fix conv+bn folding issue when bn hasn't running states (#71259)
Summary:
Doing conv+bn folding which bn hasn't a running stats, there have error for JIT and FX path:
```
import torch
import torch.nn as nn
import torch.fx.experimental.optimization as optimization
class M(nn.Module):
def __init__(self):
super(M, self).__init__()
self.conv = nn.Conv2d(32, 64, 3, stride=2)
self.bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
x = torch.randn([1, 32, 50, 50])
model = M().eval()
'''
# jit path
with torch.no_grad():
traced = torch.jit.trace(model, x).eval()
traced = torch.jit.freeze(traced)
'''
# FX path
fused_model = optimization.fuse(model)
```
expected result:
1. JIT path
```
Traceback (most recent call last):
File "bn_test.py", line 27, in <module>
traced = torch.jit.freeze(traced)
File "/home/xiaobinz/miniconda3/envs/pytorch-master/lib/python3.8/site-packages/torch/jit/_freeze.py", line 119, in freeze
run_frozen_optimizations(out, optimize_numerics, preserved_methods)
File "/home/xiaobinz/miniconda3/envs/pytorch-master/lib/python3.8/site-packages/torch/jit/_freeze.py", line 167, in run_frozen_optimizations
torch._C._jit_pass_optimize_frozen_graph(mod.graph, optimize_numerics)
RuntimeError: Expected Tensor but got None
```
2. FX path
```
Traceback (most recent call last):
File "bn_test.py", line 31, in <module>
model = optimization.fuse(model, inplace=True)
File "/home/xiaobinz/miniconda3/envs/pytorch-master/lib/python3.8/site-packages/torch/fx/experimental/optimization.py", line 71, in fuse
fused_conv = fuse_conv_bn_eval(conv, bn)
File "/home/xiaobinz/miniconda3/envs/pytorch-master/lib/python3.8/site-packages/torch/nn/utils/fusion.py", line 11, in fuse_conv_bn_eval
fuse_conv_bn_weights(fused_conv.weight, fused_conv.bias,
File "/home/xiaobinz/miniconda3/envs/pytorch-master/lib/python3.8/site-packages/torch/nn/utils/fusion.py", line 23, in fuse_conv_bn_weights
bn_var_rsqrt = torch.rsqrt(bn_rv + bn_eps)
TypeError: unsupported operand type(s) for +: 'NoneType' and 'float'
```
This PR will fix this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71259
Reviewed By: anjali411
Differential Revision: D33595049
Pulled By: davidberard98
fbshipit-source-id: 0fe56bb2bb25d6d54ebc53789d2ad22458da9012
(cherry picked from commit 5672c083784585e6e1ec5657f02bd3051afb2b50)
diff --git a/test/jit/test_freezing.py b/test/jit/test_freezing.py
index a5b02c0..331fd38 100644
--- a/test/jit/test_freezing.py
+++ b/test/jit/test_freezing.py
@@ -1606,13 +1606,14 @@
conv_bias = [True, False]
module_pairs = [(nn.Conv1d, nn.BatchNorm1d), (nn.Conv2d, nn.BatchNorm2d), (nn.Conv3d, nn.BatchNorm3d)]
use_tracing = [True, False]
+ bn_running_stats = [True, False]
- for use_bias, modules, tracing in product(conv_bias, module_pairs, use_tracing):
+ for use_bias, modules, tracing, track_stats in product(conv_bias, module_pairs, use_tracing, bn_running_stats):
class ConvBN(torch.nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(ConvBN, self).__init__()
self.conv = modules[0](in_channels, out_channels, bias=use_bias, **kwargs)
- self.bn = modules[1](out_channels, eps=0.001)
+ self.bn = modules[1](out_channels, eps=0.001, track_running_stats=track_stats)
def forward(self, x):
x = self.conv(x)
@@ -1644,7 +1645,10 @@
scripted_mod = torch.jit.freeze(scripted_mod)
self.run_pass("fold_frozen_conv_bn", scripted_mod.graph)
- FileCheck().check("conv").check_not("aten::batch_norm").run(scripted_mod.graph)
+ if track_stats:
+ FileCheck().check("conv").check_not("aten::batch_norm").run(scripted_mod.graph)
+ else:
+ FileCheck().check("conv").check("aten::batch_norm").run(scripted_mod.graph)
self.assertEqual(mod_eager(inp), scripted_mod(inp))
self.assertEqual(mod_eager(inp), scripted_mod(inp))
diff --git a/test/test_fx_experimental.py b/test/test_fx_experimental.py
index 75283ad..a35c94a 100644
--- a/test/test_fx_experimental.py
+++ b/test/test_fx_experimental.py
@@ -667,6 +667,30 @@
self.assertEqual(fused(inp), rn18(inp))
+ def test_conv_bn_fusion_not_running_state(self):
+ class M(torch.nn.Module):
+ def __init__(self):
+ super(M, self).__init__()
+ self.conv = torch.nn.Conv2d(32, 64, 3, stride=2)
+ self.bn = torch.nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
+
+ def forward(self, x):
+ x = self.conv(x)
+ x = self.bn(x)
+ return x
+
+ model = M().eval()
+
+ traced = symbolic_trace(model)
+ fused = optimization.fuse(traced)
+ inp = torch.randn([1, 32, 50, 50])
+
+ # bn need not be folded in conv
+ self.assertTrue(
+ any(isinstance(m, torch.nn.BatchNorm2d) for m in fused.modules())
+ )
+ self.assertEqual(fused(inp), model(inp))
+
def test_call_to_assert_no_msg(self):
class M(torch.nn.Module):
def forward(self, a, b):
diff --git a/torch/csrc/jit/passes/frozen_conv_folding.cpp b/torch/csrc/jit/passes/frozen_conv_folding.cpp
index 0aa674e..4b5535a 100644
--- a/torch/csrc/jit/passes/frozen_conv_folding.cpp
+++ b/torch/csrc/jit/passes/frozen_conv_folding.cpp
@@ -62,6 +62,15 @@
continue;
}
+ auto bn_rm_ivalue = bn->namedInput("running_mean");
+ auto bn_rv_ivalue = bn->namedInput("running_var");
+ // check running_mean and running_var has value, if they are
+ // None(track_running_stats=False), skiping the folding path.
+ if (bn_rm_ivalue->type() == NoneType::get() &&
+ bn_rv_ivalue->type() == NoneType::get()) {
+ continue;
+ }
+
auto bn_rm = constant_as<Tensor>(bn->namedInput("running_mean")).value();
auto bn_rv = constant_as<Tensor>(bn->namedInput("running_var")).value();
auto bn_eps = constant_as<double>(bn->namedInput("eps")).value();
diff --git a/torch/fx/experimental/optimization.py b/torch/fx/experimental/optimization.py
index 7016556..595dbfa 100644
--- a/torch/fx/experimental/optimization.py
+++ b/torch/fx/experimental/optimization.py
@@ -68,6 +68,8 @@
continue
conv = modules[node.args[0].target]
bn = modules[node.target]
+ if not bn.track_running_stats:
+ continue
fused_conv = fuse_conv_bn_eval(conv, bn)
replace_node_module(node.args[0], modules, fused_conv)
node.replace_all_uses_with(node.args[0])