| // Implements the math functions for CPU. |
| // The implementation in this file allows us to route the underlying numerical |
| // computation library to different compiler options (-mno-avx2 or -mavx2). |
| |
| #include <algorithm> |
| #include <array> |
| #include <atomic> |
| #include <chrono> |
| #include <cmath> |
| #include <cstring> |
| #include <functional> |
| #include <limits> |
| #include <numeric> |
| #include <random> |
| #include <tuple> |
| #include <unordered_set> |
| #include <vector> |
| |
| #include "caffe2/core/context.h" |
| #include "caffe2/perfkernels/common.h" |
| #include "caffe2/perfkernels/math.h" |
| #include "caffe2/utils/cpu_neon.h" |
| #include "caffe2/utils/cpuid.h" |
| #include "caffe2/utils/eigen_utils.h" |
| #include "caffe2/utils/math.h" |
| |
| #include "Eigen/Core" |
| #include "Eigen/Dense" |
| |
| #ifdef CAFFE2_USE_MKL |
| #include <mkl.h> |
| #endif // CAFFE2_USE_MKL |
| |
| #ifdef CAFFE2_USE_HPTT |
| #include <hptt.h> |
| #endif // CAFFE2_USE_HPTT |
| |
| #if defined(_MSC_VER) |
| #include <process.h> |
| #endif |
| |
| namespace caffe2 { |
| |
| namespace math { |
| #define QEPSILON 1e-8 |
| |
| void quantize_and_compress__base( |
| const float* input_data, |
| uint8_t* output_data, |
| size_t input_size, |
| size_t bitwidth, |
| bool random, |
| #ifdef FUSED_ROWWISE_RANDOM_QUANTIZATION_USE_MKL |
| VSLStreamStatePtr& vslStream, |
| std::vector<float>& random_buffer |
| #else |
| std::unique_ptr<std::uniform_real_distribution<float>>& dis, |
| std::minstd_rand& gen |
| #endif |
| ) { |
| CAFFE_ENFORCE( |
| bitwidth == 1 || bitwidth == 2 || bitwidth == 4 || bitwidth == 8, |
| "Unsupported bitwidth"); |
| |
| // memory pointers |
| ConstEigenVectorArrayMap<float> input_row(input_data, input_size); |
| uint8_t* output_row = output_data; |
| EigenVectorArrayMap<uint8_t> output_bitwidth_tail(output_row, 2); |
| EigenVectorArrayMap<float> output_row_min_max( |
| reinterpret_cast<float*>(output_row + 2), 2); |
| |
| size_t data_per_byte = 8 / bitwidth; |
| size_t tail = input_size % data_per_byte; |
| tail = tail ? data_per_byte - tail : 0; |
| size_t segment_size = (input_size + data_per_byte - 1) / data_per_byte; |
| |
| // basic info |
| const float minimum_element = input_row.minCoeff(); |
| const float maximum_element = input_row.maxCoeff(); |
| output_bitwidth_tail(0) = bitwidth; |
| output_bitwidth_tail(1) = tail; |
| output_row_min_max(0) = minimum_element; |
| output_row_min_max(1) = maximum_element; |
| |
| float gap = (maximum_element - minimum_element) / ((1 << bitwidth) - 1.0f); |
| float gap_inverse = 1. / (gap + QEPSILON); |
| uint8_t max_q = (1 << bitwidth) - 1; |
| size_t bit_start = 0; |
| if (random) { |
| #ifdef FUSED_ROWWISE_RANDOM_QUANTIZATION_USE_MKL |
| int status = vsRngUniform( |
| VSL_RNG_METHOD_UNIFORM_STD, |
| vslStream, |
| input_size, |
| random_buffer.data(), |
| 0.0f, |
| 1.0f); |
| if (status != VSL_ERROR_OK) { |
| LOG(WARNING) << "vsRngUniform returns " << status; |
| } |
| #endif |
| for (int start = 0; start < input_size; start += segment_size) { |
| size_t stride = start + segment_size <= input_size ? segment_size |
| : input_size - start; |
| int i = 0; |
| for (; i < stride; ++i) { |
| float fval = input_data[start + i]; |
| float thetimes = (fval - minimum_element) * gap_inverse; |
| #ifdef FUSED_ROWWISE_RANDOM_QUANTIZATION_USE_MKL |
| float rounded = floor(thetimes + random_buffer[start + i]); |
| #else |
| float rounded = floor(thetimes + (*dis)(gen)); |
| #endif |
| rounded = std::max(0.0f, std::min(static_cast<float>(max_q), rounded)); |
| uint8_t qval = rounded; |
| |
| uint8_t orval = output_row[10 + i]; |
| output_row[10 + i] = orval | static_cast<uint8_t>(qval << bit_start); |
| } |
| bit_start += bitwidth; |
| } |
| } else { |
| for (int start = 0; start < input_size; start += segment_size) { |
| size_t stride = start + segment_size <= input_size ? segment_size |
| : input_size - start; |
| int i = 0; |
| for (; i < stride; ++i) { |
| float fval = input_data[start + i]; |
| float thetimes = (fval - minimum_element) * gap_inverse; |
| thetimes = |
| std::max(0.0f, std::min(static_cast<float>(max_q), thetimes)); |
| uint8_t qval = nearbyint(thetimes); |
| |
| uint8_t orval = output_row[10 + i]; |
| output_row[10 + i] = orval | static_cast<uint8_t>(qval << bit_start); |
| } |
| bit_start += bitwidth; |
| } |
| } |
| } |
| |
| void quantize_and_compress( |
| const float* input_data, |
| uint8_t* output_data, |
| size_t input_size, |
| size_t bitwidth, |
| bool random, |
| #ifdef FUSED_ROWWISE_RANDOM_QUANTIZATION_USE_MKL |
| VSLStreamStatePtr& vslStream, |
| std::vector<float>& random_buffer |
| #else |
| std::unique_ptr<std::uniform_real_distribution<float>>& dis, |
| std::minstd_rand& gen |
| #endif |
| ) { |
| #ifdef FUSED_ROWWISE_RANDOM_QUANTIZATION_USE_MKL |
| AVX2_DO( |
| quantize_and_compress, |
| input_data, |
| output_data, |
| input_size, |
| bitwidth, |
| random, |
| vslStream, |
| random_buffer); |
| BASE_DO( |
| quantize_and_compress, |
| input_data, |
| output_data, |
| input_size, |
| bitwidth, |
| random, |
| vslStream, |
| random_buffer); |
| #else |
| AVX2_DO( |
| quantize_and_compress, |
| input_data, |
| output_data, |
| input_size, |
| bitwidth, |
| random, |
| dis, |
| gen); |
| BASE_DO( |
| quantize_and_compress, |
| input_data, |
| output_data, |
| input_size, |
| bitwidth, |
| random, |
| dis, |
| gen); |
| #endif |
| } |
| |
| void decompress_and_dequantize__base( |
| const uint8_t* input_data, |
| float* output_data, |
| size_t input_size) { |
| // memory pointers /// |
| ConstEigenVectorArrayMap<uint8_t> input_bitwidth_tail(input_data, 2); |
| ConstEigenVectorArrayMap<float> input_row_min_max( |
| reinterpret_cast<const float*>(input_data + 2), 2); |
| |
| // basic info |
| const float minimum_element = input_row_min_max(0); |
| const float maximum_element = input_row_min_max(1); |
| const size_t bitwidth = input_data[0]; |
| const float gap = |
| (maximum_element - minimum_element) / ((1 << bitwidth) - 1.f) + |
| QEPSILON; // for exact recovering |
| |
| CAFFE_ENFORCE( |
| bitwidth == 1 || bitwidth == 2 || bitwidth == 4 || bitwidth == 8, |
| "Unsupported bitwidth"); |
| const size_t tail = input_data[1]; |
| |
| const size_t output_size = (input_size - 10) * (8 / bitwidth) - tail; |
| EigenVectorArrayMap<float> output_row(output_data, output_size); |
| // decoding |
| size_t bit_start = 0; |
| const size_t segment_size = input_size - 10; |
| for (int start = 0; start < output_size; start += segment_size) { |
| size_t stride = start + segment_size <= output_size ? segment_size |
| : output_size - start; |
| uint8_t mask = (1 << bitwidth) - 1; |
| int i = 0; |
| for (; i < stride; ++i) { |
| output_data[start + i] = ((input_data[10 + i] >> bit_start) & mask); |
| } |
| bit_start += bitwidth; |
| } |
| // scaling and biasing |
| output_row = output_row * gap + minimum_element; |
| } |
| |
| void decompress_and_dequantize( |
| const uint8_t* input_data, |
| float* output_data, |
| size_t input_size) { |
| AVX2_DO(decompress_and_dequantize, input_data, output_data, input_size); |
| BASE_DO(decompress_and_dequantize, input_data, output_data, input_size); |
| } |
| |
| #undef QEPSILON |
| } // namespace math |
| } // namespace caffe2 |