blob: 2ee02ccec0f8ec58ed29de180d23ac8b12a8f8dd [file] [log] [blame]
#include "gru_unit_op.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(GRUUnit, GRUUnitOp<float, CPUContext>);
OPERATOR_SCHEMA(GRUUnit)
.NumInputs(4)
.NumOutputs(1)
.SetDoc(R"DOC(
GRUUnit computes the activations of a standard GRU,
in a sequence-length aware fashion.
Concretely, given the (fused) inputs X (TxNxD), the previous hidden
state (NxD), and the sequence lengths (N), computes the GRU
activations, avoiding computation if the input is invalid (as in, the
value at X[t][n] >= seqLengths[n].
)DOC")
.Arg(
"drop_states",
"Bool to determine if hidden state is zeroes or passed "
"along for timesteps past the given sequence_length.")
.Input(0, "hidden_prev", "The previous GRU hidden state.")
.Input(
1,
"gates",
"Unactivated gate outputs from forget, update, "
"and output gates, pre-activation.")
.Input(
2,
"seq_lengths",
"Array of sequence lengths. "
"len(seq_lengths) should equal batch size N.")
.Input(3, "t", "The timestep for this operation.")
.Output(0, "hidden", "The new GRU hidden state calculated by this op.");
REGISTER_CPU_OPERATOR(GRUUnitGradient, GRUUnitGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(GRUUnitGradient).NumInputs(6).NumOutputs(2);
class GetGRUUnitGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"GRUUnitGradient",
"",
vector<string>{I(0), I(1), I(2), I(3), O(0), GO(0)},
vector<string>{GI(0), GI(1)});
}
};
REGISTER_GRADIENT(GRUUnit, GetGRUUnitGradient);
} // namespace caffe2