blob: be77155415efca0602dd69fb65ab79200fe59354 [file] [log] [blame]
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "caffe2/operators/batch_matmul_op.h"
#include "caffe2/core/operator_schema.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(BatchMatMul, BatchMatMulOp<CPUContext>);
OPERATOR_SCHEMA(BatchMatMul)
.NumInputs(2)
.NumOutputs(1)
.SetDoc(R"DOC(
Batch Matrix multiplication Yi = Ai * Bi, where A has shape (dim0, dim1, ... M, K),
B has shape (dim0, dim1, ... K, N), Y has shape (dim0, dim1, ... M, N) and i ranges
from 0 to (dim0 * dim1 ...) - 1. rank(A) == rank(B) >= 2. In case of A and B being
two diemnsional, it behaves like normal matrix multiplication.
)DOC")
.Input(0, "A", "tensor of shape (dim0, dim1 ... M, K)")
.Input(1, "B", "tensor of shpae (dim0, dim2 ... K, N)")
.Output(0, "Y", "tensor of shape (dim0, dim1 ... M, N)")
.Arg(
"trans_a",
"Pass 1 to transpose the last two dimensions of A before "
"doing multiplication")
.Arg(
"trans_b",
"Pass 1 to transpose the last two dimensions of B before "
"doing multiplication")
.Arg(
"broadcast",
"Pass 1 to allow broadcasting of dimensions. Behavior is the same as numpy.matmul. Gradient is currently not supported when running in broadcast mode.")
.TensorInferenceFunction([](const OperatorDef& def,
const vector<TensorShape>& in) {
ArgumentHelper helper(def);
bool broadcast = helper.GetSingleArgument<int>("broadcast", 0);
if (!broadcast) {
const auto ndim = in[0].dims_size();
CAFFE_ENFORCE_GE(ndim, 2);
int a_dim0;
int b_dim1;
if (helper.GetSingleArgument<int>("trans_a", 0)) {
a_dim0 = in[0].dims(ndim - 1);
} else {
a_dim0 = in[0].dims(ndim - 2);
}
if (helper.GetSingleArgument<int>("trans_b", 0)) {
b_dim1 = in[1].dims(ndim - 2);
} else {
b_dim1 = in[1].dims(ndim - 1);
}
auto output_dims =
vector<TIndex>{in[0].dims().begin(), in[0].dims().end()};
output_dims[ndim - 2] = a_dim0;
output_dims[ndim - 1] = b_dim1;
return vector<TensorShape>{
CreateTensorShape(vector<TIndex>{output_dims}, in[0].data_type())};
} else {
auto ndims_A = in[0].dims_size();
auto ndims_B = in[1].dims_size();
std::vector<TIndex> dims_A(ndims_A), dims_B(ndims_B);
for (int i = 0; i < ndims_A; ++i) {
dims_A[i] = in[0].dims(i);
}
for (int i = 0; i < ndims_B; ++i) {
dims_B[i] = in[1].dims(i);
}
bool A_broadcasted = false, B_broadcasted = false;
if (ndims_A == 1) {
dims_A.insert(dims_A.begin(), 1);
ndims_A = 2;
A_broadcasted = true;
}
if (ndims_B == 1) {
dims_B.push_back(1);
ndims_B = 2;
B_broadcasted = true;
}
size_t M, N, K, K_dim;
if (helper.GetSingleArgument<int>("trans_a", 0)) {
M = dims_A[ndims_A - 1];
K = dims_A[ndims_A - 2];
K_dim = ndims_A - 2;
} else {
M = dims_A[ndims_A - 2];
K = dims_A[ndims_A - 1];
K_dim = ndims_A - 1;
}
if (helper.GetSingleArgument<int>("trans_b", 0)) {
N = dims_B[ndims_B - 2];
} else {
N = dims_B[ndims_B - 1];
}
std::vector<TIndex> new_dims;
if (ndims_A >= ndims_B) {
new_dims.assign(dims_A.begin(), dims_A.end() - 2);
} else {
new_dims.assign(dims_B.begin(), dims_B.end() - 2);
}
if (!A_broadcasted) {
new_dims.push_back(M);
}
if (!B_broadcasted) {
new_dims.push_back(N);
}
if (A_broadcasted && B_broadcasted) {
new_dims.push_back(1);
}
return vector<TensorShape>{
CreateTensorShape(vector<TIndex>{new_dims}, in[0].data_type())};
}
});
class GetBatchMatMulGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
CAFFE_ENFORCE_EQ(def_.input_size(), 2);
bool broadcast = false;
if (ArgumentHelper::HasArgument(Def(), "broadcast")) {
broadcast = GetArgument(Def(), "broadcast").i();
}
CAFFE_ENFORCE(
!broadcast,
"Gradient is currently not supported with "
"broadcast=1 for BatchMatMul.");
bool trans_a = 0;
bool trans_b = 0;
if (ArgumentHelper::HasArgument(Def(), "trans_a")) {
trans_a = GetArgument(Def(), "trans_a").i();
}
if (ArgumentHelper::HasArgument(Def(), "trans_b")) {
trans_b = GetArgument(Def(), "trans_b").i();
}
auto no_trans_arg = vector<Argument>();
auto trans_a_arg = vector<Argument>{MakeArgument<int>("trans_a", 1)};
auto trans_b_arg = vector<Argument>{MakeArgument<int>("trans_b", 1)};
auto trans_both_arg = vector<Argument>{MakeArgument<int>("trans_a", 1),
MakeArgument<int>("trans_b", 1)};
if (ArgumentHelper::HasArgument(Def(), "use_scratch")) {
no_trans_arg.push_back(MakeArgument<int>("use_scratch", 1));
trans_a_arg.push_back(MakeArgument<int>("use_scratch", 1));
trans_b_arg.push_back(MakeArgument<int>("use_scratch", 1));
trans_both_arg.push_back(MakeArgument<int>("use_scratch", 1));
}
if (trans_a) {
if (trans_b) {
// A'B':
// dA = B'G', dB = G'A'
return vector<OperatorDef>{CreateOperatorDef(
"BatchMatMul",
"",
vector<string>{I(1), GO(0)},
vector<string>{GI(0)},
trans_both_arg),
CreateOperatorDef(
"BatchMatMul",
"",
vector<string>{GO(0), I(0)},
vector<string>{GI(1)},
trans_both_arg)};
} else {
// A'B:
// dA = BG', dB = AG
return vector<OperatorDef>{CreateOperatorDef(
"BatchMatMul",
"",
vector<string>{I(1), GO(0)},
vector<string>{GI(0)},
trans_b_arg),
CreateOperatorDef(
"BatchMatMul",
"",
vector<string>{I(0), GO(0)},
vector<string>{GI(1)},
no_trans_arg)};
}
} else {
if (trans_b) {
// AB':
// dA = GB, dB = G'A
return vector<OperatorDef>{CreateOperatorDef(
"BatchMatMul",
"",
vector<string>{GO(0), I(1)},
vector<string>{GI(0)},
no_trans_arg),
CreateOperatorDef(
"BatchMatMul",
"",
vector<string>{GO(0), I(0)},
vector<string>{GI(1)},
trans_a_arg)};
} else {
// AB:
// dA = GB', dB = A'G
return vector<OperatorDef>{CreateOperatorDef(
"BatchMatMul",
"",
vector<string>{GO(0), I(1)},
vector<string>{GI(0)},
trans_b_arg),
CreateOperatorDef(
"BatchMatMul",
"",
vector<string>{I(0), GO(0)},
vector<string>{GI(1)},
trans_a_arg)};
}
}
}
bool CopyArguments() const override {
return false;
}
};
REGISTER_GRADIENT(BatchMatMul, GetBatchMatMulGradient);
} // namespace caffe2