blob: 30713e1a549e873b158d65f164ed6cabcacfc6ae [file] [log] [blame]
#include <cmath>
#include "caffe2/operators/elementwise_op.h"
namespace caffe2 {
struct SigmoidCPUFunctor {
template <typename T>
inline void operator()(const int n, const T* x,
T* y, CPUContext* device_context) {
for (int i = 0; i < n; ++i) {
y[i] = 1. / (1. + exp(-x[i]));
}
}
};
struct SigmoidGradientCPUFunctor {
template <typename T>
inline void
Run(const int n, const T* y, const T* dy, T* dx, CPUContext* device_context) {
for (int i = 0; i < n; ++i) {
dx[i] = dy[i] * y[i] * (1. - y[i]);
}
}
};
namespace {
REGISTER_CPU_OPERATOR(
Sigmoid, UnaryElementwiseOp<
TensorTypes<float>, CPUContext, SigmoidCPUFunctor>);
REGISTER_CPU_OPERATOR(
SigmoidGradient,
BinaryElementwiseOp<
TensorTypes<float>,
CPUContext,
WithoutBroadcast<SigmoidGradientCPUFunctor>>);
// Input: X, output: Y
OPERATOR_SCHEMA(Sigmoid)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
Sigmoid takes one input data (Tensor<T>) and produces one output data
(Tensor<T>) where the sigmoid function, y = 1 / (1 + exp(-x)), is applied to the
tensor elementwise.
)DOC")
.Input(0, "X", "1D input tensor")
.Output(0, "Y", "1D output tensor");
// Input: Y, dY, output: dX
OPERATOR_SCHEMA(SigmoidGradient)
.NumInputs(2)
.NumOutputs(1)
.AllowInplace({{1, 0}})
.SetDoc(R"DOC(
SigmoidGradient takes both Y and dY and uses this to update dX according to the
chain rule and derivatives of the sigmoid function.
)DOC");
class GetSigmoidGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"SigmoidGradient", "",
vector<string>{O(0), GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Sigmoid, GetSigmoidGradient);
} // namespace
} // namespace caffe2