blob: 1bf9c8f6cb4eebb62c2ec5754a7edf08d63ee471 [file] [log] [blame]
// Adapted from interp.cpp from Caffe util by Pauline Luc
// Originally developed by George Papandreou
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/TensorMeta.h>
#include <ATen/native/UpSample.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/upsample_trilinear3d.h>
#include <ATen/ops/upsample_trilinear3d_backward.h>
#include <ATen/ops/upsample_trilinear3d_backward_native.h>
#include <ATen/ops/upsample_trilinear3d_native.h>
#endif
namespace at {
namespace meta {
TORCH_META_FUNC(upsample_trilinear3d) (
const Tensor& input,
IntArrayRef output_size,
bool align_corners,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w
) {
auto full_output_size = native::upsample_3d_common_check(input.sizes(), output_size);
// Allow for empty batch size but not other dimensions
TORCH_CHECK(
input.numel() != 0 || c10::multiply_integers(input.sizes().begin() + 1, input.sizes().end()),
"Non-empty 5D data tensor expected but got a tensor with sizes ",
input.sizes());
set_output_raw_strided(0, full_output_size, {}, input.options().memory_format(input.suggest_memory_format()));
}
TORCH_META_FUNC(upsample_trilinear3d_backward) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w
) {
auto full_output_size = native::upsample_3d_common_check(input_size, output_size);
TORCH_CHECK(
grad_output.dim() == 5,
"Expected grad_output to be a tensor of dimension 5 but got: dimension ", grad_output.dim());
for (const auto i : c10::irange(5)) {
TORCH_CHECK(
grad_output.size(i) == full_output_size[i],
"Expected grad_output to have the same shape as output;",
" output.size(", i, ") = ", full_output_size[i],
" but got grad_output.size(", i, ") = ", grad_output.size(i));
}
set_output_raw_strided(0, input_size, {}, grad_output.options().memory_format(grad_output.suggest_memory_format()));
}
} // namespace meta
namespace native {
TORCH_IMPL_FUNC(upsample_trilinear3d_out_cpu) (
const Tensor& input,
IntArrayRef output_size,
bool align_corners,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& output
) {
upsample_trilinear3d_kernel(kCPU, output, input, align_corners, scales_d, scales_h, scales_w);
}
TORCH_IMPL_FUNC(upsample_trilinear3d_backward_out_cpu) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& grad_input
) {
grad_input.zero_();
upsample_trilinear3d_backward_kernel(kCPU, grad_input, grad_output, align_corners, scales_d, scales_h, scales_w);
}
// vec variants
using at::native::upsample::compute_output_size;
using at::native::upsample::get_scale_value;
Tensor upsample_trilinear3d(
const Tensor& input,
at::OptionalIntArrayRef output_size,
bool align_corners,
c10::optional<ArrayRef<double>> scale_factors) {
auto osize = compute_output_size(input.sizes(), output_size, scale_factors);
auto scale_d = get_scale_value(scale_factors, 0);
auto scale_h = get_scale_value(scale_factors, 1);
auto scale_w = get_scale_value(scale_factors, 2);
return at::upsample_trilinear3d(input, osize, align_corners, scale_d, scale_h, scale_w);
}
DEFINE_DISPATCH(upsample_trilinear3d_kernel);
DEFINE_DISPATCH(upsample_trilinear3d_backward_kernel);
} // namespace native
} // namespace at