| #include "gru_unit_op.h" |
| |
| namespace caffe2 { |
| REGISTER_CPU_OPERATOR(GRUUnit, GRUUnitOp<float, CPUContext>); |
| OPERATOR_SCHEMA(GRUUnit) |
| .NumInputs(4) |
| .NumOutputs(1) |
| .SetDoc(R"DOC( |
| GRUUnit computes the activations of a standard GRU, |
| in a sequence-length aware fashion. |
| |
| Concretely, given the (fused) inputs X (TxNxD), the previous hidden |
| state (NxD), and the sequence lengths (N), computes the GRU |
| activations, avoiding computation if the input is invalid (as in, the |
| value at X[t][n] >= seqLengths[n]. |
| |
| )DOC") |
| .Arg( |
| "drop_states", |
| "Bool to determine if hidden state is zeroes or passed " |
| "along for timesteps past the given sequence_length.") |
| .Input(0, "hidden_prev", "The previous GRU hidden state.") |
| .Input( |
| 1, |
| "gates", |
| "Unactivated gate outputs from forget, update, " |
| "and output gates, pre-activation.") |
| .Input( |
| 2, |
| "seq_lengths", |
| "Array of sequence lengths. " |
| "len(seq_lengths) should equal batch size N.") |
| .Input(3, "t", "The timestep for this operation.") |
| .Output(0, "hidden", "The new GRU hidden state calculated by this op."); |
| REGISTER_CPU_OPERATOR(GRUUnitGradient, GRUUnitGradientOp<float, CPUContext>); |
| OPERATOR_SCHEMA(GRUUnitGradient).NumInputs(6).NumOutputs(2); |
| |
| class GetGRUUnitGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| vector<OperatorDef> GetGradientDefs() override { |
| return SingleGradientDef( |
| "GRUUnitGradient", |
| "", |
| vector<string>{I(0), I(1), I(2), I(3), O(0), GO(0)}, |
| vector<string>{GI(0), GI(1)}); |
| } |
| }; |
| REGISTER_GRADIENT(GRUUnit, GetGRUUnitGradient); |
| } // namespace caffe2 |