_Tensor_out |
| variants: method, function |
| |
| - func: pow.Scalar_out(Scalar self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| dispatch: |
| CPU, CUDA: pow_Scalar_out |
| |
| - func: pow.Scalar(Scalar self, Tensor exponent) -> Tensor |
| structured_delegate: pow.Scalar_out |
| |
| - func: pow.Tensor_Scalar_out(Tensor self, Scalar exponent, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: pow_Tensor_Scalar_out |
| SparseCPU, SparseCUDA: pow_out_sparse_scalar |
| |
| - func: pow.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor |
| structured_delegate: pow.Tensor_Scalar_out |
| variants: function, method |
| dispatch: |
| SparseCPU, SparseCUDA: pow_sparse_scalar |
| |
| - func: pow_.Scalar(Tensor(a!) self, Scalar exponent) -> Tensor(a!) |
| structured_delegate: pow.Tensor_Scalar_out |
| variants: method |
| |
| - func: pow_.Tensor(Tensor(a!) self, Tensor exponent) -> Tensor(a!) |
| structured_delegate: pow.Tensor_Tensor_out |
| variants: method |
| |
| - func: float_power.Tensor_Tensor_out(Tensor self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: float_power.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor |
| variants: function, method |
| |
| - func: float_power.Scalar_out(Scalar self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: float_power.Scalar(Scalar self, Tensor exponent) -> Tensor |
| |
| - func: float_power.Tensor_Scalar_out(Tensor self, Scalar exponent, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: float_power.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor |
| variants: function, method |
| |
| - func: float_power_.Scalar(Tensor(a!) self, Scalar exponent) -> Tensor(a!) |
| variants: method |
| |
| - func: float_power_.Tensor(Tensor(a!) self, Tensor exponent) -> Tensor(a!) |
| variants: method |
| |
| - func: normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!) |
| variants: method |
| dispatch: |
| CPU, CUDA: normal_ |
| Meta: normal_meta_ |
| |
| - func: normal.Tensor_float_out(Tensor mean, float std=1, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: normal_out |
| |
| - func: normal.Tensor_float(Tensor mean, float std=1, *, Generator? generator=None) -> Tensor |
| dispatch: |
| CPU, CUDA: normal |
| |
| - func: normal.float_Tensor_out(float mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: normal_out |
| |
| - func: normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> Tensor |
| dispatch: |
| CPU, CUDA: normal |
| |
| - func: normal.Tensor_Tensor_out(Tensor mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: normal_out |
| |
| - func: normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> Tensor |
| dispatch: |
| CPU, CUDA: normal |
| |
| - func: normal.float_float(float mean, float std, int[] size, *, Generator? generator=None, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| |
| - func: normal.float_float_out(float mean, float std, int[] size, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: alias(Tensor(a) self) -> Tensor(a) |
| variants: method, function |
| dispatch: |
| CompositeExplicitAutograd: alias |
| |
| - func: _index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!) |
| dispatch: |
| CPU: _index_copy_impl_ |
| CUDA: _index_copy_impl_ |
| |
| - func: _cumsum(Tensor self, int dim) -> Tensor |
| dispatch: |
| CPU: _cumsum_cpu |
| CUDA: _cumsum_cuda |
| |
| - func: _cumsum.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: _cumsum_out_cpu |
| CUDA: _cumsum_out_cuda |
| |
| - func: _cumprod(Tensor self, int dim) -> Tensor |
| dispatch: |
| CPU: _cumprod_cpu |
| CUDA: _cumprod_cuda |
| |
| - func: _cumprod.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: _cumprod_out_cpu |
| CUDA: _cumprod_out_cuda |
| |
| - func: _var(Tensor self, bool unbiased=True) -> Tensor |
| dispatch: |
| CPU: legacy::cpu::_th_var |
| |
| - func: _std(Tensor self, bool unbiased=True) -> Tensor |
| dispatch: |
| CPU: legacy::cpu::_th_std |
| |
| - func: _amp_foreach_non_finite_check_and_unscale_(Tensor(a!)[] self, Tensor(b!) found_inf, Tensor inv_scale) -> () |
| variants: function |
| dispatch: |
| CUDA: _amp_foreach_non_finite_check_and_unscale_cuda_ |
| |
| - func: _amp_update_scale(Tensor(a!) growth_tracker, Tensor current_scale, Tensor found_inf, float scale_growth_factor, float scale_backoff_factor, int growth_interval) -> Tensor |
| variants: function |
| dispatch: |
| CUDA: _amp_update_scale_cuda |
| |
| - func: _cat(Tensor[] tensors, int dim=0) -> Tensor |
| dispatch: |
| CPU: _cat_cpu |
| CUDA: cat_cuda |
| QuantizedCPU: cat_quantized_cpu |
| |
| - func: _cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: _cat_out_cpu |
| CUDA: cat_out_cuda |
| QuantizedCPU: cat_out_quantized_cpu |
| |
| - func: _foreach_add.Scalar(Tensor[] tensors, Scalar scalar) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_add_scalar_kernel_slow |
| CUDA: foreach_tensor_add_scalar_kernel_cuda |
| |
| - func: _foreach_add_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_add_scalar_kernel_slow_ |
| CUDA: foreach_tensor_add_scalar_kernel_cuda_ |
| |
| - func: _foreach_sub.Scalar(Tensor[] tensors, Scalar scalar) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sub_scalar_kernel_slow |
| CUDA: foreach_tensor_sub_scalar_kernel_cuda |
| |
| - func: _foreach_sub_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sub_scalar_kernel_slow_ |
| CUDA: foreach_tensor_sub_scalar_kernel_cuda_ |
| |
| - func: _foreach_mul.Scalar(Tensor[] tensors, Scalar scalar) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_mul_scalar_kernel_slow |
| CUDA: foreach_tensor_mul_scalar_kernel_cuda |
| |
| - func: _foreach_mul_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_mul_scalar_kernel_slow_ |
| CUDA: foreach_tensor_mul_scalar_kernel_cuda_ |
| |
| - func: _foreach_div.Scalar(Tensor[] tensors, Scalar scalar) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_div_scalar_kernel_slow |
| CUDA: foreach_tensor_div_scalar_kernel_cuda |
| |
| - func: _foreach_div_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_div_scalar_kernel_slow_ |
| CUDA: foreach_tensor_div_scalar_kernel_cuda_ |
| |
| - func: _foreach_add.List(Tensor[] tensors1, Tensor[] tensors2, *, Scalar alpha=1) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_add_list_kernel_slow |
| CUDA: foreach_tensor_add_list_kernel_cuda |
| |
| - func: _foreach_add_.List(Tensor(a!)[] self, Tensor[] other, *, Scalar alpha=1) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_add_list_kernel_slow_ |
| CUDA: foreach_tensor_add_list_kernel_cuda_ |
| |
| - func: _foreach_sub.List(Tensor[] tensors1, Tensor[] tensors2, *, Scalar alpha=1) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sub_list_kernel_slow |
| CUDA: foreach_tensor_sub_list_kernel_cuda |
| |
| - func: _foreach_sub_.List(Tensor(a!)[] self, Tensor[] other, *, Scalar alpha=1) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sub_list_kernel_slow_ |
| CUDA: foreach_tensor_sub_list_kernel_cuda_ |
| |
| - func: _foreach_mul.List(Tensor[] tensors1, Tensor[] tensors2) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_mul_list_kernel_slow |
| CUDA: foreach_tensor_mul_list_kernel_cuda |
| |
| - func: _foreach_mul_.List(Tensor(a!)[] self, Tensor[] other) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_mul_list_kernel_slow_ |
| CUDA: foreach_tensor_mul_list_kernel_cuda_ |
| |
| - func: _foreach_div.List(Tensor[] tensors1, Tensor[] tensors2) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_div_list_kernel_slow |
| CUDA: foreach_tensor_div_list_kernel_cuda |
| |
| - func: _foreach_div_.List(Tensor(a!)[] self, Tensor[] other) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_div_list_kernel_slow_ |
| CUDA: foreach_tensor_div_list_kernel_cuda_ |
| |
| - func: _foreach_add.ScalarList(Tensor[] tensors, Scalar[] scalars) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_add_scalarlist_kernel_slow |
| CUDA: foreach_tensor_add_scalarlist_kernel_cuda |
| |
| - func: _foreach_add_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_add_scalarlist_kernel_slow_ |
| CUDA: foreach_tensor_add_scalarlist_kernel_cuda_ |
| |
| - func: _foreach_sub.ScalarList(Tensor[] tensors, Scalar[] scalars) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sub_scalarlist_kernel_slow |
| CUDA: foreach_tensor_sub_scalarlist_kernel_cuda |
| |
| - func: _foreach_sub_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sub_scalarlist_kernel_slow_ |
| CUDA: foreach_tensor_sub_scalarlist_kernel_cuda_ |
| |
| - func: _foreach_div.ScalarList(Tensor[] tensors, Scalar[] scalars) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_div_scalarlist_kernel_slow |
| CUDA: foreach_tensor_div_scalarlist_kernel_cuda |
| |
| - func: _foreach_div_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_div_scalarlist_kernel_slow_ |
| CUDA: foreach_tensor_div_scalarlist_kernel_cuda_ |
| |
| - func: _foreach_mul.ScalarList(Tensor[] tensors, Scalar[] scalars) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_mul_scalarlist_kernel_slow |
| CUDA: foreach_tensor_mul_scalarlist_kernel_cuda |
| |
| - func: _foreach_mul_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_mul_scalarlist_kernel_slow_ |
| CUDA: foreach_tensor_mul_scalarlist_kernel_cuda_ |
| |
| - func: _foreach_exp(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_exp_slow |
| CUDA: foreach_tensor_exp_cuda |
| |
| - func: _foreach_zero_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_zero_slow_ |
| CUDA: foreach_tensor_zero_cuda_ |
| |
| - func: _foreach_exp_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_exp_slow_ |
| CUDA: foreach_tensor_exp_cuda_ |
| |
| - func: _foreach_sqrt(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sqrt_slow |
| CUDA: foreach_tensor_sqrt_cuda |
| |
| - func: _foreach_sqrt_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sqrt_slow_ |
| CUDA: foreach_tensor_sqrt_cuda_ |
| |
| - func: _foreach_abs(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_abs_slow |
| CUDA: foreach_tensor_abs_cuda |
| |
| - func: _foreach_abs_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_abs_slow_ |
| CUDA: foreach_tensor_abs_cuda_ |
| |
| - func: _foreach_acos(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_acos_slow |
| CUDA: foreach_tensor_acos_cuda |
| |
| - func: _foreach_acos_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_acos_slow_ |
| CUDA: foreach_tensor_acos_cuda_ |
| |
| - func: _foreach_asin(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_asin_slow |
| CUDA: foreach_tensor_asin_cuda |
| |
| - func: _foreach_asin_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_asin_slow_ |
| CUDA: foreach_tensor_asin_cuda_ |
| |
| - func: _foreach_atan(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_atan_slow |
| CUDA: foreach_tensor_atan_cuda |
| |
| - func: _foreach_atan_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_atan_slow_ |
| CUDA: foreach_tensor_atan_cuda_ |
| |
| - func: _foreach_ceil(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_ceil_slow |
| CUDA: foreach_tensor_ceil_cuda |
| |
| - func: _foreach_ceil_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_ceil_slow_ |
| CUDA: foreach_tensor_ceil_cuda_ |
| |
| - func: _foreach_cos(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_cos_slow |
| CUDA: foreach_tensor_cos_cuda |
| |
| - func: _foreach_cos_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_cos_slow_ |
| CUDA: foreach_tensor_cos_cuda_ |
| |
| - func: _foreach_cosh(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_cosh_slow |
| CUDA: foreach_tensor_cosh_cuda |
| |
| - func: _foreach_cosh_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_cosh_slow_ |
| CUDA: foreach_tensor_cosh_cuda_ |
| |
| - func: _foreach_erf(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_erf_slow |
| CUDA: foreach_tensor_erf_cuda |
| |
| - func: _foreach_erf_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_erf_slow_ |
| CUDA: foreach_tensor_erf_cuda_ |
| |
| - func: _foreach_erfc(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_erfc_slow |
| CUDA: foreach_tensor_erfc_cuda |
| |
| - func: _foreach_erfc_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_erfc_slow_ |
| CUDA: foreach_tensor_erfc_cuda_ |
| |
| - func: _foreach_expm1(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_expm1_slow |
| CUDA: foreach_tensor_expm1_cuda |
| |
| - func: _foreach_expm1_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_expm1_slow_ |
| CUDA: foreach_tensor_expm1_cuda_ |
| |
| - func: _foreach_floor(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_floor_slow |
| CUDA: foreach_tensor_floor_cuda |
| |
| - func: _foreach_floor_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_floor_slow_ |
| CUDA: foreach_tensor_floor_cuda_ |
| |
| - func: _foreach_log(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_log_slow |
| CUDA: foreach_tensor_log_cuda |
| |
| - func: _foreach_log_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_log_slow_ |
| CUDA: foreach_tensor_log_cuda_ |
| |
| - func: _foreach_log10(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_log10_slow |
| CUDA: foreach_tensor_log10_cuda |
| |
| - func: _foreach_log10_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_log10_slow_ |
| CUDA: foreach_tensor_log10_cuda_ |
| |
| - func: _foreach_log1p(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_log1p_slow |
| CUDA: foreach_tensor_log1p_cuda |
| |
| - func: _foreach_log1p_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_log1p_slow_ |
| CUDA: foreach_tensor_log1p_cuda_ |
| |
| - func: _foreach_log2(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_log2_slow |
| CUDA: foreach_tensor_log2_cuda |
| |
| - func: _foreach_log2_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_log2_slow_ |
| CUDA: foreach_tensor_log2_cuda_ |
| |
| - func: _foreach_neg(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_neg_slow |
| CUDA: foreach_tensor_neg_cuda |
| |
| - func: _foreach_neg_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_neg_slow_ |
| CUDA: foreach_tensor_neg_cuda_ |
| |
| - func: _foreach_tan(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_tan_slow |
| CUDA: foreach_tensor_tan_cuda |
| |
| - func: _foreach_tan_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_tan_slow_ |
| CUDA: foreach_tensor_tan_cuda_ |
| |
| - func: _foreach_tanh(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_tanh_slow |
| CUDA: foreach_tensor_tanh_cuda |
| |
| - func: _foreach_tanh_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_tanh_slow_ |
| CUDA: foreach_tensor_tanh_cuda_ |
| |
| - func: _foreach_sin(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sin_slow |
| CUDA: foreach_tensor_sin_cuda |
| |
| - func: _foreach_sin_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sin_slow_ |
| CUDA: foreach_tensor_sin_cuda_ |
| |
| - func: _foreach_sinh(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sinh_slow |
| CUDA: foreach_tensor_sinh_cuda |
| |
| - func: _foreach_sinh_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sinh_slow_ |
| CUDA: foreach_tensor_sinh_cuda_ |
| |
| - func: _foreach_round(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_round_slow |
| CUDA: foreach_tensor_round_cuda |
| |
| - func: _foreach_round_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_round_slow_ |
| CUDA: foreach_tensor_round_cuda_ |
| |
| - func: _foreach_lgamma(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_lgamma_slow |
| CUDA: foreach_tensor_lgamma_cuda |
| |
| - func: _foreach_lgamma_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_lgamma_slow_ |
| CUDA: foreach_tensor_lgamma_cuda_ |
| |
| - func: _foreach_frac(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_frac_slow |
| CUDA: foreach_tensor_frac_cuda |
| |
| - func: _foreach_frac_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_frac_slow_ |
| CUDA: foreach_tensor_frac_cuda_ |
| |
| - func: _foreach_reciprocal(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_reciprocal_slow |
| CUDA: foreach_tensor_reciprocal_cuda |
| |
| - func: _foreach_reciprocal_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_reciprocal_slow_ |
| CUDA: foreach_tensor_reciprocal_cuda_ |
| |
| - func: _foreach_sigmoid(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sigmoid_slow |
| CUDA: foreach_tensor_sigmoid_cuda |
| |
| - func: _foreach_sigmoid_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_sigmoid_slow_ |
| CUDA: foreach_tensor_sigmoid_cuda_ |
| |
| - func: _foreach_trunc(Tensor[] tensors) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_trunc_slow |
| CUDA: foreach_tensor_trunc_cuda |
| |
| - func: _foreach_trunc_(Tensor(a!)[] self) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_trunc_slow_ |
| CUDA: foreach_tensor_trunc_cuda_ |
| |
| - func: _foreach_addcdiv_.Scalar(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_addcdiv_scalar_slow_ |
| CUDA: foreach_tensor_addcdiv_scalar_cuda_ |
| |
| - func: _foreach_addcmul_.Scalar(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_addcmul_scalar_slow_ |
| CUDA: foreach_tensor_addcmul_scalar_cuda_ |
| |
| - func: _foreach_addcdiv_.ScalarList(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_addcdiv_scalarlist_slow_ |
| CUDA: foreach_tensor_addcdiv_scalarlist_cuda_ |
| |
| - func: _foreach_addcmul_.ScalarList(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> () |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_addcmul_scalarlist_slow_ |
| CUDA: foreach_tensor_addcmul_scalarlist_cuda_ |
| |
| - func: _foreach_addcdiv.Scalar(Tensor[] input, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_addcdiv_scalar_slow |
| CUDA: foreach_tensor_addcdiv_scalar_cuda |
| |
| - func: _foreach_addcmul.Scalar(Tensor[] input, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_addcmul_scalar_slow |
| CUDA: foreach_tensor_addcmul_scalar_cuda |
| |
| - func: _foreach_addcdiv.ScalarList(Tensor[] input, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_addcdiv_scalarlist_slow |
| CUDA: foreach_tensor_addcdiv_scalarlist_cuda |
| |
| - func: _foreach_addcmul.ScalarList(Tensor[] input, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_addcmul_scalarlist_slow |
| CUDA: foreach_tensor_addcmul_scalarlist_cuda |
| |
| - func: _foreach_maximum.List(Tensor[] tensors1, Tensor[] tensors2) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_maximum_slow |
| CUDA: foreach_tensor_maximum_cuda |
| |
| - func: _foreach_minimum.List(Tensor[] tensors1, Tensor[] tensors2) -> Tensor[] |
| variants: function |
| dispatch: |
| CPU: foreach_tensor_minimum_slow |
| CUDA: foreach_tensor_minimum_cuda |
| |
| - func: bucketize.Tensor(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor |
| dispatch: |
| CPU: bucketize_cpu |
| CUDA: bucketize_cuda |
| |
| - func: bucketize.Tensor_out(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: bucketize_out_cpu |
| CUDA: bucketize_out_cuda |
| |
| - func: bucketize.Scalar(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor |
| dispatch: |
| CPU: bucketize_cpu |
| CUDA: bucketize_cuda |
| |
| - func: searchsorted.Tensor(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False) -> Tensor |
| dispatch: |
| CPU: searchsorted_cpu |
| CUDA: searchsorted_cuda |
| |
| - func: searchsorted.Tensor_out(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU: searchsorted_out_cpu |
| CUDA: searchsorted_out_cuda |
| |
| - func: searchsorted.Scalar(Tensor sorted_sequence, Scalar self, *, bool out_int32=False, bool right=False) -> Tensor |
| dispatch: |
| CPU: searchsorted_cpu |
| CUDA: searchsorted_cuda |
| |
| ## NN wrappers |
| |
| - func: mse_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: mse_loss_out |
| |
| - func: mse_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: mse_loss |
| |
| - func: mse_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: mse_loss_backward_out |
| |
| - func: mse_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: mse_loss_backward |
| |
| - func: l1_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: l1_loss_out |
| |
| - func: l1_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: l1_loss |
| |
| - func: l1_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: l1_loss_backward_out |
| |
| - func: l1_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: l1_loss_backward |
| |
| - func: multi_margin_loss.out(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: multi_margin_loss_cpu_out |
| CUDA: legacy::cuda::_thnn_multi_margin_loss_forward_out |
| |
| - func: multi_margin_loss(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: multi_margin_loss_cpu |
| CUDA: legacy::cuda::_thnn_multi_margin_loss_forward |
| |
| - func: multi_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: multi_margin_loss_cpu_backward_out |
| CUDA: legacy::cuda::_thnn_multi_margin_loss_backward_out |
| |
| - func: multi_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: multi_margin_loss_cpu_backward |
| CUDA: legacy::cuda::_thnn_multi_margin_loss_backward |
| |
| - func: multilabel_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| |
| - func: multilabel_margin_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor |
| python_module: nn |
| |
| - func: multilabel_margin_loss_forward.output(Tensor self, Tensor target, int reduction, *, Tensor(a!) output, Tensor(b!) is_target) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| dispatch: |
| CPU: multilabel_margin_loss_forward_out_cpu |
| CUDA: legacy::cuda::_thnn_multilabel_margin_loss_forward_out |
| |
| - func: multilabel_margin_loss_forward(Tensor self, Tensor target, int reduction) -> (Tensor output, Tensor is_target) |
| python_module: nn |
| dispatch: |
| CPU: multilabel_margin_loss_forward_cpu |
| CUDA: legacy::cuda::_thnn_multilabel_margin_loss_forward |
| |
| - func: multilabel_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: multilabel_margin_loss_backward_cpu_out |
| CUDA: legacy::cuda::_thnn_multilabel_margin_loss_backward_out |
| |
| - func: multilabel_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: multilabel_margin_loss_backward_cpu |
| CUDA: legacy::cuda::_thnn_multilabel_margin_loss_backward |
| |
| - func: nll_loss.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| |
| - func: nll_loss_nd(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100) -> Tensor |
| python_module: nn |
| |
| - func: nll_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100) -> Tensor |
| python_module: nn |
| |
| - func: nll_loss_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| dispatch: |
| CPU: nll_loss_forward_out_cpu |
| CUDA: legacy::cuda::_thnn_nll_loss_forward_out |
| |
| - func: nll_loss_forward(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index) -> (Tensor output, Tensor total_weight) |
| python_module: nn |
| dispatch: |
| CPU: nll_loss_forward_cpu |
| CUDA: legacy::cuda::_thnn_nll_loss_forward |
| |
| - func: nll_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: nll_loss_backward_out_cpu |
| CUDA: legacy::cuda::_thnn_nll_loss_backward_out |
| |
| - func: nll_loss_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: nll_loss_backward_cpu |
| CUDA: legacy::cuda::_thnn_nll_loss_backward |
| |
| - func: nll_loss2d.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| |
| - func: nll_loss2d(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100) -> Tensor |
| python_module: nn |
| |
| - func: nll_loss2d_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| dispatch: |
| CPU: nll_loss2d_forward_out_cpu |
| CUDA: legacy::cuda::_thnn_nll_loss2d_forward_out |
| |
| - func: nll_loss2d_forward(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index) -> (Tensor output, Tensor total_weight) |
| python_module: nn |
| dispatch: |
| CPU: nll_loss2d_forward_cpu |
| CUDA: legacy::cuda::_thnn_nll_loss2d_forward |
| |
| - func: nll_loss2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: nll_loss2d_backward_out_cpu |
| CUDA: legacy::cuda::_thnn_nll_loss2d_backward_out |
| |
| - func: nll_loss2d_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: nll_loss2d_backward_cpu |
| CUDA: legacy::cuda::_thnn_nll_loss2d_backward |
| |
| - func: smooth_l1_loss.out(Tensor self, Tensor target, int reduction=Mean, float beta=1.0, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: smooth_l1_loss_out |
| CUDA: smooth_l1_loss_out |
| |
| - func: smooth_l1_loss(Tensor self, Tensor target, int reduction=Mean, float beta=1.0) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: smooth_l1_loss |
| |
| - func: smooth_l1_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, float beta, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: smooth_l1_loss_backward_out |
| CUDA: smooth_l1_loss_backward_out |
| |
| - func: smooth_l1_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, float beta) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: smooth_l1_loss_backward |
| |
| - func: huber_loss.out(Tensor self, Tensor target, int reduction=Mean, float delta=1.0, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: huber_loss_out |
| |
| - func: huber_loss(Tensor self, Tensor target, int reduction=Mean, float delta=1.0) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: huber_loss |
| |
| - func: huber_loss_backward.out(Tensor grad_output, Tensor self, Tensor target, int reduction, float delta, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: huber_loss_backward_out |
| |
| - func: huber_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, float delta) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: huber_loss_backward |
| |
| - func: soft_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: soft_margin_loss_out |
| |
| - func: soft_margin_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: soft_margin_loss |
| |
| - func: soft_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: soft_margin_loss_backward_out |
| |
| - func: soft_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: soft_margin_loss_backward |
| |
| - func: elu.out(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: elu_out |
| |
| - func: elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: elu |
| |
| - func: elu_backward(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, bool is_result, Tensor self_or_result) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: elu_backward |
| |
| - func: elu_(Tensor(a!) self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: elu_ |
| |
| - func: glu.out(Tensor self, int dim=-1, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: glu_out |
| CUDA: legacy::cuda::_thnn_glu_forward_out |
| |
| - func: glu(Tensor self, int dim=-1) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: glu |
| CUDA: legacy::cuda::_thnn_glu_forward |
| |
| - func: glu_backward.grad_input(Tensor grad_output, Tensor self, int dim, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: glu_backward_out |
| CUDA: legacy::cuda::_thnn_glu_backward_out |
| |
| - func: glu_backward(Tensor grad_output, Tensor self, int dim) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: glu_backward |
| CUDA: legacy::cuda::_thnn_glu_backward |
| |
| - func: hardsigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardsigmoid_out |
| |
| - func: hardsigmoid(Tensor self) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardsigmoid |
| QuantizedCPU: hardsigmoid_quantized_cpu |
| |
| - func: hardsigmoid_(Tensor(a!) self) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardsigmoid_ |
| |
| - func: hardsigmoid_backward(Tensor grad_output, Tensor self) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardsigmoid_backward |
| |
| - func: hardtanh.out(Tensor self, Scalar min_val=-1, Scalar max_val=1, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardtanh_out |
| QuantizedCPU: hardtanh_out_quantized_cpu |
| |
| - func: hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardtanh |
| QuantizedCPU: hardtanh_quantized_cpu |
| |
| - func: hardtanh_backward.grad_input(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardtanh_backward_out |
| |
| - func: hardtanh_backward(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardtanh_backward |
| |
| - func: hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardtanh_ |
| QuantizedCPU: hardtanh_quantized_cpu_ |
| |
| - func: hardswish.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardswish_out |
| |
| - func: hardswish(Tensor self) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardswish |
| |
| - func: hardswish_(Tensor(a!) self) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardswish_ |
| |
| - func: hardswish_backward(Tensor grad_output, Tensor self) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: hardswish_backward |
| |
| - func: leaky_relu.out(Tensor self, Scalar negative_slope=0.01, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: leaky_relu_out |
| QuantizedCPU: leaky_relu_out_quantized_cpu |
| |
| - func: leaky_relu(Tensor self, Scalar negative_slope=0.01) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: leaky_relu |
| QuantizedCPU: leaky_relu_quantized_cpu |
| |
| - func: leaky_relu_backward(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: leaky_relu_backward |
| |
| - func: leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: leaky_relu_ |
| QuantizedCPU: leaky_relu_quantized_cpu_ |
| |
| - func: log_sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| |
| - func: log_sigmoid(Tensor self) -> Tensor |
| python_module: nn |
| |
| - func: log_sigmoid_forward.output(Tensor self, *, Tensor(a!) output, Tensor(b!) buffer) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| dispatch: |
| CPU: log_sigmoid_forward_out_cpu |
| CUDA: legacy::cuda::_thnn_log_sigmoid_forward_out |
| |
| - func: log_sigmoid_forward(Tensor self) -> (Tensor output, Tensor buffer) |
| python_module: nn |
| dispatch: |
| CPU: log_sigmoid_forward_cpu |
| CUDA: legacy::cuda::_thnn_log_sigmoid_forward |
| |
| - func: log_sigmoid_backward.grad_input(Tensor grad_output, Tensor self, Tensor buffer, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: log_sigmoid_backward_out_cpu |
| CUDA: legacy::cuda::_thnn_log_sigmoid_backward_out |
| |
| - func: log_sigmoid_backward(Tensor grad_output, Tensor self, Tensor buffer) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: log_sigmoid_backward_cpu |
| CUDA: legacy::cuda::_thnn_log_sigmoid_backward |
| |
| - func: rrelu_with_noise.out(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: rrelu_with_noise_out_cpu |
| CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward_out |
| |
| - func: rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: rrelu_with_noise_cpu |
| CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward |
| |
| - func: rrelu_with_noise_backward(Tensor grad_output, Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, bool self_is_result) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: rrelu_with_noise_backward |
| |
| - func: rrelu_with_noise_(Tensor(a!) self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: rrelu_with_noise_cpu_ |
| CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward_ |
| |
| - func: softplus.out(Tensor self, Scalar beta=1, Scalar threshold=20, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: softplus_out |
| |
| - func: softplus(Tensor self, Scalar beta=1, Scalar threshold=20) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: softplus |
| |
| - func: softplus_backward.grad_input(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: softplus_backward_out |
| |
| - func: softplus_backward(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold, Tensor output) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: softplus_backward |
| |
| - func: softshrink.out(Tensor self, Scalar lambd=0.5, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: softshrink_out |
| |
| - func: softshrink(Tensor self, Scalar lambd=0.5) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: softshrink |
| |
| - func: softshrink_backward.grad_input(Tensor grad_output, Tensor self, Scalar lambd, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: softshrink_backward_out |
| |
| - func: softshrink_backward(Tensor grad_output, Tensor self, Scalar lambd) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: softshrink_backward |
| |
| - func: adaptive_avg_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: adaptive_avg_pool2d_out_cpu |
| MkldnnCPU: mkldnn_adaptive_avg_pool2d_out |
| |
| - func: adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor |
| python_module: nn |
| |
| - func: mkldnn_adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor |
| dispatch: |
| MkldnnCPU: mkldnn_adaptive_avg_pool2d |
| |
| - func: mkldnn_adaptive_avg_pool2d_backward(Tensor grad_output, Tensor self) -> Tensor |
| dispatch: |
| MkldnnCPU: mkldnn_adaptive_avg_pool2d_backward |
| |
| - func: _adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor |
| dispatch: |
| CPU: adaptive_avg_pool2d_cpu |
| CUDA: adaptive_avg_pool2d_cuda |
| QuantizedCPU: adaptive_avg_pool2d_quantized_cpu |
| |
| - func: _adaptive_avg_pool2d_backward(Tensor grad_output, Tensor self) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: adaptive_avg_pool2d_backward_cpu |
| CUDA: adaptive_avg_pool2d_backward_cuda |
| |
| - func: adaptive_avg_pool3d.out(Tensor self, int[3] output_size, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: adaptive_avg_pool3d_out_cpu |
| CUDA: adaptive_avg_pool3d_out_cuda |
| QuantizedCPU: adaptive_avg_pool3d_out_quantized_cpu |
| |
| - func: adaptive_avg_pool3d(Tensor self, int[3] output_size) -> Tensor |
| python_module: nn |
| |
| - func: _adaptive_avg_pool3d(Tensor self, int[3] output_size) -> Tensor |
| dispatch: |
| CPU: adaptive_avg_pool3d_cpu |
| CUDA: adaptive_avg_pool3d_cuda |
| QuantizedCPU: adaptive_avg_pool3d_quantized_cpu |
| |
| - func: adaptive_avg_pool3d_backward.grad_input(Tensor grad_output, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: adaptive_avg_pool3d_backward_out_cpu |
| CUDA: adaptive_avg_pool3d_backward_out_cuda |
| |
| - func: _adaptive_avg_pool3d_backward(Tensor grad_output, Tensor self) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: adaptive_avg_pool3d_backward_cpu |
| CUDA: adaptive_avg_pool3d_backward_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: adaptive_max_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: adaptive_max_pool2d_out_cpu |
| CUDA: adaptive_max_pool2d_out_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor) |
| python_module: nn |
| structured_delegate: adaptive_max_pool2d.out |
| |
| - func: adaptive_max_pool2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: adaptive_max_pool2d_backward_out_cpu |
| CUDA: adaptive_max_pool2d_backward_out_cuda |
| |
| - func: adaptive_max_pool2d_backward(Tensor grad_output, Tensor self, Tensor indices) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: adaptive_max_pool2d_backward_cpu |
| CUDA: adaptive_max_pool2d_backward_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: adaptive_max_pool3d.out(Tensor self, int[3] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: adaptive_max_pool3d_out_cpu |
| CUDA: adaptive_max_pool3d_out_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor) |
| python_module: nn |
| structured_delegate: adaptive_max_pool3d.out |
| |
| - func: adaptive_max_pool3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: adaptive_max_pool3d_backward_out_cpu |
| CUDA: adaptive_max_pool3d_backward_out_cuda |
| |
| - func: adaptive_max_pool3d_backward(Tensor grad_output, Tensor self, Tensor indices) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: adaptive_max_pool3d_backward_cpu |
| CUDA: adaptive_max_pool3d_backward_cuda |
| |
| - func: avg_pool2d.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: avg_pool2d_out_cpu |
| CUDA: avg_pool2d_out_cuda |
| MkldnnCPU: mkldnn_avg_pool2d_out |
| |
| - func: avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: avg_pool2d_cpu |
| CUDA: avg_pool2d_cuda |
| MkldnnCPU: mkldnn_avg_pool2d |
| QuantizedCPU: avg_pool2d_quantized_cpu |
| |
| - func: avg_pool2d_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: avg_pool2d_backward_out_cpu |
| CUDA: avg_pool2d_backward_out_cuda |
| MkldnnCPU: mkldnn_avg_pool2d_backward_out |
| |
| - func: avg_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: avg_pool2d_backward_cpu |
| CUDA: avg_pool2d_backward_cuda |
| MkldnnCPU: mkldnn_avg_pool2d_backward |
| |
| - func: avg_pool3d.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: avg_pool3d_out_cpu |
| CUDA: avg_pool3d_out_cuda |
| MkldnnCPU: mkldnn_avg_pool3d_out |
| |
| - func: avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: avg_pool3d_cpu |
| CUDA: avg_pool3d_cuda |
| MkldnnCPU: mkldnn_avg_pool3d |
| QuantizedCPU: avg_pool3d_quantized_cpu |
| |
| - func: avg_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: avg_pool3d_backward_out_cpu |
| CUDA: avg_pool3d_backward_out_cuda |
| MkldnnCPU: mkldnn_avg_pool3d_backward_out |
| |
| - func: avg_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: avg_pool3d_backward_cpu |
| CUDA: avg_pool3d_backward_cuda |
| MkldnnCPU: mkldnn_avg_pool3d_backward |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: fractional_max_pool2d.output(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: fractional_max_pool2d_out_cpu |
| CUDA: fractional_max_pool2d_out_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: fractional_max_pool2d(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples) -> (Tensor, Tensor) |
| python_module: nn |
| structured_delegate: fractional_max_pool2d.output |
| |
| - func: fractional_max_pool2d_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] output_size, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: fractional_max_pool2d_backward_out_cpu |
| CUDA: fractional_max_pool2d_backward_out_cuda |
| |
| - func: fractional_max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] output_size, Tensor indices) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: fractional_max_pool2d_backward_cpu |
| CUDA: fractional_max_pool2d_backward_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: fractional_max_pool3d.output(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| dispatch: |
| CPU: fractional_max_pool3d_out_cpu |
| CUDA: fractional_max_pool3d_out_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: fractional_max_pool3d(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples) -> (Tensor, Tensor) |
| python_module: nn |
| dispatch: |
| CPU: fractional_max_pool3d_cpu |
| CUDA: fractional_max_pool3d_cuda |
| |
| - func: fractional_max_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: fractional_max_pool3d_backward_out_cpu |
| CUDA: fractional_max_pool3d_backward_out_cuda |
| |
| - func: fractional_max_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: fractional_max_pool3d_backward_cpu |
| CUDA: fractional_max_pool3d_backward_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: max_pool2d_with_indices.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| dispatch: |
| CPU: max_pool2d_with_indices_out_cpu |
| CUDA: max_pool2d_with_indices_out_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor) |
| python_module: nn |
| dispatch: |
| CPU: max_pool2d_with_indices_cpu |
| CUDA: max_pool2d_with_indices_cuda |
| |
| - func: max_pool2d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: max_pool2d_with_indices_backward_out_cpu |
| CUDA: max_pool2d_with_indices_backward_out_cuda |
| |
| - func: max_pool2d_with_indices_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: max_pool2d_with_indices_backward_cpu |
| CUDA: max_pool2d_with_indices_backward_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: max_pool3d_with_indices.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| dispatch: |
| CPU: max_pool3d_with_indices_out_cpu |
| CUDA: max_pool3d_with_indices_out_cuda |
| |
| # Return: (Tensor output, Tensor indices) |
| - func: max_pool3d_with_indices(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor) |
| python_module: nn |
| dispatch: |
| CPU: max_pool3d_with_indices_cpu |
| CUDA: max_pool3d_with_indices_cuda |
| |
| - func: max_pool3d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: max_pool3d_with_indices_backward_out_cpu |
| CUDA: max_pool3d_with_indices_backward_out_cuda |
| |
| - func: max_pool3d_with_indices_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: max_pool3d_with_indices_backward_cpu |
| CUDA: max_pool3d_with_indices_backward_cuda |
| |
| - func: max_unpool2d.out(Tensor self, Tensor indices, int[2] output_size, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: max_unpooling2d_forward_out_cpu |
| CUDA: max_unpooling2d_forward_out_cuda |
| |
| - func: max_unpool2d(Tensor self, Tensor indices, int[2] output_size) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: max_unpooling2d_forward_cpu |
| CUDA: max_unpooling2d_forward_cuda |
| |
| - func: max_unpool2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor indices, int[2] output_size, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: max_unpooling2d_backward_out_cpu |
| CUDA: max_unpooling2d_backward_out_cuda |
| |
| - func: max_unpool2d_backward(Tensor grad_output, Tensor self, Tensor indices, int[2] output_size) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: max_unpooling2d_backward_cpu |
| CUDA: max_unpooling2d_backward_cuda |
| |
| - func: max_unpool3d.out(Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: max_unpooling3d_forward_out_cpu |
| CUDA: max_unpooling3d_forward_out_cuda |
| |
| - func: max_unpool3d(Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: max_unpooling3d_forward_cpu |
| CUDA: max_unpooling3d_forward_cuda |
| |
| - func: max_unpool3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: max_unpooling3d_backward_out_cpu |
| CUDA: max_unpooling3d_backward_out_cuda |
| |
| - func: max_unpool3d_backward(Tensor grad_output, Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: max_unpooling3d_backward_cpu |
| CUDA: max_unpooling3d_backward_cuda |
| |
| - func: reflection_pad1d.out(Tensor self, int[2] padding, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU, QuantizedCPU: reflection_pad1d_out_cpu |
| CUDA: reflection_pad1d_out_cuda |
| |
| - func: reflection_pad1d(Tensor self, int[2] padding) -> Tensor |
| python_module: nn |
| structured_delegate: reflection_pad1d.out |
| dispatch: |
| QuantizedCPU: reflection_pad1d_cpu |
| |
| - func: reflection_pad1d_backward.grad_input(Tensor grad_output, Tensor self, int[2] padding, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: reflection_pad1d_backward_out_cpu |
| CUDA: reflection_pad1d_backward_out_cuda |
| |
| - func: reflection_pad1d_backward(Tensor grad_output, Tensor self, int[2] padding) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: reflection_pad1d_backward_cpu |
| CUDA: reflection_pad1d_backward_cuda |
| |
| - func: reflection_pad2d.out(Tensor self, int[4] padding, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, QuantizedCPU: reflection_pad2d_out_cpu |
| CUDA: reflection_pad2d_out_cuda |
| |
| - func: reflection_pad2d(Tensor self, int[4] padding) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, QuantizedCPU: reflection_pad2d_cpu |
| CUDA: reflection_pad2d_cuda |
| |
| - func: reflection_pad2d_backward.grad_input(Tensor grad_output, Tensor self, int[4] padding, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: reflection_pad2d_backward_out_cpu |
| CUDA: reflection_pad2d_backward_out_cuda |
| |
| - func: reflection_pad2d_backward(Tensor grad_output, Tensor self, int[4] padding) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: reflection_pad2d_backward_cpu |
| CUDA: reflection_pad2d_backward_cuda |
| |
| - func: replication_pad1d.out(Tensor self, int[2] padding, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: replication_pad1d_out_cpu |
| CUDA: replication_pad1d_out_cuda |
| |
| - func: replication_pad1d(Tensor self, int[2] padding) -> Tensor |
| python_module: nn |
| structured_delegate: replication_pad1d.out |
| |
| - func: replication_pad1d_backward.grad_input(Tensor grad_output, Tensor self, int[2] padding, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: replication_pad1d_backward_out_cpu |
| CUDA: replication_pad1d_backward_out_cuda |
| |
| - func: replication_pad1d_backward(Tensor grad_output, Tensor self, int[2] padding) -> Tensor |
| python_module: nn |
| structured_delegate: replication_pad1d_backward.grad_input |
| |
| - func: replication_pad2d.out(Tensor self, int[4] padding, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: replication_pad2d_out_cpu |
| CUDA: replication_pad2d_out_cuda |
| |
| - func: replication_pad2d(Tensor self, int[4] padding) -> Tensor |
| python_module: nn |
| structured_delegate: replication_pad2d.out |
| |
| - func: replication_pad2d_backward.grad_input(Tensor grad_output, Tensor self, int[4] padding, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: replication_pad2d_backward_out_cpu |
| CUDA: replication_pad2d_backward_out_cuda |
| |
| - func: replication_pad2d_backward(Tensor grad_output, Tensor self, int[4] padding) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: replication_pad2d_backward_cpu |
| CUDA: replication_pad2d_backward_cuda |
| |
| - func: replication_pad3d.out(Tensor self, int[6] padding, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: replication_pad3d_out_cpu |
| CUDA: replication_pad3d_out_cuda |
| |
| - func: replication_pad3d(Tensor self, int[6] padding) -> Tensor |
| python_module: nn |
| structured_delegate: replication_pad3d.out |
| |
| - func: replication_pad3d_backward.grad_input(Tensor grad_output, Tensor self, int[6] padding, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: replication_pad3d_backward_out_cpu |
| CUDA: replication_pad3d_backward_out_cuda |
| |
| - func: replication_pad3d_backward(Tensor grad_output, Tensor self, int[6] padding) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: replication_pad3d_backward_cpu |
| CUDA: replication_pad3d_backward_cuda |
| |
| - func: upsample_linear1d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_linear1d |
| |
| - func: upsample_linear1d_backward.vec(Tensor grad_output, int[]? output_size, int[] input_size, bool align_corners, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_linear1d_backward |
| |
| - func: upsample_bilinear2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_bilinear2d |
| |
| - func: upsample_bilinear2d_backward.vec(Tensor grad_output, int[]? output_size, int[] input_size, bool align_corners, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_bilinear2d_backward |
| |
| - func: upsample_trilinear3d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_trilinear3d |
| |
| - func: upsample_trilinear3d_backward.vec(Tensor grad_output, int[]? output_size, int[] input_size, bool align_corners, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_trilinear3d_backward |
| |
| - func: upsample_bicubic2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_bicubic2d |
| |
| - func: upsample_bicubic2d_backward.vec(Tensor grad_output, int[]? output_size, int[] input_size, bool align_corners, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_bicubic2d_backward |
| |
| - func: upsample_nearest1d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_nearest1d |
| |
| - func: upsample_nearest1d_backward.vec(Tensor grad_output, int[]? output_size, int[] input_size, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_nearest1d_backward |
| |
| - func: upsample_nearest2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_nearest2d |
| |
| - func: upsample_nearest2d_backward.vec(Tensor grad_output, int[]? output_size, int[] input_size, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CompositeExplicitAutograd: upsample_nearest2d_backward |
| |
| - func: upsample_nearest3d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: upsample_nearest3d_cpu |
| CUDA: upsample_nearest3d_cuda |
| QuantizedCPU: upsample_nearest3d_quantized_cpu |
| |
| - func: upsample_nearest3d_backward.vec(Tensor grad_output, int[]? output_size, int[] input_size, float[]? scale_factors) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: upsample_nearest3d_backward_cpu |
| CUDA: upsample_nearest3d_backward_cuda |
| |
| # NOTE: all of the non-"vec" upsample overloads are only kept for backward compatibility. |
| - func: upsample_linear1d.out(Tensor self, int[1] output_size, bool align_corners, float? scales=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_linear1d_out_cpu |
| CUDA: upsample_linear1d_out_cuda |
| |
| - func: upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_linear1d.out |
| |
| - func: upsample_linear1d_backward.grad_input(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_linear1d_backward_out_cpu |
| CUDA: upsample_linear1d_backward_out_cuda |
| |
| - func: upsample_linear1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners, float? scales=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_linear1d_backward.grad_input |
| |
| - func: upsample_bilinear2d.out(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_bilinear2d_out_cpu |
| CUDA: upsample_bilinear2d_out_cuda |
| |
| - func: upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_bilinear2d.out |
| dispatch: |
| QuantizedCPU: upsample_bilinear2d_quantized_cpu |
| |
| - func: upsample_bilinear2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_bilinear2d_backward_out_cpu |
| CUDA: upsample_bilinear2d_backward_out_cuda |
| |
| - func: upsample_bilinear2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_bilinear2d_backward.grad_input |
| |
| - func: upsample_bicubic2d.out(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_bicubic2d_out_cpu |
| CUDA: upsample_bicubic2d_out_cuda |
| |
| - func: upsample_bicubic2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_bicubic2d.out |
| |
| - func: upsample_bicubic2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_bicubic2d_backward_out_cpu |
| CUDA: upsample_bicubic2d_backward_out_cuda |
| |
| - func: upsample_bicubic2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_bicubic2d_backward.grad_input |
| |
| - func: upsample_trilinear3d.out(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_trilinear3d_out_cpu |
| CUDA: upsample_trilinear3d_out_cuda |
| |
| - func: upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_trilinear3d.out |
| |
| - func: upsample_trilinear3d_backward.grad_input(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_trilinear3d_backward_out_cpu |
| CUDA: upsample_trilinear3d_backward_out_cuda |
| |
| - func: upsample_trilinear3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_trilinear3d_backward.grad_input |
| |
| - func: upsample_nearest1d.out(Tensor self, int[1] output_size, float? scales=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_nearest1d_out_cpu |
| CUDA: upsample_nearest1d_out_cuda |
| |
| - func: upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_nearest1d.out |
| |
| - func: upsample_nearest1d_backward.grad_input(Tensor grad_output, int[1] output_size, int[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_nearest1d_backward_out_cpu |
| CUDA: upsample_nearest1d_backward_out_cuda |
| |
| - func: upsample_nearest1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, float? scales=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_nearest1d_backward.grad_input |
| |
| - func: upsample_nearest2d.out(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_nearest2d_out_cpu |
| CUDA: upsample_nearest2d_out_cuda |
| |
| - func: upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_nearest2d.out |
| dispatch: |
| QuantizedCPU: upsample_nearest2d_quantized_cpu |
| |
| - func: upsample_nearest2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_nearest2d_backward_out_cpu |
| CUDA: upsample_nearest2d_backward_out_cuda |
| |
| - func: upsample_nearest2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_nearest2d_backward.grad_input |
| |
| - func: upsample_nearest3d.out(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_nearest3d_out_cpu |
| CUDA: upsample_nearest3d_out_cuda |
| |
| - func: upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_nearest3d.out |
| dispatch: |
| QuantizedCPU: upsample_nearest3d_quantized_cpu |
| |
| - func: upsample_nearest3d_backward.grad_input(Tensor grad_output, int[3] output_size, int[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| structured: True |
| dispatch: |
| CPU: upsample_nearest3d_backward_out_cpu |
| CUDA: upsample_nearest3d_backward_out_cuda |
| |
| - func: upsample_nearest3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor |
| python_module: nn |
| structured_delegate: upsample_nearest3d_backward.grad_input |
| |
| - func: sigmoid_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: sigmoid_backward_out |
| |
| - func: sigmoid_backward(Tensor grad_output, Tensor output) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: sigmoid_backward |
| |
| - func: logit_backward.grad_input(Tensor grad_output, Tensor self, float? eps=None, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: logit_backward_out |
| |
| - func: logit_backward(Tensor grad_output, Tensor self, float? eps=None) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: logit_backward |
| |
| - func: tanh_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU, CUDA: tanh_backward_out |
| |
| - func: tanh_backward(Tensor grad_output, Tensor output) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU, CUDA: tanh_backward |
| |
| # What's a thnn_conv_ versus a slow_conv_? |
| # |
| # Historically, we have inefficient implementations of convolutions |
| # coming from the THNN/THCUNN library. These convolutions typically |
| # operated by computing the Toeplitz matrix and then doing a matrix |
| # multiply with the input; this is very memory inefficient! However, |
| # occasionally, we really don't have anything better, so it's helpful |
| # to have these fallbacks when there is no more optimized implementation |
| # in cudnn or mkldnn, etc. Both thnn_ and slow_ convolutions fall |
| # into this bucket. |
| # |
| # The difference between these two designations, is that thnn_ refers |
| # to a convolution that is still written in the "legacy" style; that is, |
| # C code in the THNN/ or THCUNN/ directory. A slow_ convolution is |
| # one that is written in the native style: modern C++. Algorithmically, |
| # these are the same thing, but we give them different prefixes to |
| # make the operational distinction clear. |
| |
| - func: slow_conv_transpose2d.out(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] output_padding=0, int[2] dilation=1, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_transpose2d_out_cpu |
| CUDA: slow_conv_transpose2d_out_cuda |
| |
| - func: slow_conv_transpose2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] output_padding=0, int[2] dilation=1) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_transpose2d_cpu |
| CUDA: slow_conv_transpose2d_cuda |
| |
| - func: slow_conv_transpose2d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_transpose2d_backward_out_cpu |
| CUDA: slow_conv_transpose2d_backward_out_cuda |
| |
| - func: slow_conv_transpose2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_transpose2d_backward_cpu |
| CUDA: slow_conv_transpose2d_backward_cuda |
| |
| - func: slow_conv_transpose3d.out(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] output_padding=0, int[3] dilation=1, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_transpose3d_out_cpu |
| CUDA: slow_conv_transpose3d_out_cuda |
| |
| - func: slow_conv_transpose3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] output_padding=0, int[3] dilation=1) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_transpose3d_cpu |
| CUDA: slow_conv_transpose3d_cuda |
| |
| - func: slow_conv_transpose3d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_transpose3d_backward_out_cpu |
| CUDA: slow_conv_transpose3d_backward_out_cuda |
| |
| - func: slow_conv_transpose3d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_transpose3d_backward_cpu |
| CUDA: slow_conv_transpose3d_backward_cuda |
| |
| - func: thnn_conv2d.out(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| |
| - func: thnn_conv2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0) -> Tensor |
| python_module: nn |
| |
| - func: thnn_conv2d_forward.output(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, *, Tensor(a!) output, Tensor(b!) finput, Tensor(c!) fgrad_input) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv2d_forward_out_cpu |
| CUDA: legacy::cuda::_thnn_conv2d_forward_out |
| |
| - func: thnn_conv2d_forward(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding) -> (Tensor output, Tensor finput, Tensor fgrad_input) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv2d_forward_cpu |
| CUDA: legacy::cuda::_thnn_conv2d_forward |
| |
| - func: thnn_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv2d_backward_out_cpu |
| CUDA: slow_conv2d_backward_out_cuda |
| |
| - func: thnn_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv2d_backward_cpu |
| CUDA: slow_conv2d_backward_cuda |
| |
| - func: thnn_conv_depthwise2d.out(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| |
| - func: thnn_conv_depthwise2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1) -> Tensor |
| python_module: nn |
| |
| - func: thnn_conv_depthwise2d_forward.out(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, int[2] dilation, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CUDA: legacy::cuda::_thnn_conv_depthwise2d_forward_out |
| |
| - func: thnn_conv_depthwise2d_forward(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, int[2] dilation) -> Tensor |
| python_module: nn |
| dispatch: |
| CUDA: legacy::cuda::_thnn_conv_depthwise2d_forward |
| |
| - func: thnn_conv_depthwise2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, *, Tensor(a!) grad_input, Tensor(b!) grad_weight) -> (Tensor(a!), Tensor(b!)) |
| python_module: nn |
| dispatch: |
| CUDA: thnn_conv_depthwise2d_backward_out |
| |
| - func: thnn_conv_depthwise2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool[2] output_mask) -> (Tensor grad_input, Tensor grad_weight) |
| python_module: nn |
| dispatch: |
| CUDA: thnn_conv_depthwise2d_backward |
| |
| - func: conv_depthwise3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding, int[3] dilation) -> Tensor |
| python_module: nn |
| dispatch: |
| CUDA: conv_depthwise3d_cuda |
| |
| - func: conv_depthwise3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| python_module: nn |
| dispatch: |
| CUDA: conv_depthwise3d_backward_cuda_out |
| |
| - func: conv_depthwise3d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) |
| python_module: nn |
| dispatch: |
| CUDA: conv_depthwise3d_backward_cuda |
| |
| - func: slow_conv3d.out(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=1, int[3] padding=0, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| |
| - func: slow_conv3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=1, int[3] padding=0) -> Tensor |
| python_module: nn |
| |
| - func: slow_conv3d_forward.output(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding, *, Tensor(a!) output, Tensor(b!) finput, Tensor(c!) fgrad_input) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv3d_forward_out_cpu |
| |
| - func: slow_conv3d_forward(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding) -> (Tensor output, Tensor finput, Tensor fgrad_input) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv3d_forward_cpu |
| |
| - func: slow_conv3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, Tensor finput, Tensor fgrad_input, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv3d_backward_out_cpu |
| |
| - func: slow_conv3d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv3d_backward_cpu |
| |
| - func: slow_conv_dilated2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_dilated2d_cpu |
| CUDA: slow_conv_dilated2d_cuda |
| |
| - func: slow_conv_dilated2d_backward(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_dilated2d_backward_cpu |
| CUDA: slow_conv_dilated2d_backward_cuda |
| |
| - func: slow_conv_dilated3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] dilation=1) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_dilated3d_cpu |
| CUDA: slow_conv_dilated3d_cuda |
| |
| - func: slow_conv_dilated3d_backward(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) |
| python_module: nn |
| dispatch: |
| CPU: slow_conv_dilated3d_backward_cpu |
| CUDA: slow_conv_dilated3d_backward_cuda |
| |
| - func: col2im.out(Tensor self, int[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: col2im_out_cpu |
| CUDA: col2im_out_cuda |
| |
| - func: col2im(Tensor self, int[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: col2im_cpu |
| CUDA: col2im_cuda |
| |
| - func: col2im_backward.grad_input(Tensor grad_output, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: col2im_backward_out_cpu |
| CUDA: col2im_backward_out_cuda |
| |
| - func: col2im_backward(Tensor grad_output, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: col2im_backward_cpu |
| CUDA: col2im_backward_cuda |
| |
| - func: column_stack(Tensor[] tensors) -> Tensor |
| |
| - func: column_stack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: im2col.out(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: im2col_out_cpu |
| CUDA: im2col_out_cuda |
| |
| - func: im2col(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: im2col_cpu |
| CUDA: im2col_cuda |
| |
| - func: im2col_backward.grad_input(Tensor grad_output, int[2] input_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) grad_input) -> Tensor(a!) |
| python_module: nn |
| dispatch: |
| CPU: im2col_backward_out_cpu |
| CUDA: im2col_backward_out_cuda |
| |
| - func: im2col_backward(Tensor grad_output, int[2] input_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: im2col_backward_cpu |
| CUDA: im2col_backward_cuda |
| |
| - func: isfinite(Tensor self) -> Tensor |
| variants: function, method |
| device_guard: False |
| |
| - func: isinf(Tensor self) -> Tensor |
| variants: function, method |
| device_guard: False |
| |
| - func: record_stream(Tensor(a!) self, Stream s) -> () |
| variants: method |
| dispatch: |
| CUDA: record_stream_cuda |
| |
| - func: isposinf(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: isposinf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: isposinf_out |
| |
| - func: isneginf(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: isneginf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CPU, CUDA: isneginf_out |
| |
| # NOTE [_add_batch_dim and _remove_batch_dim] |
| # _add_batch_dim and _remove_batch_dim are meant to be used in the implementation |
| # of the vmap frontend API (see torch/_vmap_internals.py). They are not |
| # user-facing, hence the leading underscore. Please don't use them them anywhere else. |
| - func: _add_batch_dim(Tensor self, int batch_dim, int level) -> Tensor |
| variants: function |
| |
| # See NOTE [_add_batch_dim and _remove_batch_dim] |
| - func: _remove_batch_dim(Tensor self, int level, int batch_size, int out_dim) -> Tensor |
| variants: function |
| |
| ## Functions related to the `torch.special` namespace |
| # Note [special namespace binding] |
| # Functions in the special python module should have their names start with |
| # "special_" underscore and be bound to the desired Python name in |
| # torch/special/__init__.py, and the desired C++ name in torch/csrc/api/include/torch/special.h. |
| # The "special_" names should be hidden from the user and not documented. |
| |
| - func: special_entr(Tensor self) -> Tensor |
| structured_delegate: special_entr.out |
| python_module: special |
| variants: function |
| |
| - func: special_entr.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| structured: True |
| structured_inherits: TensorIteratorBase |
| python_module: special |
| variants: function |
| dispatch: |
| CPU, CUDA: special_entr_out |
| |
| - func: special_expm1(Tensor self) -> Tensor |
| python_module: special |
| variants: function |
| |
| - func: special_expm1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: special |
| variants: function |
| |
| - func: special_exp2(Tensor self) -> Tensor |
| python_module: special |
| variants: function |
| |
| - func: special_exp2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: special |
| variants: function |
| |
| - func: special_gammaln(Tensor self) -> Tensor |
| python_module: special |
| variants: function |
| |
| - func: special_gammaln.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: special |
| variants: function |
| |
| - func: special_erf(Tensor self) -> Tensor |
| python_module: special |
| variants: function |
| |
| - func: special_erf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: special |
| variants: function |
| |
| - func: special_erfc(Tensor self) -> Tensor |
| python_module: special |
| variants: function |
| |
| - func: special_erfc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: special |
| |
| - func: special_erfinv(Tensor self) -> Tensor |
| python_module: special |
| variants: function |
| |
| - func: special_erfinv.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: special |
| |
| - func: special_i0e(Tensor self) -> Tensor |
| python_module: special |
| variants: function |
| structured_delegate: special_i0e.out |
| |
| - func: special_i0e.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: special |
| structured: True |
| structured_inherits: TensorIteratorBase |
| dispatch: |
| CPU, CUDA: special_i0e_out |
| |
| - func: special_logit(Tensor self, float? eps=None) -> Tensor |
| python_module: special |
| variants: function |
| |
| - func: special_logit.out(Tensor self, float? eps=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: special |
| |
| - func: special_expit(Tensor self) -> Tensor |
| python_module: special |
| variants: function |
| |
| - func: special_expit.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: special |
| variants: function |
| |
| ## Functions related to the fast Fourier transform and the torch.fft namespace |
| # Note [FFT namespace binding] |
| # Functions in the fft python module should have their names start with |
| # "fft_" underscore and be bound to the desired Python name in |
| # torch/fft/__init__.py, and the desired C++ name in torch/csrc/api/include/torch/fft.h. |
| # The "fft_" names should be hidden from the user and not documented. |
| # |
| # See fft_fft as an example. |
| |
| # torch.fft.fft |
| # NOTE: NOT an alias for torch.fft, which has different semantics |
| - func: fft_fft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_fft.out(Tensor self, int? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_ifft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_ifft.out(Tensor self, int? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_rfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_rfft.out(Tensor self, int? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_irfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_irfft.out(Tensor self, int? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_hfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_hfft.out(Tensor self, int? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_ihfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_ihfft.out(Tensor self, int? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_fft2(Tensor self, int[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_fft2.out(Tensor self, int[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_ifft2(Tensor self, int[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_ifft2.out(Tensor self, int[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_rfft2(Tensor self, int[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_rfft2.out(Tensor self, int[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_irfft2(Tensor self, int[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_irfft2.out(Tensor self, int[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_fftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_fftn.out(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_ifftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_ifftn.out(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_rfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_rfftn.out(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_irfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_irfftn.out(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_fftfreq(int n, float d=1.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_fftfreq.out(int n, float d=1.0, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_rfftfreq(int n, float d=1.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_rfftfreq.out(int n, float d=1.0, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: fft |
| variants: function |
| |
| - func: fft_fftshift(Tensor self, int[1]? dim=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| - func: fft_ifftshift(Tensor self, int[1]? dim=None) -> Tensor |
| python_module: fft |
| variants: function |
| |
| ## Functions for linear algebra and the torch.linalg namespace |
| # Note [linalg namespace binding] |
| # Functions in the linalg python module should have their names start with |
| # "linalg_" and be bound to the desired Python name in |
| # torch/linalg/__init__.py, and the desired C++ name in torch/csrc/api/include/torch/linalg.h. |
| # The "linalg_" names should be hidden from the user and not documented. |
| # |
| # See linalg_det as an example. |
| |
| - func: linalg_cholesky(Tensor self) -> Tensor |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_cholesky |
| |
| - func: linalg_cholesky.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_cholesky_out |
| |
| - func: linalg_det(Tensor self) -> Tensor |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_det |
| |
| - func: linalg_det.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| dispatch: |
| CompositeExplicitAutograd: linalg_det_out |
| |
| # torch.det, alias for torch.linalg.det |
| - func: det(Tensor self) -> Tensor |
| variants: function, method |
| |
| - func: linalg_lstsq(Tensor self, Tensor b, float? cond=None, *, str? driver=None) -> (Tensor solution, Tensor residuals, Tensor rank, Tensor singular_values) |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_lstsq |
| |
| - func: linalg_lstsq.out(Tensor self, Tensor b, float? cond=None, *, str? driver=None, Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values) -> (Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values) |
| python_module: linalg |
| variants: function |
| dispatch: |
| CPU, CUDA: linalg_lstsq_out |
| |
| - func: _lstsq_helper_(Tensor(a!) self, Tensor(b!) rank, Tensor(c!) singular_values, Tensor(d!) infos, Tensor a, float cond, str driver_name) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: _lstsq_helper_cpu |
| CUDA: _lstsq_helper_cuda |
| |
| - func: linalg_slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet) |
| python_module: linalg |
| variants: function |
| dispatch: |
| CPU, CUDA: linalg_slogdet |
| |
| - func: linalg_slogdet.out(Tensor self, *, Tensor(a!) sign, Tensor(b!) logabsdet) -> (Tensor(a!) sign, Tensor(b!) logabsdet) |
| python_module: linalg |
| dispatch: |
| CPU, CUDA: linalg_slogdet_out |
| |
| - func: linalg_eig(Tensor self) -> (Tensor eigenvalues, Tensor eigenvectors) |
| python_module: linalg |
| variants: function |
| dispatch: |
| CPU, CUDA: linalg_eig |
| |
| - func: linalg_eig.out(Tensor self, *, Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) |
| python_module: linalg |
| dispatch: |
| CPU, CUDA: linalg_eig_out |
| |
| - func: linalg_eigvals(Tensor self) -> Tensor |
| python_module: linalg |
| variants: function |
| dispatch: |
| CPU, CUDA: linalg_eigvals |
| |
| - func: linalg_eigvals.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| dispatch: |
| CPU, CUDA: linalg_eigvals_out |
| |
| - func: linalg_eigh(Tensor self, str UPLO="L") -> (Tensor eigenvalues, Tensor eigenvectors) |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_eigh |
| |
| - func: linalg_eigh.eigvals(Tensor self, str UPLO="L", *, Tensor(a!) eigvals, Tensor(b!) eigvecs) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) |
| python_module: linalg |
| dispatch: |
| CompositeExplicitAutograd: linalg_eigh_out |
| |
| - func: linalg_eigvalsh(Tensor self, str UPLO="L") -> Tensor |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_eigvalsh |
| |
| - func: linalg_eigvalsh.out(Tensor self, str UPLO='L', *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| dispatch: |
| CompositeExplicitAutograd: linalg_eigvalsh_out |
| |
| - func: linalg_householder_product(Tensor input, Tensor tau) -> Tensor |
| python_module: linalg |
| variants: function |
| dispatch: |
| CPU, CUDA: linalg_householder_product |
| |
| - func: linalg_householder_product.out(Tensor input, Tensor tau, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| dispatch: |
| CPU, CUDA: linalg_householder_product_out |
| |
| - func: _linalg_inv_out_helper_(Tensor(a!) self, Tensor(b!) infos_lu, Tensor(c!) infos_getri) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: _linalg_inv_out_helper_cpu |
| CUDA: _linalg_inv_out_helper_cuda |
| |
| - func: linalg_inv(Tensor self) -> Tensor |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_inv |
| |
| - func: linalg_inv.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_inv_out |
| |
| - func: inner(Tensor self, Tensor other) -> Tensor |
| variants: function, method |
| |
| - func: inner.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| |
| # torch.outer, alias for torch.ger |
| - func: outer(Tensor self, Tensor vec2) -> Tensor |
| variants: function, method |
| |
| - func: outer.out(Tensor self, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!) |
| |
| - func: ger(Tensor self, Tensor vec2) -> Tensor |
| variants: function, method |
| dispatch: |
| CompositeExplicitAutograd: ger |
| |
| - func: ger.out(Tensor self, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!) |
| dispatch: |
| CompositeExplicitAutograd: ger_out |
| |
| - func: linalg_norm(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_norm.ord_str(Tensor self, str ord, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_norm.out(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_norm.ord_str_out(Tensor self, str ord, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_vector_norm(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor |
| python_module: linalg |
| variants: function |
| dispatch: |
| CPU, CUDA: linalg_vector_norm |
| |
| - func: linalg_vector_norm.out(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| dispatch: |
| CPU, CUDA: linalg_vector_norm_out |
| |
| - func: linalg_svd.U(Tensor self, bool full_matrices=True, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) |
| python_module: linalg |
| |
| - func: linalg_svd(Tensor self, bool full_matrices=True, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor V) |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_svdvals(Tensor input) -> Tensor |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_svdvals.out(Tensor input, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_cond(Tensor self, Scalar? p=None) -> Tensor |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_cond.out(Tensor self, Scalar? p=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_cond.p_str(Tensor self, str p) -> Tensor |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_cond.p_str_out(Tensor self, str p, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_pinv(Tensor self, float rcond=1e-15, bool hermitian=False) -> Tensor |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_pinv.rcond_tensor(Tensor self, Tensor rcond, bool hermitian=False) -> Tensor |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_pinv.out(Tensor self, float rcond=1e-15, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_pinv.out_rcond_tensor(Tensor self, Tensor rcond, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| |
| - func: _linalg_solve_out_helper_(Tensor(a!) self, Tensor(b!) other, Tensor(c!) infos) -> Tensor(a!) |
| variants: function |
| dispatch: |
| CPU: _linalg_solve_out_helper_cpu |
| CUDA: _linalg_solve_out_helper_cuda |
| |
| - func: linalg_solve(Tensor input, Tensor other) -> Tensor |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_solve |
| |
| - func: linalg_solve.out(Tensor input, Tensor other, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| dispatch: |
| CompositeExplicitAutograd: linalg_solve_out |
| |
| - func: linalg_tensorinv(Tensor self, int ind=2) -> Tensor |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_tensorinv.out(Tensor self, int ind=2, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_tensorsolve(Tensor self, Tensor other, int[]? dims=None) -> Tensor |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_tensorsolve.out(Tensor self, Tensor other, int[]? dims=None, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_qr(Tensor self, str mode='reduced') -> (Tensor Q, Tensor R) |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_qr |
| |
| - func: linalg_qr.out(Tensor self, str mode='reduced', *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R) |
| python_module: linalg |
| variants: function |
| dispatch: |
| CompositeExplicitAutograd: linalg_qr_out |
| |
| - func: _linalg_qr_helper(Tensor self, str mode) -> (Tensor, Tensor) |
| variants: function |
| dispatch: |
| CPU: _linalg_qr_helper_cpu |
| CUDA: _linalg_qr_helper_cuda |
| |
| - func: linalg_matrix_power(Tensor self, int n) -> Tensor |
| python_module: linalg |
| |
| - func: linalg_matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| |
| - func: linalg_matrix_rank(Tensor self, float? tol=None, bool hermitian=False) -> Tensor |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_matrix_rank.out(Tensor self, float? tol=None, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| variants: function |
| |
| - func: linalg_multi_dot(Tensor[] tensors) -> Tensor |
| python_module: linalg |
| |
| - func: linalg_multi_dot.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) |
| python_module: linalg |
| |
| ## Functions that are only for testing |
| # It is undocumented and should not be used outside of tests. |
| - func: _test_serialization_subcmul(Tensor self, Tensor other, Scalar alpha=1) -> Tensor |
| |
| # Note: this function is only for testing. |
| - func: _test_optional_intlist(Tensor values, int[]? addends) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: _test_optional_intlist |
| |
| # Note: this function is only for testing. |
| - func: _test_optional_filled_intlist(Tensor values, int[2]? addends) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: _test_optional_intlist |
| |
| # Note: this function is only for testing. |
| - func: _test_optional_floatlist(Tensor values, float[]? addends) -> Tensor |
| python_module: nn |
| dispatch: |
| CPU: _test_optional_floatlist |
| |
| # Note: this function is only for testing. |
| - func: _test_string_default(Tensor dummy, str a="\"'\\", str b='"\'\\') -> Tensor |
| python_module: nn |
| |
| # Note: this function is only for testing. |
| - func: _test_ambiguous_defaults.a(Tensor dummy, int a=1, int b=1) -> Tensor |
| python_module: nn |
| |
| # Note: this function is only for testing. |
| - func: _test_ambiguous_defaults.b(Tensor dummy, int a=2, str b="2") -> Tensor |
| cpp_no_default_args: ['a', 'b'] |
| python_module: nn |
| |
| - func: segment_reduce(Tensor data, str reduce, *, Tensor? lengths=None, Tensor? indices=None, int axis=0, bool unsafe=False) -> Tensor |
| variants: function |
| dispatch: |
| CPU: _segment_reduce_cpu |