python style fixes
diff --git a/extract_cwrap.py b/extract_cwrap.py
index 0fab951..64c2281 100644
--- a/extract_cwrap.py
+++ b/extract_cwrap.py
@@ -6,16 +6,16 @@
 options, _ = parser.parse_args()
 
 files = [
-    #'../../csrc/cudnn/cuDNN.cwrap',
+    # '../../csrc/cudnn/cuDNN.cwrap',
     '../../csrc/generic/TensorMethods.cwrap',
-    #'../../csrc/generic/methods/SparseTensor.cwrap',
+    # '../../csrc/generic/methods/SparseTensor.cwrap',
     '../../csrc/generic/methods/Tensor.cwrap',
     '../../csrc/generic/methods/TensorApply.cwrap',
     '../../csrc/generic/methods/TensorCompare.cwrap',
     '../../csrc/generic/methods/TensorCuda.cwrap',
     '../../csrc/generic/methods/TensorMath.cwrap',
     '../../csrc/generic/methods/TensorRandom.cwrap',
-    #'../../csrc/generic/methods/TensorSerialization.cwrap',
+    # '../../csrc/generic/methods/TensorSerialization.cwrap',
 ]
 
 declaration_lines = []
@@ -35,4 +35,4 @@
                 declaration_lines.append(line)
 
 with open(options.output, 'w') as output:
-    output.write('\n'.join(declaration_lines)+'\n')
+    output.write('\n'.join(declaration_lines) + '\n')
diff --git a/function_wrapper.py b/function_wrapper.py
index 960b77c..335bbb7 100644
--- a/function_wrapper.py
+++ b/function_wrapper.py
@@ -1,5 +1,4 @@
 import re
-import yaml
 from code_template import CodeTemplate
 
 # temporary things we cannot handle
@@ -58,6 +57,7 @@
 }
 """)
 
+
 class NYIError(Exception):
     """Indicates we don't support this declaration yet"""
 
@@ -302,18 +302,18 @@
         return ret['type'] == 'long' or (backend_type_env['ScalarName'] == 'Long' and
                                          ret['type'] == 'real' or ret['type'] == 'accreal')
 
-    def handle_zero_dim(env,option):
+    def handle_zero_dim(env, option):
         if 'zero_dim_dispatch_when_scalar' not in option:
             return []
         check_name = option['zero_dim_dispatch_when_scalar']
-        zero_dim_actuals = [ arg['name']
-                             if arg['name'] != check_name else "Scalar({})".format(arg['name'])
-                             for arg in option['formals_list'] ]
-        return [ ZERO_DIM_CHECK.substitute(env,check_name = check_name, zero_dim_actuals=zero_dim_actuals) ]
+        zero_dim_actuals = [arg['name']
+                            if arg['name'] != check_name else "Scalar({})".format(arg['name'])
+                            for arg in option['formals_list']]
+        return [ZERO_DIM_CHECK.substitute(env, check_name=check_name, zero_dim_actuals=zero_dim_actuals)]
 
     def emit_body(env, option):
         body = []
-        body += handle_zero_dim(env,option)
+        body += handle_zero_dim(env, option)
         # arguments are potentially duplicated because of one argument
         # referencing another
         seen_names = set()
@@ -354,7 +354,7 @@
                 # resize tensors for special ops that require it
                 if 'resize' in arg:
                     resize = arg['resize']
-                    if type(resize) == str:
+                    if isinstance(resize, str):
                         body.append("{}.resize_({}.sizes());".format(
                             arg['name'], resize))
                     else:
@@ -395,7 +395,7 @@
 
         if ret['kind'] == 'arguments':
             if 'aten_custom_call' in option:
-                scalar_check = None # all aten_custom_call bodies handle settings on their own.
+                scalar_check = None  # all aten_custom_call bodies handle settings on their own.
                 body.append(CodeTemplate(option['aten_custom_call']).substitute(env))
             else:
                 body.append(call + ";")
@@ -407,7 +407,7 @@
                     body.append("bool maybe_scalar = {};".format(scalar_check))
                     scalar_check = 'maybe_scalar'
                 for arg in arguments:
-                    body.append("{}_->maybeScalar({});".format(arg['name'],scalar_check))
+                    body.append("{}_->maybeScalar({});".format(arg['name'], scalar_check))
             if len(arguments_indices) == 1:
                 arg = arguments[0]
                 body.append("return {};".format(arg['name']))
@@ -422,8 +422,8 @@
                 maybe_scalar = "->maybeScalar({})".format(scalar_check) \
                                if scalar_check is not None \
                                else ""
-                body.append(CodeTemplate(
-                    "return Tensor((new ${Tensor}(context,${arg_name}))${maybe_scalar},false);").substitute(env, arg_name=call,maybe_scalar=maybe_scalar))
+                return_tensor = "return Tensor((new ${Tensor}(context,${arg_name}))${maybe_scalar},false);"
+                body.append(CodeTemplate(return_tensor).substitute(env, arg_name=call, maybe_scalar=maybe_scalar))
             else:
                 # we using int64_t for long in the API, so correct it here...
                 if is_actual_return_long(ret):
diff --git a/gen.py b/gen.py
index 92f4384..9d4fa85 100644
--- a/gen.py
+++ b/gen.py
@@ -1,6 +1,4 @@
-import os
 import sys
-import yaml
 from optparse import OptionParser
 
 import cwrap_parser
@@ -64,7 +62,7 @@
 if not options.no_cuda:
     backends.append('CUDA')
 
-densities = ['Dense','Sparse']
+densities = ['Dense', 'Sparse']
 
 scalar_types = [
     ('Byte', 'uint8_t', 'Long', 'unsigned char'),
@@ -113,7 +111,7 @@
     env['Storage'] = "{}{}Storage".format(backend, scalar_name)
     env['Type'] = "{}{}{}Type".format(density_tag, backend, scalar_name)
     env['Tensor'] = "{}{}{}Tensor".format(density_tag, backend, scalar_name)
-    env['Backend'] = density_tag+backend
+    env['Backend'] = density_tag + backend
 
     # used for generating switch logic for external functions
     tag = density_tag + backend + scalar_name
@@ -149,7 +147,7 @@
 
         env['THType'] = scalar_name
         env['THStorage'] = "TH{}Storage".format(scalar_name)
-        env['THTensor'] = 'TH{}{}Tensor'.format(th_density_tag,scalar_name)
+        env['THTensor'] = 'TH{}{}Tensor'.format(th_density_tag, scalar_name)
         env['THIndexTensor'] = 'THLongTensor'
         env['state'] = []
         env['isCUDA'] = 'false'
@@ -193,7 +191,7 @@
     write(env['Tensor'] + ".h", TENSOR_DERIVED_H.substitute(env))
 
     type_register = (('context->type_registry[static_cast<int>(Backend::{})]' +
-                     '[static_cast<int>(ScalarType::{})].reset(new {}(context));')
+                      '[static_cast<int>(ScalarType::{})].reset(new {}(context));')
                      .format(env['Backend'], scalar_name, env['Type']))
     top_env['type_registrations'].append(type_register)
     top_env['type_headers'].append(
diff --git a/nn_parse.py b/nn_parse.py
index 9daa058..f92b72d 100644
--- a/nn_parse.py
+++ b/nn_parse.py
@@ -1,4 +1,3 @@
-import yaml
 import re
 import common_with_cwrap
 from collections import OrderedDict
diff --git a/preprocess_declarations.py b/preprocess_declarations.py
index 5814bf6..2d77302 100644
--- a/preprocess_declarations.py
+++ b/preprocess_declarations.py
@@ -2,7 +2,6 @@
 from copy import deepcopy
 from function_wrapper import TYPE_FORMAL_GENERIC
 import common_with_cwrap
-import yaml
 
 type_map = {
     'floating_point': [
@@ -23,7 +22,8 @@
 type_map['all'] = all_types
 
 all_backends = ['CPU', 'CUDA', 'SparseCPU', 'SparseCUDA']
-default_backends =  ['CPU', 'CUDA']
+default_backends = ['CPU', 'CUDA']
+
 
 def process_types_and_backends(option):
     # if specific pairs were not listed, then enumerate them
@@ -117,23 +117,25 @@
 # where 'name' is the name of the argument that should be a scalar
 # during dispatch, if that argument is marked internally as holding a scalar
 # then the method will dispatch to that function.
+
+
 def discover_zero_dim_tensor_operations(declaration):
     def exclude(arg):
         return arg.get('ignore_check')
 
-    def signature(option,i=None,value=None):
-        elements = [TYPE_FORMAL_GENERIC.get(arg['type'],arg['type'])
+    def signature(option, i=None, value=None):
+        elements = [TYPE_FORMAL_GENERIC.get(arg['type'], arg['type'])
                     if i is None or j != i else value
                     for j, arg in enumerate(option['arguments'])
-                    if not exclude(arg) ]
+                    if not exclude(arg)]
         return '#'.join(elements)
     signature_to_option = {signature(option): option
                            for option in declaration['options']}
 
     for option in declaration['options']:
-        for i,arg in enumerate(option['arguments']):
+        for i, arg in enumerate(option['arguments']):
             if arg['type'] == 'real':
-                signature_of_tensor_version = signature(option,i,'Tensor &')
+                signature_of_tensor_version = signature(option, i, 'Tensor &')
                 if signature_of_tensor_version in signature_to_option:
                     tensor_version = \
                         signature_to_option[signature_of_tensor_version]
@@ -160,7 +162,6 @@
         common_with_cwrap.sort_by_number_of_options(declaration)
         discover_zero_dim_tensor_operations(declaration)
 
-        new_options = []
         for option in declaration['options']:
             set_mode(option)
             sanitize_return(option)