blob: a68fd02c8803077f99e37240666e612117e7eb89 [file] [log] [blame]
#pragma once
#include <Python.h>
#include <vector>
#include <utility>
#include <memory>
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/autograd/saved_variable.h"
#include "torch/csrc/utils/object_ptr.h"
// (class, gpu id, sizes)
using output_info_type = std::tuple<PyObject *, int, std::vector<int64_t>>;
namespace torch { namespace jit { struct Graph; }}
namespace torch { namespace autograd {
// A Function which is implemented by a Python object (i.e., a THPFunction).
// Calls to 'apply' are forwarded to the Python method implementation.
struct PyFunction : public Function {
PyFunction(PyObject* obj) : obj(obj) {}
virtual variable_list apply(const variable_list& inputs) override;
variable_list legacy_apply(const variable_list& inputs);
virtual void releaseVariables() override;
virtual std::string name() override;
virtual std::shared_ptr<Function> getSharedPtr() override;
virtual bool is_traceable() override;
// THPFunction this Function is wrapping.
PyObject* obj;
};
/**
* Cast an object into a tuple, if it is not a tuple already. Returns true
* if the original object was not a tuple.
*/
inline bool ensure_tuple(THPObjectPtr& obj) {
if (PyTuple_Check(obj.get()))
return false;
PyObject *tuple = PyTuple_New(1);
if (!tuple) throw python_error();
PyTuple_SET_ITEM(tuple, 0, obj.release());
obj = tuple;
return true;
}
}} // namespace torch::autograd
struct THPFunction {
PyObject_HEAD
PyObject *needs_input_grad;
// Python tuple of tensors whose variables we should save. Set
// by Python with 'save_for_backward'. If NULL, no tensors were
// saved.
PyObject *to_save;
// Python pairs of distinct tensors which share storage. Set by
// Python with 'mark_shared_storage'. If NULL, no tensors share
// storage.
PyObject *shared_pairs;
// Python tuple of tensors which are not differentiable. Set by
// Python with 'mark_non_differentiable'. If NULL, no tensors were
// non-differentiable.
PyObject *non_differentiable;
// Python tuple of tensors which had inplace updates in the forward()
// pass. Set by Python with 'mark_dirty'. If NULL, no tensors were
// modified inplace.
PyObject *dirty_tensors;
std::vector<output_info_type> *output_info;
std::vector<torch::autograd::SavedVariable> *saved_variables;
// For each input, true if the input is a THPVariable
std::vector<bool> *is_variable_input;
char has_freed_buffers;
char is_traced;
// The C++ wrapper for this Python function.
// See a comment in THPFunction_asFunction for details about this field.
torch::autograd::PyFunction cdata;
};
bool THPFunction_initModule(PyObject *module);
extern PyTypeObject THPFunctionType;
extern PyObject *THPFunctionClass;
extern PyObject *THPStochasticFunctionClass;
extern PyObject *THPBatchNormBackwardBackwardFunction; // Temporarily here until we move it to C++
// XXX: this function requires the GIL (it can have side effects).
std::shared_ptr<torch::autograd::PyFunction> THPFunction_asFunction(THPFunction* self);
inline bool THPFunction_Check(PyObject* obj) {
return PyObject_IsInstance(obj, (PyObject*)&THPFunctionType);
}