| #pragma once |
| |
| #include <ATen/core/Tensor.h> |
| #include <ATen/native/TypeProperties.h> |
| #include <ATen/ScalarOps.h> |
| |
| #ifndef AT_PER_OPERATOR_HEADERS |
| #include <ATen/NativeFunctions.h> |
| #else |
| #include <ATen/ops/result_type.h> |
| #endif |
| |
| namespace at::native { |
| |
| // original values given by raw_*. If an original value is not contiguous, will make a contiguous copy to |
| // the corresponding trimmed_* value. Additionally, if the dtypes of the boundary and input tensor do not |
| // match, will change them to be a common super type so comparisons are done between the same types. |
| // For any trimmed_* tensor, if its outgoing value matches what it was incoming (typically null), then the |
| // corresponding raw_* version should be used since it was already contiguous of the right type. |
| inline void searchsorted_maybe_trim_input_tensors( |
| Tensor& trimmed_input, |
| Tensor& trimmed_boundaries, |
| Tensor& trimmed_sorter, |
| const Tensor& raw_input, |
| const Tensor& raw_boundaries, |
| const Tensor& raw_sorter) { |
| bool in_is_contiguous = raw_input.is_contiguous(); |
| bool bd_is_contiguous = raw_boundaries.is_contiguous(); |
| bool sort_is_contiguous = raw_sorter.is_contiguous(); |
| |
| if (!in_is_contiguous) { |
| TORCH_WARN_ONCE("torch.searchsorted(): input value tensor is non-contiguous, this will lower the performance due " |
| "to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous input value " |
| "tensor if possible. This message will only appear once per program."); |
| trimmed_input = raw_input.contiguous(); |
| } |
| if (!bd_is_contiguous) { |
| TORCH_WARN_ONCE("torch.searchsorted(): boundary tensor is non-contiguous, this will lower the performance due " |
| "to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous boundary " |
| "tensor if possible. This message will only appear once per program."); |
| trimmed_boundaries = raw_boundaries.contiguous(); |
| } |
| if (!sort_is_contiguous) { |
| TORCH_WARN_ONCE("torch.searchsorted(): sorter tensor is non-contiguous, this will lower the performance due " |
| "to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous sorter " |
| "tensor if possible. This message will only appear once per program."); |
| trimmed_sorter = raw_sorter.contiguous(); |
| } |
| if (raw_input.dtype() != raw_boundaries.dtype()) { |
| at::native::ResultTypeState state = {}; |
| state = at::native::update_result_type_state(raw_boundaries, state); |
| state = at::native::update_result_type_state(raw_input, state); |
| ScalarType common_stype = at::native::result_type(state); |
| |
| TORCH_INTERNAL_ASSERT(common_stype != ScalarType::Undefined); |
| if (common_stype != raw_input.scalar_type()) { |
| trimmed_input = in_is_contiguous ? raw_input.to(common_stype) : trimmed_input.to(common_stype); |
| } |
| if (common_stype != raw_boundaries.scalar_type()) { |
| trimmed_boundaries = bd_is_contiguous ? raw_boundaries.to(common_stype) : trimmed_boundaries.to(common_stype); |
| } |
| } |
| } |
| |
| /* unused but needed for internal jagged tensor class */ |
| inline void searchsorted_maybe_trim_input_tensors( |
| Tensor& trimmed_input, |
| Tensor& trimmed_boundaries, |
| const Tensor& raw_input, |
| const Tensor& raw_boundaries) { |
| Tensor trimmed_sorter; |
| Tensor raw_sorter; |
| return searchsorted_maybe_trim_input_tensors( |
| trimmed_input, |
| trimmed_boundaries, |
| trimmed_sorter, |
| raw_input, |
| raw_boundaries, |
| raw_sorter); |
| } |
| |
| inline bool searchsorted_dims_matched_before_last_dim(const Tensor& boundaries, const Tensor& input) { |
| if (boundaries.dim() != input.dim()) { |
| return false; |
| } |
| const auto& dims_bd = boundaries.sizes(); |
| const auto& dims_in = input.sizes(); |
| for (int64_t dim = 0; dim + 1 < boundaries.dim(); ++dim) { |
| if (dims_bd[dim] != dims_in[dim]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| inline Tensor searchsorted_scalar_tensor(const Scalar& scalar, const c10::Device& device) { |
| auto tensor = c10::scalar_to_tensor(scalar, device); |
| // This is to adopt the scalar promotion rules defined in native/TypeProperties.h |
| // So we have the same type promotion rules as binary operations. |
| tensor.unsafeGetTensorImpl()->set_wrapped_number(true); |
| return tensor; |
| } |
| |
| inline void searchsorted_pre_check( |
| const Tensor& boundaries, |
| const Tensor& input, |
| const Tensor& output, |
| const bool out_int32, |
| const bool right, |
| const c10::optional<c10::string_view> side_opt, |
| const Tensor& sorter) { |
| if (side_opt) { |
| const c10::string_view side = *side_opt; |
| TORCH_CHECK(side == "left" || side == "right", "torch.searchsorted(): side can only be 'left' or 'right' but ", |
| "got ", side); |
| |
| // assume the user has not explicitly set (right=False, side="right") |
| TORCH_CHECK(!right || side == "right", "torch.searchsorted(): side and right can't be set to opposites, got side " |
| "of ", side, " while right was True"); |
| } |
| |
| TORCH_CHECK(boundaries.device() == input.device(), "torch.searchsorted(): boundaries and input value tensors ", |
| "should have same device type, but got boundaries tensor device type ", boundaries.device(), " and input value ", |
| "tensor device type ", input.device()); |
| |
| if (sorter.defined()) { |
| TORCH_CHECK(sorter.device() == boundaries.device(), "torch.searchsorted(): sorter and boundary tensors should ", |
| "have same device type, but got sorter tensor device type ", sorter.device(), " and input value tensor ", |
| "device type ", boundaries.device()); |
| |
| TORCH_CHECK(sorter.sizes() == boundaries.sizes(), "torch.searchsorted(): boundary and sorter must have the same " |
| "size, but got boundary tensor ", boundaries.sizes(), "and got sorter tensor ", sorter.sizes()); |
| |
| TORCH_CHECK(sorter.scalar_type() == ScalarType::Long, "torch.searchsorted(): sorter must be a tensor of long ", |
| "dtype but got dtype ", sorter.scalar_type()); |
| |
| if (sorter.numel() > 0) { |
| auto minmax = sorter.aminmax(); |
| int64_t vmin = std::get<0>(minmax).item().toLong(); |
| int64_t vmax = std::get<1>(minmax).item().toLong(); |
| TORCH_CHECK(vmin >= 0 && vmax < sorter.sizes().back(), "torch.searchsorted(): sorter index out of range"); |
| } |
| } |
| |
| TORCH_CHECK(input.dim() > 0 || (input.dim() == 0 && input.numel() == 1 && boundaries.dim() == 1), |
| "torch.searchsorted(): input value can be a scalar only when boundaries tensor dimension is 1, but we got ", |
| "boundaries tensor dim(", boundaries.dim(), ") and input value's dim(", input.dim(), ") numel(", |
| input.numel(), ")"); |
| |
| TORCH_CHECK(boundaries.dim() != 0, "torch.searchsorted(): boundaries tensor should have positive dimension, but ", |
| "got 0 dimension"); |
| |
| TORCH_CHECK(boundaries.dim() == 1 || searchsorted_dims_matched_before_last_dim(boundaries, input), |
| "torch.searchsorted(): boundaries tensor should be 1 dimension or the first N-1 dimensions of boundaries tensor ", |
| "and input value tensor must match, but we got boundaries tensor ", boundaries.sizes(), " and input value tensor ", |
| input.sizes()); |
| |
| ScalarType output_dtype = output.scalar_type(); |
| TORCH_CHECK( |
| (output_dtype == ScalarType::Long && !out_int32) || |
| (output_dtype == ScalarType::Int && out_int32), |
| "torch.searchsorted(): output tensor's dtype is wrong, it can only be Int(int32) or Long(int64) depending on ", |
| "whether out_int32 flag is True, but we got output tensor's dtype ", output_dtype, |
| " and out_int32 flag is ", (out_int32 ? "True" : "False")); |
| |
| if (out_int32) { |
| TORCH_CHECK(boundaries.sizes().back() < INT_MAX, |
| "torch.searchsorted(): the size of boundaries' last dimension should be less than ", INT_MAX, ", but we got ", |
| boundaries.sizes().back()); |
| } |
| } |
| |
| } // namespace at::native |