| #include <ATen/NativeFunctions.h> |
| #include <ATen/cuda/CUDAApplyUtils.cuh> |
| #include <ATen/Dispatch.h> |
| #include <ATen/ExpandUtils.h> |
| #include <ATen/native/cuda/Loops.cuh> |
| #include <ATen/native/TensorIterator.h> |
| |
| namespace { |
| |
| inline void lerp_cuda(at::Tensor& ret, const at::Tensor& self, const at::Tensor& end, const at::Tensor& weights) { |
| TORCH_CHECK(self.dtype() == end.dtype(), "expected dtype ", self.dtype(), " for `end` but got dtype ", end.dtype()); |
| TORCH_CHECK(self.dtype() == weights.dtype(), "expected dtype ", self.dtype(), " for `weights` but got dtype ", weights.dtype()); |
| at::TensorIterator iter = at::TensorIteratorConfig() |
| .add_output(ret) |
| .add_input(self) |
| .add_input(end) |
| .add_input(weights) |
| .build(); |
| AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND1( |
| at::ScalarType::Half, iter.common_dtype(), "lerp_cuda", [&] { |
| at::native::gpu_kernel( |
| iter, |
| [] GPU_LAMBDA( |
| scalar_t self_val, |
| scalar_t end_val, |
| scalar_t weight_val) -> scalar_t { |
| return (std::abs(weight_val) < 0.5) |
| ? self_val + weight_val * (end_val - self_val) |
| : end_val - |
| (end_val - self_val) * |
| (static_cast<scalar_t>(1) - weight_val); |
| }); |
| }); |
| } |
| |
| inline void lerp_scalar_cuda(at::Tensor& ret, const at::Tensor& self, const at::Tensor& end, const c10::Scalar& weight) { |
| TORCH_CHECK(self.dtype() == end.dtype(), "expected dtype ", self.dtype(), " for `end` but got dtype ", end.dtype()); |
| at::TensorIterator iter = at::TensorIteratorConfig() |
| .add_output(ret) |
| .add_input(self) |
| .add_input(end) |
| .build(); |
| AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND1(at::ScalarType::Half, self.scalar_type(), "lerp_cuda", [&]{ |
| auto weight_val = weight.to<scalar_t>(); |
| at::native::gpu_kernel( |
| iter, [=] GPU_LAMBDA(scalar_t self_val, scalar_t end_val) { |
| return (std::abs(weight_val) < 0.5) |
| ? self_val + weight_val * (end_val - self_val) |
| : end_val - |
| (end_val - self_val) * (static_cast<scalar_t>(1) - weight_val); |
| }); |
| }); |
| } |
| |
| } // anonymous namespace |
| |
| namespace at { |
| namespace native { |
| |
| Tensor& lerp_cuda_tensor_out(const Tensor& self, |
| const Tensor& end, const Tensor& weight, Tensor& result) { |
| c10::MaybeOwned<Tensor> b_self, b_end, b_weight; |
| std::tie(b_self, b_end, b_weight) = expand_outplace(self, end, weight, "lerp_out_cuda"); |
| lerp_cuda(result, *b_self, *b_end, *b_weight); |
| return result; |
| } |
| |
| Tensor& lerp_cuda_scalar_out(const Tensor& self, |
| const Tensor& end, const Scalar& weight, Tensor& result) { |
| c10::MaybeOwned<Tensor> b_self, b_end; |
| std::tie(b_self, b_end) = expand_outplace(self, end, "lerp_out_cuda"); |
| lerp_scalar_cuda(result, *b_self, *b_end, weight); |
| return result; |
| } |
| |
| Tensor& lerp_cuda_tensor_(Tensor& self, const Tensor& end, const Tensor& weight) { |
| c10::MaybeOwned<Tensor> b_self, b_end, b_weight; |
| std::tie(b_self, b_end, b_weight) = expand_outplace(self, end, weight, "lerp__cuda"); |
| TORCH_CHECK(b_self->sizes() == self.sizes(), |
| "output with shape ", self.sizes(), |
| " doesn't match the broadcast shape ", b_self->sizes()); |
| lerp_cuda(self, *b_self, *b_end, *b_weight); |
| return self; |
| } |
| |
| Tensor& lerp_cuda_scalar_(Tensor& self, const Tensor& end, const Scalar& weight) { |
| c10::MaybeOwned<Tensor> b_self, b_end; |
| std::tie(b_self, b_end) = expand_outplace(self, end, "lerp__cuda"); |
| TORCH_CHECK(b_self->sizes() == self.sizes(), |
| "output with shape ", self.sizes(), |
| " doesn't match the broadcast shape ", b_self->sizes()); |
| lerp_scalar_cuda(self, *b_self, *b_end, weight); |
| return self; |
| } |
| |
| Tensor lerp_cuda_tensor(const Tensor& self, const Tensor& end, const Tensor& weight) { |
| c10::MaybeOwned<Tensor> b_self, b_end, b_weight; |
| std::tie(b_self, b_end, b_weight) = expand_outplace(self, end, weight, "lerp_cuda"); |
| Tensor result = at::empty_like(*b_self, b_self->suggest_memory_format()); |
| lerp_cuda(result, *b_self, *b_end, *b_weight); |
| return result; |
| } |
| |
| Tensor lerp_cuda_scalar(const Tensor& self, const Tensor& end, const Scalar& weight) { |
| c10::MaybeOwned<Tensor> b_self, b_end; |
| std::tie(b_self, b_end) = expand_outplace(self, end, "lerp_cuda"); |
| Tensor result = at::empty_like(*b_self, b_self->suggest_memory_format()); |
| lerp_scalar_cuda(result, *b_self, *b_end, weight); |
| return result; |
| } |
| |
| } // namespace native |
| } // namespace at |