| #include <cfloat> |
| |
| #include "caffe2/core/context_gpu.h" |
| #include "roi_pool_op.h" |
| |
| namespace caffe2 { |
| |
| namespace { |
| |
| template <typename T> |
| inline __device__ T gpu_atomic_add(const T val, T* address); |
| |
| template <> |
| inline __device__ float gpu_atomic_add(const float val, float* address) { |
| return atomicAdd(address, val); |
| } |
| |
| template <typename T> |
| __global__ void ROIPoolForward( |
| const int nthreads, |
| const T* bottom_data, |
| const T spatial_scale, |
| const int channels, |
| const int height, |
| const int width, |
| const int pooled_height, |
| const int pooled_width, |
| const T* bottom_rois, |
| T* top_data, |
| int* argmax_data) { |
| CUDA_1D_KERNEL_LOOP(index, nthreads) { |
| // (n, c, ph, pw) is an element in the pooled output |
| int pw = index % pooled_width; |
| int ph = (index / pooled_width) % pooled_height; |
| int c = (index / pooled_width / pooled_height) % channels; |
| int n = index / pooled_width / pooled_height / channels; |
| |
| const T* offset_bottom_rois = bottom_rois + n * 5; |
| int roi_batch_ind = offset_bottom_rois[0]; |
| int roi_start_w = round(offset_bottom_rois[1] * spatial_scale); |
| int roi_start_h = round(offset_bottom_rois[2] * spatial_scale); |
| int roi_end_w = round(offset_bottom_rois[3] * spatial_scale); |
| int roi_end_h = round(offset_bottom_rois[4] * spatial_scale); |
| |
| // Force malformed ROIs to be 1x1 |
| int roi_width = max(roi_end_w - roi_start_w + 1, 1); |
| int roi_height = max(roi_end_h - roi_start_h + 1, 1); |
| T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); |
| T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); |
| |
| int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h)); |
| int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w)); |
| int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h)); |
| int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w)); |
| |
| // Add roi offsets and clip to input boundaries |
| hstart = min(max(hstart + roi_start_h, 0), height); |
| hend = min(max(hend + roi_start_h, 0), height); |
| wstart = min(max(wstart + roi_start_w, 0), width); |
| wend = min(max(wend + roi_start_w, 0), width); |
| bool is_empty = (hend <= hstart) || (wend <= wstart); |
| |
| // Define an empty pooling region to be zero |
| T maxval = is_empty ? 0 : -FLT_MAX; |
| // If nothing is pooled, argmax = -1 causes nothing to be backprop'd |
| int maxidx = -1; |
| const T* offset_bottom_data = |
| bottom_data + (roi_batch_ind * channels + c) * height * width; |
| for (int h = hstart; h < hend; ++h) { |
| for (int w = wstart; w < wend; ++w) { |
| int bottom_index = h * width + w; |
| if (offset_bottom_data[bottom_index] > maxval) { |
| maxval = offset_bottom_data[bottom_index]; |
| maxidx = bottom_index; |
| } |
| } |
| } |
| top_data[index] = maxval; |
| if (argmax_data) { |
| argmax_data[index] = maxidx; |
| } |
| } |
| } |
| |
| template <typename T> |
| __global__ void ROIPoolBackward( |
| const int nthreads, |
| const T* top_diff, |
| const int* argmax_data, |
| const int num_rois, |
| const T spatial_scale, |
| const int channels, |
| const int height, |
| const int width, |
| const int pooled_height, |
| const int pooled_width, |
| T* bottom_diff, |
| const T* bottom_rois) { |
| CUDA_1D_KERNEL_LOOP(index, nthreads) { |
| // (n, c, ph, pw) is an element in the pooled output |
| int pw = index % pooled_width; |
| int ph = (index / pooled_width) % pooled_height; |
| int c = (index / pooled_width / pooled_height) % channels; |
| int n = index / pooled_width / pooled_height / channels; |
| |
| const T* offset_bottom_rois = bottom_rois + n * 5; |
| int roi_batch_ind = offset_bottom_rois[0]; |
| int bottom_offset = (roi_batch_ind * channels + c) * height * width; |
| int top_offset = (n * channels + c) * pooled_height * pooled_width; |
| const T* offset_top_diff = top_diff + top_offset; |
| T* offset_bottom_diff = bottom_diff + bottom_offset; |
| const int* offset_argmax_data = argmax_data + top_offset; |
| |
| int argmax = offset_argmax_data[ph * pooled_width + pw]; |
| if (argmax != -1) { |
| gpu_atomic_add( |
| static_cast<T>(offset_top_diff[ph * pooled_width + pw]), |
| offset_bottom_diff + argmax); |
| } |
| } |
| } |
| |
| } // namespace |
| |
| template <> |
| bool RoIPoolOp<float, CUDAContext>::RunOnDevice() { |
| auto& X = Input(0); // Input data to pool |
| auto& R = Input(1); // RoIs |
| auto* Y = Output(0); // RoI pooled data |
| auto* A = is_test_ ? nullptr : Output(1); // argmaxes |
| |
| // Handle empty rois |
| if (R.size() == 0) { |
| Y->Resize(0, X.dim32(1), pooled_height_, pooled_width_); |
| // mutable_data calls are needed to allocate the tensors |
| Y->mutable_data<float>(); |
| if (!is_test_) { |
| A->Resize(Y->dims()); |
| A->mutable_data<int>(); |
| } |
| return true; |
| } |
| |
| Y->Resize(R.dim32(0), X.dim32(1), pooled_height_, pooled_width_); |
| if (!is_test_) { |
| A->Resize(Y->dims()); |
| } |
| int output_size = Y->size(); |
| int* argmax_data = is_test_ ? nullptr : A->mutable_data<int>(); |
| ROIPoolForward<float><<< |
| CAFFE_GET_BLOCKS(output_size), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| output_size, |
| X.data<float>(), |
| spatial_scale_, |
| X.dim32(1), |
| X.dim32(2), |
| X.dim32(3), |
| pooled_height_, |
| pooled_width_, |
| R.data<float>(), |
| Y->mutable_data<float>(), |
| argmax_data); |
| return true; |
| } |
| |
| template <> |
| bool RoIPoolGradientOp<float, CUDAContext>::RunOnDevice() { |
| auto& X = Input(0); // Input data to pool |
| auto& R = Input(1); // RoIs |
| auto& A = Input(2); // argmaxes |
| auto& dY = Input(3); // Gradient of net w.r.t. output of "forward" op |
| // (aka "gradOutput") |
| auto* dX = Output(0); // Gradient of net w.r.t. input to "forward" op |
| // (aka "gradInput") |
| |
| dX->ResizeLike(X); |
| // Must zero-out dX before accumulating gradients |
| math::Set<float, CUDAContext>( |
| dX->size(), 0.f, dX->mutable_data<float>(), &context_); |
| if (dY.size() > 0) { // Handle possibly empty gradient if there were no rois |
| ROIPoolBackward<float><<< |
| CAFFE_GET_BLOCKS(dY.size()), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| dY.size(), |
| dY.data<float>(), |
| A.data<int>(), |
| R.dim32(0), |
| spatial_scale_, |
| X.dim32(1), |
| X.dim32(2), |
| X.dim32(3), |
| pooled_height_, |
| pooled_width_, |
| dX->mutable_data<float>(), |
| R.data<float>()); |
| } |
| return true; |
| } |
| |
| REGISTER_CUDA_OPERATOR(RoIPool, RoIPoolOp<float, CUDAContext>); |
| REGISTER_CUDA_OPERATOR(RoIPoolGradient, RoIPoolGradientOp<float, CUDAContext>); |
| |
| } // namespace caffe2 |