blob: 6613a0aa5655d6ca7a48902b1a9519225687c6ad [file] [log] [blame]
#include "caffe2/operators/arg_ops.h"
#include <limits>
#include <cub/block/block_reduce.cuh>
#include <cub/cub.cuh>
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
namespace caffe2 {
namespace {
template <typename T>
using KeyValuePair = cub::KeyValuePair<TIndex, T>;
template <typename T>
using BlockReduce = cub::BlockReduce<KeyValuePair<T>, CAFFE_CUDA_NUM_THREADS>;
template <typename T, class Reducer>
__global__ void ComputeArgCUDAKernel(
const TIndex outer_size,
const TIndex inner_size,
const TIndex stride,
const Reducer reducer,
const T init,
const T* X,
TIndex* Y) {
__shared__ typename BlockReduce<T>::TempStorage temp_storage;
for (TIndex idx = blockIdx.x; idx < outer_size; idx += gridDim.x) {
const TIndex i = idx / stride;
const TIndex j = idx % stride;
KeyValuePair<T> kv = {-1, init};
for (TIndex k = threadIdx.x; k < inner_size; k += blockDim.x) {
kv = reducer({k, X[i * inner_size * stride + k * stride + j]}, kv);
}
kv = BlockReduce<T>(temp_storage).Reduce(kv, reducer);
if (threadIdx.x == 0) {
Y[idx] = kv.key;
}
__syncthreads();
}
}
} // namespace
template <>
template <typename T>
bool ArgMaxReducer<CUDAContext>::operator()(
const TIndex prev_size,
const TIndex next_size,
const TIndex n,
const T* X,
TIndex* Y,
CUDAContext* context) const {
const TIndex outer_size = prev_size * next_size;
ComputeArgCUDAKernel<<<
std::min(outer_size, static_cast<TIndex>(CAFFE_MAXIMUM_NUM_BLOCKS)),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
outer_size,
n,
next_size,
cub::ArgMax(),
std::numeric_limits<T>::lowest(),
X,
Y);
return true;
}
template <>
template <typename T>
bool ArgMinReducer<CUDAContext>::operator()(
const TIndex prev_size,
const TIndex next_size,
const TIndex n,
const T* X,
TIndex* Y,
CUDAContext* context) const {
const TIndex outer_size = prev_size * next_size;
ComputeArgCUDAKernel<<<
std::min(outer_size, static_cast<TIndex>(CAFFE_MAXIMUM_NUM_BLOCKS)),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
outer_size,
n,
next_size,
cub::ArgMin(),
std::numeric_limits<T>::max(),
X,
Y);
return true;
}
REGISTER_CUDA_OPERATOR(ArgMax, ArgOp<CUDAContext, ArgMaxReducer<CUDAContext>>);
REGISTER_CUDA_OPERATOR(ArgMin, ArgOp<CUDAContext, ArgMinReducer<CUDAContext>>);
} // namespace caffe2